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Abstract: Sub-wavelength diameter holes in thin metal layers can exhibit remarkable 

optical features that make them highly suitable for (bio)sensing applications. Either as 

efficient light scattering centers for surface plasmon excitation or metal-clad optical 

waveguides, they are able to form strongly localized optical fields that can effectively 

interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, 

aluminum exhibits good optical and electrical properties, is easy to manufacture and process 

and, unlike gold and silver, its low cost makes it very promising for commercial 

applications. However, aluminum has been scarcely used for biosensing purposes due to 

corrosion and pitting issues. In this short review, we show our recent achievements on 

aluminum nanohole platforms for (bio)sensing. These include a method to circumvent 

aluminum degradation—which has been successfully applied to the demonstration of 
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aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate 

compact discs supports—the use of aluminum nanoholes operating as optical waveguides for 

synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, 

and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive 

adhesive tapes, which could facilitate the development of a wearable technology based on 

aluminum NHAs. 

Keywords: aluminum; metal nanoholes; nanohole arrays; surface plasmon resonance; 

optical biosensing; nanopatterning; transfer printing; molecularly imprinted polymer; 

photopolymerization 

 

1. Introduction 

Nanophotonic devices are nanostructures that facilitate the generation, propagation, manipulation, 

and detection of light [1]. They can be employed to create highly localized optical fields on the 

nanoscale, allowing strong enhancement of light-matter interaction. Because of this, one of the most 

promising applications of these structures is their use as very sensitive transducers for optical biosensing. 

Additional advantages of nanophotonic devices for this purpose are: Small footprint—which permits 

large scale integration for multiplex analysis based on sensor arrays—and possibility of mass production 

by mature micro- and nano-processing techniques, as those employed in the microelectronics industry. In 

this respect, two major micro- and nano-photonic platforms have excelled: Si-based integrated photonic 

devices [2] and plasmonic nanostructures based on metal sub-wavelength features [3]. Remarkable 

examples of the former are Mach-Zehnder [4] and Young interferometers [5], microring [6],  

Fabry-Perot [7], and photonic crystal [8] resonators, whereas metal nanoparticles [9] and nanoholes in 

metal films [10] are the most representative plasmonic nanostructures applied to the field of biosensors. 

Concerning nanoplasmonic devices, those based on metallic subwavelength holes are particularly 

appealing because of their geometrical simplicity and the possibility of being reliably and uniformly 

mass-produced through lithographic means [11,12], facilitating massive parallelism. These plasmonic 

transducers can be typically configured as either nanohole arrays (NHAs) that function as metal 

gratings capable of exciting surface plasmon polaritons (SPPs) Bloch waves [13] or optically isolated 

nanoholes. Numerous demonstrations of NHA-based chemical and biochemical sensors can be found 

in the literature [14]. The principle of operation of these devices relies on the sensitivity of SPP 

resonances to the dielectric materials in contact with the metal surface, thus refractive index changes 

can be optically measured as spectral feature shifts or intensity variations. NHAs are ideal structures for 

the implementation of multiplexed-detection platforms with integrated microfluidics because of their 

high spatial density and smaller sensing areas than those used in conventional surface plasmon 

resonance (SPR) coupling techniques like those based on prisms. Regarding isolated nanoholes, these 

can also excite surface plasmons [13] and act as metal-clad optical waveguides [12,15]. An outstanding 

biosensing manifestation of the latter was the achievement of single molecule detection by fluorescence 

correlation spectroscopy at biologically relevant concentrations [15]. 
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The majority of demonstrated plasmonic metal NHAs have been fabricated in Au and Ag films. 

This is because these materials have low optical losses in the visible and near-infrared ranges, in 

addition to a high chemical stability. The latter property is particularly important for biochemical uses 

and mainly applicable to Au; Ag has a poorer environmental stability and usually requires a protective 

overlayer of a dielectric material, such as silica [16] or alumina [17]. The excellent plasmonic 

properties of these metals are however counteracted by their high cost, which limits large scale 

commercialization. A very attractive alternative to noble metals is Al, which is approximately  

25,000 and 425 times cheaper than Au and Ag, respectively, easy to manufacture and process and has 

material properties that enable plasmon resonances in a broad optical band [18,19]. However, Al has 

been scarcely taken into account for the implementation of SPR biosensors mainly because of 

challenges from oxidation and material degradation (corrosion and pitting), which are particularly 

critical when thin Al films are concerned. 

In this paper, we review our recent research results on Al nanoholes for (bio)sensing applications.  

In Section 2 a passivation process for Al NHAs fabricated on glass substrates and its effectiveness for 

biosensing in aqueous media are described. Section 3 depicts a refinement of the technology developed 

for glass substrates to be compatible with polycarbonate (PC) supports from compact discs (CDs), and 

the demonstration of the suitability of the resulting Al NHA on CD-based label-free optical biosensing 

platform. Section 4 presents a direct and easy method to transfer Al NHAs from PC surfaces onto 

pressure-sensitive adhesive (Scotch) tapes, allowing the fabrication of Al NHA-based sensors on 

flexible supports. Section 5 deals with the use of isolated Al nanoholes as optical waveguides for 

synthesizing molecularly imprinted polymers (MIPs) with submicron lateral dimensions by localized 

photopolymerization. Finally, conclusions are collected in Section 6. 

2. Passivation of Al NHAs 

We employed the following process flow to fabricate Al NHAs on glass substrates: (1) deposition 

of a 100-nm-thick Al layer on glass supports by electron-beam thermal evaporation; (2) ZEP520 resist 

coating of the Al surface, followed by electron-beam lithography (EBL) exposure to define the 

nanoholes and subsequent resist development; (3) inductively coupled plasma (ICP) etching of the Al 

film using the patterned EBL resist as a mask; and (4) rinsing of the etched Al surface to remove 

residual chloride ions. Detailed description of the fabrication process can be found in [20]. Figure 1 

shows representative results concerning the surface morphology and optical characterization of a  

500-nm-period Al NHA. The measured transmittance spectrum for unpolarized, normally incident light 

exhibit three main resonance features, referred to as their respective minima: S-wavelength (~507 nm), 

P-wavelength (~550 nm) and Q-wavelength (~770 nm). These values were in good agreement with 

both, finite difference time domain (FDTD) simulations and the predicted SPP resonances by the  

well-known SPP grating-coupling equation: 

2 2

d m
SPP

d m

a

i j

 
 
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 (1)

where λSPP is the wavelength of the SPP resonance, a is the array period, i and j are integers and εm and 

εd are the dielectric functions of the metal and dielectric medium, respectively. According to this 
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equation, P- and Q-wavelengths correspond to SPP resonances at the glass/metal interface for i = ±1,  

j = ±1 and i = ±1, j = 0 (or vice versa), respectively. The S-wavelength (λS) is related to the i = ±1, j = 0 

(or vice versa) SPP resonance at the air/metal interface; therefore, both, bulk (optical changes in the 

whole SPP evanescent field region) and surface (optical changes in the close proximity to the NHA 

surface) sensing can be performed by measuring λS. 

To prepare the nanopatterned films for biosensing tests in aqueous solutions, the issue of Al oxidation 

was dealt with a passivation process consisting of exposing the devices to an oxygen plasma [20].  

The purpose of this treatment was to produce an oxide protecting layer more resistant chemically—

particularly, against oxidizing agents—than the usually present native oxide. By monitoring the optical 

response (variation of λS) of the plasma-exposed Al NHAs as a function of the plasma treatment time 

and the immersion time in deionized water (DIW) (pH = 5.7), it was found that a plasma treatment  

of ~40 min led to an oxidized surface that provided protection against further oxidation and, 

simultaneously, did not increase the oxide film thickness significantly. A too-thick oxide layer  

would decrease the surface sensitivity of the NHA since the maximum sensitivity is achieved at the 

metal/dielectric media interface. Although the passivation process does not completely avoid oxidation 

in aqueous media, it reduces the oxidation rate to a value low enough (~0.08 nm/h) to allow biosensing 

tests to be reliably achieved in a reasonable time. The experimental bulk refractive index sensitivity of 

an oxygen plasma treated Al NHA (Figure 1b) was 487 nm/RIU (RIU ≡ refractive index unit), which 

compares well to those of similar NHAs made in Au [21] and Ag [22] films. 

 
(a) (b) 

Figure 1. (a) Scanning electron microscope (SEM) photograph of a fabricated 500-nm-period 

Al NHA. Good surface and hole diameter uniformity is observed; (b) Measured spectral 

transmittances of a 500-nm-period Al NHA on glass immersed in different fluids.  

S-wavelength is related to the SPP resonance at the interface between the superstrate (air, 

liquids) and the metal: Its position redshifts from ~507 nm (air) to ~(670–750) nm (liquids) 

as the superstrate refractive index increases (bulk refractive index sensitivity = 487 nm/RIU). 

P- and Q-wavelengths are related to metal/substrate SPP resonances. 

As a proof-of-concept, we employed the passivated Al NHAs on glass substrates as optical 

transducers for performing a label-free immunoassay for biotin analysis. The measuring principle was 

based on a competitive inhibition assay between the biotin-dextran-lipase conjugates immobilized onto 

the Al NHA surface and biotin present in a sample solution for a limited number of antibiotin antibody 

binding sites. The devices were responsive to receptor immobilization, and gave a higher signal (λS 
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shift) in the absence than in the presence of the analyte, demonstrating good biosensing performance. 

Despite the several incubations in aqueous solutions involved in these experiments (some of them as 

long as 60 min), no evidence of aluminum degradation was observed. This supports the effectiveness 

of our passivation process, which provides protection against Al oxidation and corrosion and generates 

a surface capable to be derivatized by well-established silane chemistry for bioreceptor immobilization. 

3. Al NHAs on Polycarbonate Compact Discs 

We applied the technology described in the previous section to the fabrication of Al NHAs on CD 

substrates made of PC [23]. The use of CD supports along with CD players has been shown to be a 

suitable and cost-effective biosensing optical platform for performing microarray assays [24]. Since 

NHAs are ideal structures for array configurations, their implementation on CD surfaces appears to be 

a promising approach to develop label-free high-density microarray analysis automation by portable 

read-out equipment. 

Using PC, instead of glass, as the substrate material implies considering fabrication precautions in 

order not to degrade the substrate during device processing. In particular, the critical PC properties that 

must be taken into account are its glass transition temperature (~147 °C) and its reactivity with 

solvents, such as EBL resist developers. The technology was therefore adapted by introducing three 

key processes: (i) EBL resist baking at 120 °C for 10 min (instead of the typical bake conditions for 

ZEP520 resist: 180 °C for 2 min) to allow the resist solvent to evaporate while keeping the PC 

temperature below its glass transition temperature; (ii) adhesion of a removable protective plastic film 

onto the PC substrate backside to prevent that surface from reacting with the EBL developer; and  

(iii) the O2 plasma-based Al surface passivation process was carried out in several separate and 

consecutive short steps to avoid substrate overheating. By adopting these PC-compatible processes, the 

substrate transparency and integrity were preserved throughout the whole fabrication process. 

The fabricated 500-nm-period Al NHAs exhibited both, good surface and hole diameter  

(~250 nm) uniformity and clear optical diffraction properties (Figure 2). The shape of the measured 

spectral transmittance was similar to that of NHAs fabricated on glass substrates (Figure 3). Three  

transmission minima appear due to SPPs at air/metal (S-wavelength) and substrate/metal interfaces (P- and  

Q-wavelengths). Substrate/metal SPPs occur at different wavelengths than those measured for the glass 

substrate because of the differences in refractive indexes between PC (~1.58) and glass (~1.52). 

Following the same experimental protocol as that for the NHAs on glass, the viability of the Al  

NHA-CD platform for label-free optical biosensing in aqueous media was also demonstrated [23]. 

In addition to the aforementioned immunoassay, we studied the sensitivity of the oxidized Al 

surfaces to chemical parameters, such as pH and concentration of certain ions and tensioactives. This 

study served as a preliminary assessment for determining the feasibility of different buffers for Al 

NHAs biosensing. For that, the degradation of the material was macroscopically evaluated after 

placing different aqueous solutions on Al NHAs (Figure 4). Considering the results shown in Table 1, 

HEPES and HEPES-T were selected to address biorecognition assays on Al NHAs. 
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(a) (b) 

Figure 2. (a) A 500-nm-period Al NHA on a 1.2-mm-thick PC substrate illuminated through 

a microscope objective. Light diffraction is clearly observed; (b) SEM photograph of the 

nanopatterned Al surface revealing good hole diameter uniformity. 

 

Figure 3. Experimental spectral transmittance of 500-nm-period Al NHAs on polycarbonate 

and glass substrates. The spectra exhibit three similar transmission minima: S-wavelength 

is associated to the superstrate (air)/metal interface SPP resonance, whereas P- and  

Q-wavelengths are related to substrate/metal SPP resonances. 

 
(a) (b) 

Figure 4. Example of oxidized Al surfaces degradation, before (a) and after (b) interacting 

with PBS buffer. 
  

grating background

1 mm
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Table 1. Qualitative assessment of Al NHAs stability against different solutions. 

Tensioactive Deg. a Buffer Deg. a Buffer-T b Deg. a

Tween 20 (0.05%) Yes Tris (20 mM, pH 8.5) No Tris-T No 
Span 20 (0.05%) No PBS (10 mM, pH 7.5) Yes PBS-T Yes 
CTAB (0.01 M) Yes HEPES (25 mM, pH 7.5) No HEPES-T No 
SDS (0.01 M) No SSC (15 mM, pH 7) Yes SSC-T Yes 

  Citrate (25 mM, pH 5.5) No Citrate-T No 
a Surface degradation determined macroscopically. b Buffers with Tween 20 at 0.05% (v/v). 

Additionally, the functionalization of the oxidized Al surfaces and their capability for performing 

biorecognition assays was studied by fluorescence scanner measurements. As a model system, 

oxidized Al was silanized with APTMS, different concentrations of BSA were immobilized by passive 

adsorption and the surface was blocked with gelatin. Then, anti-BSA rabbit IgG was incubated on the 

chip, followed by anti-rabbit goat IgG labeled with Cy5. As shown in Figure 5, the experimental 

results provide insights into the viability of this strategy to carry out bioassays on Al NHAs. 

 

Figure 5. Results of the biorecognition assay model system for BSA detection on oxidized 

Al, measured by scanner fluorescence. Experimental data fit to an exponential rise to max 

curve (R2 = 0.978). 

The demonstrated Al NHA-based biosensor on PC supports should be seen as a proof-of-concept.  

In order to use the laser source of a conventional CD driver for optical interrogation of NHA 

biosensors, optical intensity-instead of wavelength-monitoring is desirable. This entails engineering 

the spectral response of the NHA according to the probe interrogation wavelength to obtain an optimum 

performance, which can be achieved by using a proper array period. Standard driver operation 

wavelengths are 480 nm, 650 nm and 780 nm for Blu-ray, DVD and CD formats, respectively. Figure 6 

shows the measured transmission spectra of fabricated 620-nm-period (Figure 6a) and 750-nm-period 

(Figure 6b) Al NHAs on PC designed to operate at 650 nm and 780 nm wavelength, respectively. Both 

spectra exhibit S- and P-wavelength spectral features associated to SPP resonances at air/metal and 

metal/substrate interfaces, respectively. The array periods have been chosen to pin the operating point 

(solid black dot in Figure 6) at the positive-slope side of the S-resonance. Note that the operating 

points are not exactly tuned at the highest slope values of the spectral curves (hollow dots in Figure 6)—

where the intensity sensitivity should be maximum—but slightly redshifted. This is because the 

devices are aimed to have the highest sensitivity once the receptor layer has been immobilized on the 

sensor surface, that is, once the transducers become biosensors. 
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Figure 6. Experimental transmission spectra of 620-nm-period (a) and 750-nm-period;  

(b) Al NHAs on PC supports for optical intensity interrogation at 650 nm (DVD) and 780 nm 

(CD) wavelength, respectively. Solid black dots indicate the operating points of the transducers 

while hollow dots show the expected operating points of the biosensors, that is, after 

biological receptor immobilization on the transducers surfaces. 

4. Al NHAs on Flexible Substrates 

Nanopatterned thin metal films on flexible substrates is a subject of increasing interest because of 

the possibility of achieving plasmonic and electronic device functionalities that are not possible by 

using rigid substrates [25]. For example, flexible supports can be wrapped around curved and angled 

surfaces, enabling conformal integration of plasmonic sensors and electronics on hemispherical lenses [26] 

and human body parts [27]. Substrate flexibility can also lead to tunable optical devices for adaptive 

photonic systems [28]. This has boosted the research and development of innovative nanofabrication 

methods targeting simplicity, low cost, high-throughput, mass production and material compatibility. 

Template stripping [29] and nanotransfer printing [30] are particularly suitable for thin metal-based 

device integration on flexible substrates due to their versatility and simplicity. Both techniques rely on 

transferring a metal nanopattern from a stamp or template to a backing layer by intimate physical 

contact between surfaces (stamp-metal, metal-backing). The different interface bonding strengths allow 

the metal nanopattern to be transferred. Patterned films of noble metals (Au, Ag) can easily be  

peeled from stamps due to the poor adhesion of these metals, particularly to Si-based surfaces. 

However, metals prone to form oxygen-rich surfaces, such as Al, exhibit higher adherence and film  

detachment becomes more complex, typically requiring the use of intermediate anti-adhesion layers  

(e.g., self-assembled monolayers (SAMs) [31] and gold films [32]). 

Concerning the attachment of nanopatterned metal films onto flexible substrates, adhesive epoxy 

resins [29], SAM deposition [33], UV/ozone [34], controlled temperature and pressure [31] treatments 

are usually employed. Pressure-sensitive adhesive (PSA) tapes provide both the adhesion and the 

baking materials simultaneously. PSA tapes are thin, flexible, and capable to adhere to a variety of 

substrates by applying light pressure without the need for solvent, heat, UV or water for activation. In 

addition, they are low-cost and easy to use, and posses technologically relevant characteristics such as 

possibility of bonding dissimilar materials without incompatibility concerns, reduction of assembly times, 

removability, no need for surface refinishing and good uniformity and gap filling properties. Due to its 

versatility, PSA tapes are widely used in appliance, automotive, electronic and industrial applications, 

and, in recent years, nanotechnology [35–37]. 
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We have recently found that Al NHAs fabricated on PC CD surfaces according to the procedure 

described in Section 3 can be easily detached by using a general purpose PSA (Scotch) tape [38]. Thus, 

the nanopatterned Al film is directly transferred by simple tape sticking—applying finger pressure—

and peeling off under ambient conditions. The transfer procedure can be watched in a video in the 

Supplementary Material of Reference [38]. Even though transfer parameters such as pressure, peeling 

angle and speed were not optimized, excellent surface uniformity and film continuity (no cracks) was 

attained over large areas, allowing us to observe clear optical diffractive effects as shown in Figure 7. 

 

Figure 7. Al NHAs on Scotch tape illustrating relevant features of these devices such as 

flexibility, adherence and optical diffraction. (a) A sample picked with two tweezers;  

(b) adhered onto a glass pipette; (c) SEM photograph of the Al NHA surface; (d) sample 

adhered onto a note.  

It should be noted that, when applied to Al NHAs on glass, the described transfer procedure did not 

work properly because of the high adherence of the Al films to glass surfaces. Remarkably, not even 

bare (non-patterned) Al films deposited on PC substrates could be acceptably detached by using the 

stick-and-peel method. Therefore, the successful release of the nanopatterned Al films was attributed 

to weakening of the metal-PC bonding strength due to particular process steps—surface cleaning 

before Al deposition and resist pre-bake before EBL—carried out during the NHAs fabrication on the 

CD substrates. Hence, no specific anti-adhesion layer was needed, simplifying the Al NHA fabrication 

process. The developed technology provides an Al-PC interface bonding that is both, strong enough to 

permit Al NHAs processing by a top-down approach (EBL and ICP) and weak enough to allow the Al 

NHAs to be easily peeled off by a simple transfer method with Scotch tape. 

A 500-nm-period Al NHA on Scotch tape was tested as a plasmonic refractometric sensor by 

immersing it into different aqueous solutions of citric acid. A bulk sensitivity of 477 nm/RIU was 

measured, which is similar to that achieved for Al NHAs on glass (Section 2). This supports the high 

quality of the Al NHA transfer printing and the capability of these devices to be used as refractometric 

transducers for biosensing. The stickiness and flexibility of PSA tapes makes them particularly suitable 

for implementing ready-to-use wearable (bio)sensors capable to be applied onto a diversity of material 

surfaces and shapes. 
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5. Al Nanoholes for nanoMIP Synthesis 

MIPs are tailor-made materials capable to exhibit selective recognition to a template molecule present 

during the polymerization process [39]. Therefore, they can be used as synthetic biomimetic receptors in 

sensing applications. The sensing performance of MIPs can be enhanced by micro- and nano-structuring 

because this increases the available recognition surface, greatly improving the site accessibility of 

imprinted materials [40]. The development of micro-nano-MIP-based chemical sensors normally requires 

the definition of well-defined MIP morphologies onto solid planar supports (e.g., transducers). For this 

purpose, a variety of methods for MIP film micro/nano patterning have been proved. Researchers have 

fabricated MIP features with microscale lateral resolution by means of UV [41], evanescent wave [42] 

and microstereo [43] lithographic techniques. However, to achieve sub-micron lateral resolution, only a 

few methods have been reported: Nanoimprint lithography [44] and direct writing by EBL [45]. 

We have demonstrated a new technique for fabricating MIP patterns with sub-micrometer lateral 

resolution: Photoinduced local polymerization within Al nanoholes [46]. The fabrication procedure is 

schematically depicted in Figure 8. First, 2D arrays of Al nanoholes were fabricated on glass substrates, 

as described in Section 2. The period of the arrays was large enough to avoid optical interaction 

(interference effects) among the holes so they could be considered as isolated metal-clad circular 

waveguides. Then, the holes where wetted with a droplet of a MIP prepolymerization mixture that 

included a photoinitiator for photopolymerization at 532 nm wavelength and rhodamine 123 (R123) as 

a model template molecule. Next, a laser beam at 532 nm wavelength was incident normally to the Al 

nanoholes from the glass substrate side inducing local photopolymerization within the holes. Finally, 

the non-polymerized MIP mixture and the print molecule were removed by washing. The size of the 

resulting MIP nanomaterials at the nanoholes could be controlled by the dose of the green radiation, 

that is, by the exposure time and the incident light power. Figure 9 shows an atomic force microscope 

(AFM) image of a single nanoMIP synthesized in an Al nanohole (Figure 9a) and fluorescence 

emission from a 5-µm-period array of R123-containing nanoMIPs (Figure 9b). Fluorescence lifetime 

imaging microscopy (FLIM) with single photon timing measurements proved the capability of the 

fabricated MIP nanostructures to recognize selectively the target analyte R123 over rhodamine 6G and 

fluorescein analogs. 

 

Figure 8. Schematics of the synthesis of nanoMIPs in Al nanoholes by local 

photopolymerization. (Left) A prepolymerization MIP mixture, containing a photoinitiator 

for photopolymerization at 532 nm wavelength, is deposited on an array of nanoholes and 

green light is applied from the glass substrate side. This leads to highly localized optical 

fields in the nanoholes; (Right) NanoMIPs after removing the non-polymerized mixture. 
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(a) (b) 

Figure 9. (a) AFM image of a single nanoMIP synthesized in an Al nanohole by local 

photopolymerization; (b) Fluoresce image of a 5-µm-period array of nanoMIPs containing 

fluorescent R123. 

6. Conclusions 

The use of Al as a low-cost plasmonic material is receiving increasingly attention due to the better 

understanding of its peculiarities related to the formation of aluminum oxide. Concerning biosensing, 

degradation of thin Al films because of corrosion and pitting has, however, placed this metal at a clear 

disadvantage as compared to the typically employed plasmonic metals Au and Ag. In order to 

circumvent this, we have developed a surface passivation treatment for nanopatterned Al films that 

allows Al NHA plasmonic transducers to be used for both, bioreceptor immobilization and target 

recognition in aqueous solutions. We have employed this technology to fabricate and demonstrate Al 

NHA biosensors on both, glass and PC CD supports. The latter achievement is particularly promising 

for developing CD-based label-free biosensing platforms for high-density microarray analysis. We 

have also shown the possibility of implementing Al NHAs on a flexible support, such as conventional 

Scotch tape using a simple stick-and-peel transfer procedure, which paves the way towards wearable 

devices based on Al devices combining plasmonic and electronic functionalities. Finally, the capability 

of isolated Al nanoholes to act as metal-clad circular optical waveguides has been employed to 

synthesize sub-micron sized MIP by means of local photopolymerization with visible radiation in the 

nanoholes. We consider that these achievements will contribute to make Al the material of choice  

for fabricating photonic transducers for biosensing applications, which would drastically enhance the 

possibility of commercialization of this type of optical biosensors. 
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