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Calculation Model S1: Calculation Model of Tissue Potentials Between WMCS and Electrode-
Based ES Method.   

Herein, using an appropriate physicomathematical model, Prof. M. Jensen proves that the 
WMCS method compared with the electrode-based ES, yields to qualitative similar results in their 
physiological effects in tissues. 

Calculation of Tissue Electrical Potentials and Voltages by ES and WMCS 

The electrical potential (φ) and the current density (j) inside the tissue depend on the shape and 
position of the electrodes, the conductivity (σ) of the tissue, and the geometry of the body. In each 
area of tissue where σ is constant, Laplace’s equation (Δφ = 0) must be met with the appropriate 
boundary conditions. This can typically be calculated by numerical methods, e.g. calculations of finite 
elements. However, analytical solutions can be provided for simple geometries and constant 
conductivity throughout the entire tissue region. Since we want to compare when two small plate 
electrodes supply the current with the WMCS method, where the current is "sprayed" at an almost 
constant current density to a given tissue region, we believe that by studying these analytical 
solutions we can gain more insight into the subject than with numerical numbers.  

We will therefore consider a case in which the semi- infinite area of z > 0, bounded by the plane 
z = 0, is filled by a tissue of constant conductivity, σ. For z → ∞, the potential is taken to be 0. The 
current is supplied through a small disk of radius a, around (0, 0, 0), with the other electrode far 
away, i.e., at infinity, where φ = 0.  

In case A, the disk is given a fixed voltage, V0, whereas in case B, a current with constant current 
density, J0, is supplied over the disk. Case A models the usual electrode-based ES method and case B 
the WMCS method. Both methods have cylindrical symmetry around the z-axis, and the solution for 
φ can therefore be given in cylindrical coordinates (r, θ, z), where r is the distance to the z-axis, θ is 
the polar angle, and z is the distance from the surface. In both cases A and B, the solution for z ≥ 0 
has the form: 𝜑 = න 𝑓(𝑠)𝐽଴(𝑠𝑟)𝑒ି௦௭𝑑𝑠∝

଴  (1) 
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Where J0 is a Bessel function of order zero, and f(s) is a function that must be chosen such that φ 
satisfies the boundary conditions for z = 0. 

In case A, the boundary condition for z = 0 are: φ = V0 for 0 ≤ r ≤ a, and the current density, jz =  
̶  ቀ𝜎 ణఝణ௭ ቁ z=0 = 0, through the plane z = 0 or r > a. This will be fulfilled when f(s) is given by: 

fA(s) = ଶ௏௢గ௦  sin(sα) (2) 

For this value of f(s), the integral (1) can be expressed by the elementary function: 

φA = ଶ௏బగ  Arc sinቌ ଶఈට(௥ି௔)మା௭మା ඥ(௥ା௔)మ ା௭మቍ (3) 

The total current, IA, in case A can now be found by integrating the current density, jz, over the 
disk-shaped electrode with Voltage V0:  

IA = 2σV0  ׬ ൫׬ sin(𝜎𝛼)𝐽଴ (𝑠𝑟)𝑑𝑠ஶ଴ ൯ఈ଴ r2 dr = 4σαV0 (4) 

In case B, f(s) must be: fB(s) = ௝బ௔ఙ   ௃భ(௦ఈ)௦ , (J1 is the Bessel function of order 1) which gives:  

φΒ =  ௃బఈఙ ׬  𝑒ି௦௭ஶ଴  J0 (sr)J1(sα)ௗ௦௦  (5) 

The integral in equation (5) cannot be given in an elementary form when z > 0, but can be 
expressed as an infinite sum of hypergeometric functions.  

For z = 0, φΒ is given by single hypergeometric functions. The average value of φΒ over the disk 
r < a, for z = 0, is found to be Vαv = ଼௃బఈଷగఙ , and the maximal value φB max =  ௃బఈఙ  .  

Because the total current is IB = πa2j0, the ratio of the current to the average voltage is: IB/Vav =  ଷగమ ఙ௔଼  , whereas in case Awe get: IA/V0 = 4σα. 

Measurement of Electrical Potentials and Currents 

Graphs 1 and 2 demonstrate the electrical potential values at different r and z values in 
theoretical cases A and B. When we compare the figures for theoretical cases A and B, no significant 
differences can be seen. It should be noted, however, that an electrode is usually much smaller than 
the wound, whereas the current at the WMCS method is supplied over a larger area. This means that 
a ≈ 1 mm in case A, whereas it can easily be 10 mm or more in case B. From the expressions for the 
total currents, we see that for the same current in cases A and B, the ratio between V0 and φB max is 
V0/φB max = πaA/(4aB) ≈ 10. 

Graphs 

 
Graph 1: φ/φmax as a function of r/a for z = 0 (case A, red; case B, green) and z = 2a (case A, yellow). 
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Graph 2: φ/φmax as a function of z/a for r = 0 (case A, red; case B, green). 


