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Abstract: Insects produce a large repertoire of antimicrobial peptides (AMPs) as the first line of
defense against bacteria, viruses, fungi or parasites. These peptides are produced from a large
precursor that contains a signal domain, which is cleaved in vivo to produce the mature pro-
tein with antimicrobial activity. At present, AMPs from insects include several families which
can be classified as cecropins, ponericins, defensins, lebocins, drosocin, Metchnikowin, gloverins,
diptericins and attacins according to their structure and/or function. This short review is focused
on attacins, a class of glycine-rich peptides/proteins that have been first discovered in the cecropia
moth (Hyalophora cecropia). They are a rather heterogeneous group of immunity-related proteins that

check for exhibit an antimicrobial effect mainly against Gram-negative bacteria. Here, we discuss different

updates attacin and attacin-like AMPs that have been discovered so far and analyze their structure and
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phylogeny. Special focus is given to the physiological importance and mechanism of action of attacins
against microbial pathogens together with their potential pharmacological applications, emphasizing

their roles as antimicrobials.
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1. Introduction

Antimicrobial peptides (AMPs) are important effector molecules of innate immu-
nity [1] that can act against bacteria, viruses, fungi or parasites. The mechanism of action

of these peptides, which often involves non-specific membrane interactions, prevents the
development of long-lasting resistance by pathogens [2]. Although ubiquitous in nature,
AMPs of animal origin can be found, from invertebrates to humans, in outer and inner
epithelia [3], in phagocytic cells [4,5] and body fluids [6], providing a first line of host
defense to eliminate invading pathogens [7,8] and boost immune responses [9].

So far, more than 3000 AMPs have been isolated from prokaryotes and eukaryotes,
with an ever-growing fraction predicted via bioinformatic approaches [10,11] and genome
mining [12-14]. A large fraction of protein sequences deposited in UniProt (i.e., 180,000,000),
in addition to those reviewed and confirmed, are derived from bioinformatic prediction.
Therefore, several undiscovered AMPs are likely to be included among the unreviewed
sequences found in TrEMBL (Translated EMBL Nucleotide Sequence Data Library).

Since AMPs most likely derive from multiple independent evolutionary events, these
molecules display an astounding diversity among taxa [2,15,16], but, at the same time,
they share some common physicochemical properties that allow their classification into
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produce biologically active (mature) peptides that are mostly composed of 10-30 residues.
Furthermore, amino acids are often arranged in an amphipathic manner, allowing for
a certain clusterization of polar/charged and hydrophobic residues within the peptide
sequence, which results in spatial separation in the active peptide [17-19]. They are usually
composed of a large percentage of basic residues, often higher than 30% [20,21], which
confers a positive net charge to most of the known peptides [22]. The cationic nature of
AMPs allows their interaction with the cytoplasmic membranes of both Gram-negative
and Gram-positive bacteria which are rich in phospholipids characterized by a negatively
charged head group [23]. Moreover, they can also target the fungi cell wall and destroy the
virus envelope or the parasitic protozoa membrane [24].

Therefore, the mechanism of action against these pathogens often involves membrane
interaction [21,25], followed by the reaching of a critical peptide concentration [21,26-28]
and subsequent membrane lysis. The latter can occur by toroidal pore, carpet like [29-32],
and barrel stave [33] modes of action, with the barrel stave being recently called into
question. However, numerous exceptions to these rules of thumb exist, and for more
details we refer the reader to the following reviews [34-36].

A unifying theory about the mode of action of AMPs based on the thermodynamic
interaction between the molecule and the lipid double layer, the so-called “graded/all
or nothing” model, has been proposed by Almeida’s group [21,37]. Moreover, recent
work focused on the molecular dynamics of the interaction between AMPs and phase
separated model membranes [38], which demonstrated that the peptides showed a clear
preference towards liquid-disordered phases. On the other hand, a certain number of
AMPs show a different behavior and act in a non-lytic manner, preferring intracellular
targets [39,40], operating as membrane transporter blockers [41], inhibiting cell division [42]
and interacting with nucleic acids [43-45] and/or with the protein biosynthesis process [42].

2. Insects Antimicrobial Peptides: A Brief Insight

Having colonized nearly every ecological niche, insects can be considered the most
successful animal taxon on Earth [46,47]. Their large AMP repertoire may be reasonably
related to various environmental threats faced by each species during evolution [48]. Fur-
thermore, their innate immune system is strictly interconnected with their endosymbionts,
most often bacteria [49,50], which still retain immunoregulatory activity despite having
lost most of their biosynthetic pathways. These endosymbionts reside in specialized cells
called bacteriocytes [51] and the most represented genera are Wolbachia, Spiroplasma and
Wigglesworthia [52]. The relation between the expression of insect AMPs and the control of
these endosymbionts has only been recently clarified in detail [49,53].

In insects, AMPs are usually produced locally at various surface epithelia or secreted
systemically by hemocytes and fat bodies into the hemolymph [48,54]. The release of the
peptides in the hemolymph is triggered by the recognition of the pathogen by pattern-
recognition receptors [55]. Moreover, in Drosophila it has been demonstrated that the
ofteninterchangeable Toll and IMD (immune deficiency)-signaling pathways [56,57] regu-
late, respectively, Gram-negative and Gram-positive responses with the so-called “immune
loitering” effect [55,58]. However, the relationship between the immune response mediated
by AMPs and “acquired immunity” towards specific pathogens in insects likely relies on
more complex regulatory mechanisms [49].

Although AMPs have been known since 1939 [15] (i.e., the first isolated peptides were
gramicidins from the soil bacteria Aneurinibacillus migulanus), it was not until 1981 that the
first insect antimicrobial peptide, named cecropin, was identified from the hemolymph
of the Hyalophora cecropia pupae [59,60]. Several AMPs that can be classified according to
their structure or function in different families (such as cecropins, ponericins, defensins,
lebocins, drosocin, Metchnikowin, gloverins, diptericins and attacins) are presently known
in insects.

Cecropins are cationic peptides of 31-39 amino acid residues that have been identified
in lepidopteran, dipteran and coleopteran insects [61]. They show, as do most AMPs, a
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random coil structure in aqueous solution but convert to an «-helical linear structure in a
hydrophobic environment [20,43]. Cecropins are active against fungi, Gram-negative and
Gram-positive bacteria [61]. Some cecropin-like peptides have been also identified and
assigned different names such as sarcotoxin, papiliocin, stomoxyn, hinnavin, bacteridicin,
hyphancin and enbocin [62].

Ponericins are isolated from the venom of the predatory ant Pachycondyla goeldii. They
are classified, based on their primary structure, into ponericins G, W and L [63], which
show high sequence homology with other insect AMPs: cecropin, gaegurins/melittin and
dermaseptins, respectively. Ponericins exhibit insecticidal and hemolytic activity against
cricket larvae [62].

Insect defensins are small inducible cationic peptides with six cysteines [61,64]. Their
structure, stabilized by three disulfide bridges, is composed of an N-terminal loop followed
by an antiparallel 3-sheet. AMPs belonging to the defensins family have been identi-
fied in different insect orders including Diptera, Hymenoptera, Coleoptera, Trichoptera,
Hemiptera and Odonata [65]. Most defensins are active against Gram-positive bacteria,
including some human pathogenic bacteria such as Staphylococcus aureus, and a few are
also active against Gram-negative bacteria and fungi [61].

Other insect AMPs, including lebocins, drosocin, Metchnikowin, gloverins and diptericins,
show a high percentage of specific amino acid residues, such as proline and/or glycine.
Lebocins were first identified in the hemolymph of Bombix mori after immunization with
Escherichia coli. They consist of 32 amino acids with a high fraction of proline residues
and are prone to O-glycosylation. Lebocin precursors have been isolated in different
lepidopteran species and they demonstrate broad biological activity against Gram-negative
and Gram-positive bacteria, as well as some fungi [61]). Drosocin and Metchnikowin are
produced by Drosophila melanogaster [66,67]. The former is a proline-rich peptide of 19
amino acids and is O-glycosylated, which is crucial to maximize its biological activity.
The latter is a 26-residue proline-rich peptide which exhibits antibacterial activity against
Gram-positive bacteria and also has antifungal properties. Gloverins are glycine-rich
antimicrobial peptides exclusively present in Lepidopteran insects. The first gloverin
peptide was identified in the hemolynph of Hyposphora gloveri pupae [68]. Gloverins shows
a broad spectrum of antimicrobial activity, with some members of this family only being
active against Gram-positive bacteria and others only against Gram-negative bacteria or
viruses [61]. Finally, diptercins belong to a family of glycine-rich AMPs found in Dipteran
hemolymph with an Mr of about 8000. The most important member of the family is
diptericin A, which is mainly active against Gram-negative bacteria [62]. We decided
to focus this Mini-review on attacins, providing a description of their first isolation and
highlighting their known antimicrobial activities. Due to their higher molecular mass
compared to most other AMPs, attacins need to be produced as recombinant molecules
to test their biological activity. The widespread occurrence of attacins in several orders of
insects highlights the evolutionary success of this class of AMPs and justifies the interest in
their potential pharmacological applications.

3. Attacins
3.1. First Identification and Main Structural Features

The first paper reporting the identification of a new insect AMP family named attacin,
from the giant silk moth Hyalophora cecropia, is dated 1983 [69]. Different isoforms with
molecular masses of 20 to 23 KDa and isoelectric points (pl) ranging from 5.7 to 8.3 were
purified from the hemolymph after the immunization of the pupae with the bacterium
Enterobacter cloacae 312. The six isolated AMPs were classified in two groups: a basic group
formed by attacins A to D, and an acidic one comprising attacins E and F.

Attacin F, which was demonstrated to represent a proteolytically derived product
of attacin E [70], was produced as a recombinant protein by using the baculovirus ex-
pression system utilizing Autographa californica nuclear polyhedrosis virus (AcNPV) in
Spodoptera frugiperda cells [71]. Interestingly, the two acidic attacin peptides and three out of
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four basic attacin peptides showed identical N-terminal sequences. This was confirmed by
the isolation of only two cDNA clones for all attacins, one for each of the main isoforms [72].
The mature proteins exhibited a high degree of homology (76% on the nucleotide level
and 79% on the amino acid level), while the homology dropped to lower levels in the
3'UTR region.

The expression of both attacin genes from Hyalophora cecropia could be upregulated
by the stimulation of the pupae with phorbol 12-myristate 13-acetate (PMA), lipopolysac-
charide (LPS from Escherichia coli D21) and bacteria (Enterobacter cloacae 312) [73]. The
gene coding for the acidic attacin isoform displayed a faster response to the bacterial
infection and it was the only one to show modulation after injury [73]. As most AMPs,
attacins are produced as pre-pro-proteins. The pro-protein is formed by a pro-peptide (the
P domain) and a mature peptide which consists of an N-terminal attacin domain and two
glycine-rich (G1 and G2) domains (see Figure 1) [72,74]. The mature peptide is obtained
through proteolytic cleavage by a furin-like enzyme, which recognizes a conserved RXXR
motif found in the N-terminal region of the pro-protein; this sequence needs to be removed
for efficient secretion of attacins from fat body cells [71].

Attacins adopt a random coil secondary structure in an aqueous buffer and, un-
like many known AMPs, they do not show any transition to helical conformation in an
anisotropic environment [73]. This is mostly due to the glycine-rich nature of these pep-
tides, together with the lack of cysteine bridges that could stabilize their structure. Their
complete mature region is approximately 190 amino acids in length, with net charges
ranging from —3 to +10 (see Table 1). Since attacins are relatively large proteins, their net
charge may not be detrimental for antimicrobial activity, as is often the case for shorter
AMPs. Similarly, other important physicochemical properties correlated with the potency
of peptides, such as relative hydrophobicity and amphipathicity, do not necessarily pro-
vide reliable information linked with their antimicrobial activity that most likely rely on a
different mode of action. Indeed, the activity of attacins is probably linked with certain
sections of the sequence with particular chemo-physical properties (e.g., positive charge,
abundance of hydrophobic residues), that could be responsible for membrane interaction
and subsequent antimicrobial activity.

3.2. Phylogenetic Considerations

After the first identification in Hyalophora cecropia, various attacin-like peptides have
been discovered in many lepidopteran, dipteran and coleopteran species. Figure 2 shows a
phylogenetic tree obtained from a multiple sequence alignment of attacin amino acid se-
quences. The peptides are divided in three different clades corresponding to the respective
insect order they were isolated from. In the Diptera clade, multiple tandemly duplicated
genes are usually present. In Drosophila for example, attacins A and B are placed close
to each other in the same chromosome, whereas the phylogenetically distant attacin D
is located on a different chromosome [74]. The comparison between attacins and other
classes of AMPs found in insects evidenced that they share some similarities with the
protein domains of sarcotoxin II and diptericin [73,74]. This homology is mainly evident
within exon 2 and exon 3 of the attacins, which encode the G1 and G2 domains, although
diptericin contains only a single glycine-rich domain. Since these two exons also show a
significant pairwise sequence homology, it has been proposed that the three different AMP
classes may have evolved from a single ancestral exon [73]. The C-terminal attacin domain
(PFAM number PF03769) has been found in most of the Holometabola genomes studied so
far, and in the orders Orthoptera, Isoptera and Hemiptera (where the encoded peptide is
named prolixicin) [65]. Finally, attacin-like sequences have been very recently identified in
the stick insect Peruphasma schultei (Pseudophasmatidae) after an infection with a microbial
cocktail [75].
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Figure 1. Alignment of attacin amino acid sequences from Lepidoptera obtained by Clustal w. The predicted signal peptide
and the different domains are highlighted above the sequences, together with the RXXR motif (indicated as cut symbol).
Accession numbers: Trichoplusia ni U46130; Hyphantria cunea Attacin B ABL63641; Danaus plexippus plexippus OWR54405;
Hyphantria cunea Attacin A AAD09288; Manduca sexta AAY82587; Bombyx mori 2 Q26431; Bombyx mandarina XP_028041931;
Bombyx mori 1 ADB08384; Hyalophora cecropia Basic CAA44179; Samia ricini BAB69462; Lonomia obliqua QSMGE6; Hyalophora
cecropia Acidic CAA40886; Antheraea mylitta ABG72695; Antheraea pernyi ACB45562; Antheraea yamamai AFS30776. Sequence
conservation is shown as a histogram below the multiple sequence alignment; Att = Attacin.

Table 1. Attacins mature sequences (N-terminal, G1 and G2 domains) and antimicrobial activity.

Name Sequence Charge Pathogen Antimicrobial Activity

Attacin B from QAGALTINSDGTSGAV- +3 E. coli D21 0.6 M

Hyalophora cecropia VKVPITGNENHKFSALGSVDLT-NQMKL (inhibition zone assay)
GAATAGLAYDNGNGHGATLT E. coli D22 0.06 UM
KTHIPGFGDKMTAAGKVNLFHN
DNHDFSAKAFATKNMP- P. maltophilia Pm1 4 uM
NIPQVPNFNTVGAGVDYMFKDKIG
ASANAAHTDFINRNDYS- A. calcoaceticus Acll 0.4 pM

LGGKLNLFKTPTTSLDFNAGWKKF
DTPFFKSSWEPSTSFSFSKYF
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Table 1. Cont.

Name

Sequence Charge

Pathogen

Antimicrobial Activity

Attacin E from
Hyalophora cecropia

DAHGALTLNSDGTSGAVVKVPFAGND -3
KNIVSAIGSVDLT-DRQKL
GAATAGVALDNINGHGLSLTDT
HIPGFGDKMTAAGKVNVFHNDNHD
ITAKAFATRNMPDIANVPN
FNTVGGGIDYMFKDKIG
ASASAAHTDFINRNDYSLDGKLNLFKT
PDTSIDFNAGFKKFDTPFMKSS

WEPNFGFSLSKYF

E. coli D21
E. coli D22
P. maltophilia Pm1

A. calcoaceticus Acll

2 uM
(inhibition zone assay)

0.3 uM
15 uM

1uM

Attacin A from
Drosophila melanogaster

QVLGGSLTSNPAGGADARLDLT- +3
KGIGNPNHNVVGQVFAAGNTQSG
PVTTGGTLAYNNAGHGASLTKT
HTPGVKDVFQQEAHANLFNNGRH

NLDAKVFASQ NKLANGFEFQRN
GAGLDYSHINGHGASLTHSNF
PGIGQQLGLDGRANLWSSPNRAT-
TLDLTGSASKWTSGPFANQKPNF

GAGLGLSHHEG

E. coli DH5x

S. maltophilia

N.D.

Attacin B from
Hyphantria cunea

QAQGSLTFNGDGSAGVGAKVPLVGND +5
RNVLSAIGSVNLDDRMKLASKG
IGLAFDNANGHGVSVMKET
IPGFGSKLTGAGHATLFNNDNHNIGANA
FVSRNMPNIPNVPNFNTVGGG
LDYTYNNKVGASLGMAHTPFLQRKD
YSAMGNLNVFRNPTSTVDFSAGFKK
FDSPFPKSGWKPNLGLSFERIF

E. coli
C. freundii

C. albicans

0.1 and 1.0 pg of protein (radial
diffusion assay)

Attacin from
Spodoptera exigua

QAQGSVTLNSDGGMGLGAKI- +4
PLANNDRNVLSAVGSMDLNNN-MNPTSKG
FGLALDNVNGHGLTVMKES
VPG-FGDRLSGAGKLNVFHNDNHNVAVTGSL
TRNMPSIPNVPNEN-TIGGGVDYMY
KNKVGASLGMASTPFLDRKDYSAMG
NLNLFRSPTTSVDFSGGFKK-
FESPEMSSGWKPNFGLTFGRSF

E. coli DH5
P. cichorii
B. subtilis

L. monocytogenes

1,0.5,0.1, and 0.05 pg of protein
(radial diffusion assay)

Attacin A1 from
Glossina morsitans
morsitans

GQFGGTVSSNPNGGLDVNARL +4
SKTIGDPNANVVGGVFAAGNTDGGPATRGA

FLAANKDGHGLSLQHSKTDNFG
SSLTSSAHAHLFNDKTHKLDANAFH

SRTHLDNGFKFDRVGGGLRYDH
VTGHGASLTASRIPQLDMNTLGLTGKANL

WSSPNRATTLDLTGGVSKHFGGPFE
DGQTNKQIGLGLNSRF

E. coli K12

Trypanosoma brucei

0.3 uM
(minimum bactercidal
concentration, MBC)

0.075 uM
(50 % minimal inhibitory
concentration, MICsg)

Attacin from
Hermetia illucens

KFLGNPNHNIGGGVFAAGN-TRSNTPSLGAF-  +10
GTLNLKDHSLGVSKTITPGVS
DTFSQNARLNILKTPDHR-
VDANVENSHTRLN-NGFAFDKRRGGSLDYTH
RAGHGLSLGA-SHIP-
KFGTTAELTGKANLWRSPSGLSTFDLTGSASRTF
GGPMAGRNNFGAGLGFSHRF

E. coli

S. aureus KCCM 40881

N.D.

N.D. = not determined. The results were descriptive in the considered papers and no numerical values could be obtained from the

available data.

3.3. Antimicrobial Activity of Attacins and Therapeutical Applications

Generally, the available data show that attacins are active against both Gram-negative
bacteria and Gram-positive bacteria, with certain selectivity towards Gram-negative
strains [59,60]. Due to their size, attacins need to be produced as recombinant proteins prior
to antimicrobial characterization (see the cut symbol in the multiple sequence alignment

displayed in Figure 1).

The initial discovery of attacins in the giant silk moth immediately led to extensive
investigations, allowing significant data collection about their antimicrobial activity within
one year [69]. This was characterized by the sub-micromolar activity of attacin B and E
against Acinetobacter calcoaceticus, Pseudomonas maltophilia and Escherichia coli, all represen-
tatives of Gram-negative bacteria (see Table 1).
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Figure 2. Phylogenetic tree of attacins from different insect orders obtained using the MEGA 6.0 program. The percentage
of replicate trees in which the associated taxa clustered together in the bootstrap test (10.000 replicates) is shown next to the
branches. The number 0.2 represents the genetic distance. Accession numbers: Drosophila simulans Attacin A EDX07123;
Drosophila yakuba EDW91058; Drosophila melanogaster Attacin A Z46893; Drosophila obscura XP_022225780; Drosophila busckii
ALC41796; Drosophila melanogaster Attacin B AAL23652; Drosophila simulans Attacin C AAP69835; Ceratitis capitata Attacin A
XP004517761; Ceratitis capitata Attacin C XP004517762; Bactrocera dorsalis KJ598077; Musca domestica AAU08203; Glossina
morsitans morsitans Attacin A AAL34113; Glossina morsitans morsitans Attacin D CAP78962; Lucilia sericata HM243534;
Drosophila melanogaster Attacin D AAF55446; Drosophila yakuba Attacin D EDW95807; Microdera dzhungarica AHH34162;
Anatolica polita APX53001; Diabrotica virgifera virgiferan AHB11276; Onthophagus taurus XP_022912795; Leptinotarsa decemlineata
XP_023024624. For the Lepidoptera accession numbers, see Figure 1. Att = Attacin.
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Carlsson et al. [76] confirmed this activity against Escherichia coli, linking it to the
alteration of the outer bacterial membrane through specific inhibition of the synthesis
of several membrane proteins. More importantly, the same group showed that attacin
was active against Proetus mirabilis polymyxin-resistant cells at a concentration 100-fold
lower than that of polymyxin [76]. Given the fact that polymyxin is being successfully
used to treat Gram-negative infections [77], this undoubtedly sparked the interest in future
attacin-related research. These studies also showed that attacins trigger the expression of
several stress proteins in the bacteria upon interaction with their receptor (i.e., bacterial
lipopolysaccharide ); therefore, growth inhibition and stress induction do not require the
entry of attacins into the cells [76].

Attacin A from Drosophila melanogaster, expressed as a recombinant protein in E. coli,
exhibited antimicrobial activity against the Gram-negative bacteria E. coli DH5«x and, at a
lesser extent, Stenotrophomonas maltophilia (Table 1). Moreover, the peptide did not show
any hemolytic activity on porcine red blood cells, which is especially important in terms
of possible therapeutic applications, as it demonstrated selectivity against bacterial cell
membranes [78].

Two attacin genes named attacin A and attacin B have been identified in the fall
webworm Hyphantria cunea [79]. Attacin A and attacin B are leucine-rich and glycine-rich
peptides, respectively, which displayed an opposite trend of expression in response to
infection of larvae with bacteria, fungi and viruses. While the former was poorly induced,
the latter underwent strong upregulation. Recombinant attacin A showed no antibacterial
and antifungal activity, while recombinant attacin B was active against the Gram-negative
bacteria E. coli and Citrobacter freundii and the fungus Candida albicans (Table 1).

Another attacin gene named seattacin was isolated from the beet armyworm (Spodoptera ex-
igua). It was strongly upregulated 12 h after the stimulation of larvae with UV-killed
bacteria E. coli and Bacillus subtilis (Gram-positive). The mature peptide was expressed in
E. coli, and this recombinant molecule showed antimicrobial activity against E. coli DH5«,
Pseudomonas cichorii (Gram-negative) and two Gram-positive species, B. subtilis and Listeria
monocytogenes [80].

The expression of attacin Al, found in the fat body tissue of the tsetse fly Glossina
morsitans morsitans, the vector of African trypanosome, was found to be highly induced
after an infection with the protozoan agent. The purified attacin A1 recombinant peptide,
expressed in the Drosophila S2 cells, showed strong antimicrobial activity against E. coli
K12 and in vitro inhibitory effects against the mammalian bloodstream form and the insect
stage of Trypanosoma brucei [81]. In particular, this last aspect has been considered of high
pharmacological potential.

Another attacin-like peptide was identified in the black soldier fly Hermetia illucens [82].
The putative mature molecule, showing 50% homology with the attacin B from the oriental
fruit fly Bactrocera dorsalis [83], was produced as recombinant protein in the inclusion bodies
of E. coli. This attacin displayed antibacterial activity against E. coli and, more interestingly,
against the Staphylococcus aureus KCCM 40881, a methicillin-resistant Staphylococcus aureus
(MRSA). This is extremely important in terms of possible pharmacological applications.

Attacins have also been determined as one of the components of larval (Lucilia sericata)
secretions that evidenced a positive effect in the chronic wound treatment of 30 patients
involved in a clinical trial [84]. In recent years, the use of live maggots in biosurgery
has been taken into consideration due to the possibility of disinfecting and cleaning in-
fected injuries [84]. In the study by Wollina and colleagues [84], the secretion from the
common green bottle fly showed a positive effect on tissue oxygenation, edema and the
development of red granulation tissue. It was demonstrated that this effect was not only
due to embryonic growth stimulating substances [84], but also to the presence of attacin
peptides with antimicrobial effects on both Gram-negative and Gram-positive bacteria [85].
No in vivo data are presently available concerning attacin toxicity in mammal models.
However, very recently the antimicrobial activity of a sarcotoxin from Lucilia sericata, which
is structurally similar to attacins, was investigated against multiple drug resistant (MDR)
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pathogens [86]. A peptide concentration of 4 mg/I inhibited 90% of the tested MDR isolates.
The sarcotoxin showed neither hemolytic nor cytotoxic effects on human cells. Moreover,
in vivo tolerability studies in mice revealed that the peptide is not toxic and has better
tolerance compared to colistin, a drug that has already been approved for clinical use [86].

4. Conclusions

In conclusion, attacins are certainly an interesting and still under-studied class of
insect AMPs that deserve further investigations aimed at elucidating their potential phar-
macological applications. Although some preliminary results on the antimicrobial activity
of attacins against both methicillin-resistant bacteria and infective protozoan agents are
available, several limitations need to be overcome. For instance, the clinical importance
of AMPs resides in the fact that is quite challenging for microbes to develop permanent
resistance, as this would imply preserving cell membrane functionality and integrity
while simultaneously avoiding the action of AMPs. However, recent studies have shed
new light on the mechanisms by which bacteria may develop resistance under selective
pressure [23,87], providing a solid ground for the possible applications of AMPs.

Another key aspect that limits the possibilities of AMPs in a clinical context is their
toxicity towards host cells which is often significant, as in the case of the bee venom peptide
melittin, which is extremely potent towards bacteria, but at the same time toxic towards
their host cells at similar concentrations which are needed to inhibit or kill bacteria [88].
This kind of data is still lacking for the majority of known attacin sequences and certainly
deserves appropriate investigation in the future.

Finally, for a possible therapeutic application, it is fundamental to study the peptide
stability in physiological conditions (i.e., the presence of salt, serum and proteases), as
they are often quickly degraded. To overcome these setbacks concerning low stability and
high toxicity, peptides can be synthetically modified in several ways. Some protective
modifications may include cyclization (linking the C and N-terminus), the introduction
of D isomers and/or the incorporation of non-proteinogenic amino acids in the peptide
sequence [22].

However, these approaches are relatively complicated and, more importantly, they
can increase the final production cost of AMPs, which is therefore usually higher than that
of already available antibiotics. Further research is in progress to improve the low success
rate of AMPs clinical applications compared to the high number of new peptides identified
each year [24].
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