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Abstract: Wastewater treatment plants (WWTPs) are major reservoirs of antibiotic-resistant bac-
teria (ARB), favouring antibiotic resistance genes (ARGs) interchange among bacteria and they
can provide valuable information on ARB circulating in a community. This study characterised
extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from the influent and effluent
of four WWTPs in uMgungundlovu District, KwaZulu-Natal, South Africa. E. coli was enumerated
using the membrane filtration method and confirmed using the API 20E test and real-time poly-
merase chain reaction. ESBL-producers were phenotypically identified by their susceptibility to
the third-generation cephalosporins using the disc diffusion and the double-disc synergy methods
against cefotaxime (30 µg) with and without 10 µg clavulanic acid. Genotypic verification was by
PCR of the TEM, SHV, and CTX-M genes. The clonality of isolates was assessed by ERIC-PCR. The
highest E. coli count ranged between 1.1 × 105 (influent) and 4.3 × 103 CFU/mL (effluent). Eighty
pure isolates were randomly selected, ten from the influent and effluent of each of the four WWTP.
ESBLs were phenotypically confirmed in 49% (n = 39) of the isolates, of which 77% (n = 30) were
genotypically confirmed. Seventy-three percent of the total isolates were multidrug-resistant (MDR).
Only two isolates were susceptible to all antibiotics. Overall, resistance to first and second-generation
cephalosporins was higher than to third and fourth generation cephalosporins. Also, 15% of the iso-
lates were resistant to carbapenems. The CTX-M-type ESBL (67%; n = 20) was the most common ESBL
antibiotic resistance gene (ARG) followed by TEM (57%; n = 17) and SHV-types (27%; n = 8). Also,
a substantial number of isolates simultaneously carried all three ESBL genes. ERIC-PCR revealed
a high diversity of isolates. The diversity of the isolates observed in the influent samples suggest
the potential circulation of different ESBL-producing strains within the studied district, requiring a
more comprehensive epidemiological study to prevent the spread of ESBL-producing bacteria within
impoverished communities.

Keywords: antibiotic resistance genes; antibiotic-resistant bacteria; multidrug resistance; ESBL; South
Africa; wastewater treatment plants; wastewater-based epidemiology

1. Introduction

Antibiotic resistance is one of the major public health concerns globally. This is
commonly demonstrated in bacteria such as E. coli, found on the WHO global prior-
ity list of antibiotic-resistant bacteria to guide research, discovery, and development of
new antibiotics [1,2]. Antibiotic-resistant E. coli and antibiotic resistance genes (ARGs)
have been detected in various environmental samples, including soils, surface water, and
wastewater [3–5]. Extended-spectrum β-lactamase (ESBL)-producing bacteria, including
E. coli, are among the most commonly encountered multidrug-resistant (MDR) bacteria
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today [6–8] and are frequently associated with a high mortality rate and prolonged hospi-
talisation [9,10]. This may be because clinical E. coli isolates frequently co-carry multiple
ESBL genes with varying hydrolysis spectra to different antibiotics, leading to treatment
failure [10–13].

ESBLs are a cluster of enzymes that efficiently hydrolyse third-generation oxyimino-
cephalosporins such as cefotaxime, ceftazidime, and ceftriaxone and monobactams (aztre-
onam), but spare the cephamycins (cefotetan, cefoxitin) and carbapenems (imipenem,
meropenem, ertapenem, biapenem, and doripenem) [8,14,15]. However, carbapenems,
considered last-resort antibiotics used to treat severe infections caused by ESBL-producing
E. coli, are also gradually losing their efficacy due to carbapenemases [16–19]. Most ESBL
variants evolved from the parent chromosomal or plasmid-mediated Temoniera (TEM),
Sulfhydryl Variable (SHV), and Cefotaximase-München (CTX-M) β-lactamases [6,7,20].
These ESBLs are among the primary causes of clinical resistance to β-lactam antibiotics in
E. coli associated with common infections [21]. CTX-M-type ESBLs, mainly CTX-M-15, are
currently the most prevalent in communities and clinical settings [7,22,23]. This family of
ESBLs has superseded TEM and SHV in prevalence [6].

Wastewater treatment plants (WWTPs) have been reported as reservoirs of ESBL-
producing E. coli and other ARB [24]. This is because of the high bacterial biomass, antibiotic
metabolites, and ARGS, usually from animal and human-associated wastewater [25,26].
This cocktail of microbial species, antibiotic residues and antibiotic resistance genes (ARGs)
create a favourable environment for bacterial proliferation, DNA exchange and selection of
resistance among bacteria [25,27–29]. Given that WWTPs receive wastewater from entire
communities, they can be considered as microcosms, and the analysis of wastewater from
these systems could indicate the antibiotic-resistant bacteria (ARB) circulating within a
given population. This has engendered the novel paradigm known as wastewater-based
epidemiology as a rapid alternative public health assessment approach at the community
level [30]. Data obtained from such analyses could serve as an early warning system
for potential ARB-associated disease outbreaks and inform public health practitioners
on the need for rapid intervention measures to present such, especially within resource-
limited settings.

Thus, the current study investigated the phenotypic and genotypic characteristics
of ESBL-producing E. coli in the influent and effluent of four WWTPs in the uMgun-
gundlovu District, KwaZulu-Natal, South Africa. The study results would provide infor-
mation regarding the diversity of ESBL-producing E. coli strains circulating within the
community and the potential contribution of the WWTPs to these bacteria’s presence in
the environment.

2. Results
2.1. Enumeration of Isolates

The total E. coli count in the influent water samples ranged between 6.5 × 104 and
10.8 × 104 CFU/mL, while in the effluent water samples, it ranged between 1.8 × 103 and
4.3 × 103 CFU/mL (Figure 1). Thus, the influent samples had relatively higher counts than
effluent samples. In addition, all the WWTPs showed relatively high efficiency to eliminate
bacterial contaminants (between 96.0–98.1%).

2.2. Antimicrobial Susceptibility

Resistance to the penicillins, i.e., ampicillin (94%; 75/80) and amoxicillin (88%; 70/80)
was the highest except for piperacillin (57%; 46/80) and the penicillin-inhibitor combination
amoxicillin-clavulanate (30%; 24/80) (Table 1). Resistance to first- and second-generation
cephalosporins (cephalexin—68% [54/80]; cephalothin—66% [53/80]; cefuroxime—63%
[50/80]) was higher than to third- and fourth-generation cephalosporins (ceftazidime—21%
[17/80] and cefepime—20% [16]) except for cefixime (55%; 44/80) and cefotaxime (56%;
45/80). Fifteen percent of the isolates were resistant to carbapenems, while low percentage
resistance was noted for nitrofurantoin (9%; 7/80), amikacin (11%; 9/80), chloramphenicol,
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tigecycline (16%; 13/80), and gentamicin (18%; 14/80). Variable percentage resistances
were observed across the WWTPs with a general trend of higher percentages in effluent
samples (Table 1).
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Figure 1. Total E. coli counts and percentage reduction in the studied wastewater treatment plants (WWTPs). Error bars
represent the standard deviation. A–D = designation of the different WWTPs.

2.3. Prevalence of Multidrug Resistance in E. coli Isolates

Individual isolates displayed diverse antibiograms, except for six influent isolates and
thirteen effluent isolates that shared similar patterns (Table S1; Supplementary Materials).
A total of 32 MDR phenotypes were evident in 73% (n = 58) of the isolates, with some
isolates resistant to up to 20 antibiotics (Table S1; Supplementary Materials). However,
effluent isolates (93%; n = 37) had a relatively higher number of MDR isolates than influent
isolates (53%; n = 21). Most MDR isolates (76%) demonstrated resistance to at least 50%
(11 or more) of the tested antibiotics. Of these, nine isolates were extremely drug-resistant,
with resistance to more than twenty antibiotics. The remainder (24%) showed resistance
profiles ranging from three up to ten antibiotics simultaneously. Twenty-five percent of the
isolates were resistant to at least two antibiotics or more but were not assigned as MDR,
and only two isolates were susceptible to all antibiotics.

2.4. ESBL Resistance Genes

Of the 39 (49%) ESBL-positive E. coli isolates, ESBL ARGs were detected in 77% (n = 30),
with more being isolated from effluent samples (n = 19) compared to influent samples
(n = 11). The CTX-M-type ESBL (67%; n = 20) was the most prevalent ARG followed by
TEM (57%; n = 17) and SHV-type (27%; n = 8). Ten percent (n = 3) of isolates co-carried
CTX-M and TEM-type ARGs, 13% (n = 4) co-carried CTX-M and SHV ARGs, and 13%
(n = 4) carried all the three ESBL types. Nine isolates (30%) carried CTX-M alone, 33%
(n = 10) carried TEM alone, and no isolates carried SHV alone (Table 2).
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Table 1. Overall percentage resistance of E. coli to different antibiotics.

Antibiotics
A B C D

Influent Effluent Influent Effluent Influent Effluent Influent Effluent

FEP 30 30 30 20 10 10 10 20
CAZ 30 30 30 30 10 10 10 20
CTX 30 50 40 90 20 70 60 90
CFM 40 50 40 90 20 60 50 90
FOX 50 20 30 20 10 10 10 20
LEX 50 60 80 80 30 60 80 100
CXM 30 60 50 100 20 90 60 90
CEF 30 60 60 100 30 80 70 100

MEM 30 10 20 20 10 10 0 20
IPM 30 10 20 20 10 10 0 20

AMK 20 10 20 20 10 10 0 20
GEN 20 20 20 20 10 20 10 20
TGC 30 20 20 20 10 10 0 20
TET 30 80 60 100 20 100 80 90
NAL 40 80 50 90 30 70 70 90
CIP 20 50 30 90 20 60 70 80

CHL 50 20 20 0 10 20 0 10
NIT 20 10 0 10 10 10 0 10
SXT 70 90 60 100 40 90 90 90

AMC 50 20 30 20 20 20 10 30
AMX 70 90 80 100 80 100 90 90
PIP 30 70 30 80 40 60 60 80

AMP 90 90 90 100 80 100 100 100

A–D = wastewater treatment plants; AMC = amoxicillin/clavulanic acid, AMX = amoxicillin, AMK = amikacin, AMP = ampicillin,
FEP = cefepime, CEF = cephalothin, CTX = cefotaxime, FOX = cefoxitin, CFM = cefixime, CAZ = ceftazidime, LEX = cephalexin, CXM = ce-
furoxime, CHL = chloramphenicol, CIP = ciprofloxacin, GEN = gentamicin, IPM = imipenem, MEM = meropenem, NIT = nitrofurantoin,
PIP = piperacillin, TET = tetracycline, TGC = tigecycline, NAL = nalidixic acid, SXT = trimethoprim/sulfamethoxazole.

Table 2. Distribution of the β-lactamase variants among the isolates from the different WWTPs.

β-Lactamase Enzymes Detected

WWTP Sampling Point CTX-M-Type Variants (n) SHV-Type Variants (n) TEM-Type Variants (n)

A Influent CTX-M-15 (2) SHV-28 (2) TEM-181 (2)
TEM-213 (1)

Effluent CTX-M-15 (3)
CTX-M-3 (1) SHV-28 (1) TEM-181 (2)

B Influent CTX-M-15 (1) Not detected TEM-116 (1)
TEM-1 (1)

Effluent CTX-M-15 (3) SHV-28 (2) TEM-181 (1)
TEM-215 (1)

C Influent CTX-M-15(1)
CTX-M-3 (1) Not detected TEM-1 (1)

TEM-181 (1)

Effluent CTX-M-28 (1)
CTX-M-15 (3) SHV-28 (1) TEM-1 (3)

D Influent Not detected Not detected TEM-1 (2)

Effluent
CTX-M-3 (1)

CTX-M-28 (1)
CTX-M-15 (2)

SHV-28 (2) TEM-181 (1)

TOTAL 20 8 17

2.5. Strain Typing by ERIC-PCR

The Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR analysis of the E. coli
isolated from influent (n = 40) and effluent (n = 40) water samples showed high diversity
(Figures 2a and 2b, respectively). A similarity index of≥50% was used to group the isolates
into different ERIC-types. Influent E. coli isolates were classified into 17 ERIC-types (I-XVII),
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while effluent E. coli strains were classified into 13 ERIC-types (I-XIII). From the influent E.
coli isolates three major ERIC-types were identified, viz VIII (n = 7), XIII (n = 5) and XVI
(n = 5) while in the effluent E. coli isolates four major ERIC-types were identified, viz I
(n = 5), II (n = 12), VII (n = 5), IX (n = 5). Major ERIC-types from influent E. coli consisted of
isolates from different WWTPs, with A, B, and D isolates falling under the same ERIC-types.
Major ERIC-types from effluent E. coli isolates consisted of a mixture of isolates from all
sampling sites.
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3. Discussion

The analysis of wastewater can indicate the resistant bacterial species circulating
within a community. Also, the release of ARGs and ARB into aquatic environments
may create environmental reservoirs of ARB and ARGs, posing significant challenges to
human health [31] and the evolution of the environmental microbial population [25,32,33].
This study demonstrated diverse ESBL-producing E. coli circulating within South African
communities and the subsequent discharge of these bacteria by WWTPs into receiving
surface waters.

3.1. Enumeration of E. coli

The average total E. coli count in the influent water samples was about 105 CFU/mL
in all WWTPs, and the effluent counts were smaller by up to two orders of magnitude than
raw influent. The low E. coli count in the effluent indicates the WWTPs’ process efficiency,
with bacterial reduction of more than 96% across all WWTPs (Table 1). However, significant
bacterial biomass, including some ARB, was released with the effluent into surrounding
surface water bodies. Nevertheless, the highest microbial load in all the four WWTPs’
effluents were below the limits of 105 CFU/100 mL of effluent wastewater stipulated in the
South African National Water Act [34].

3.2. Antibiotic Susceptibility

Antibiotic sensitivity testing of E. coli isolates showed variable percentages of resis-
tance across the WWTPs with a general trend of higher percentages in effluent samples
(Table 1). Ampicillin is highly used in human and veterinary medicine for treatments
and prophylaxis [35]. Its ready availability and extensive use could have favoured the
development of resistance to this antibiotic. Interestingly, previous studies within the same
locality have reported high resistance to ampicillin in humans [36], animals (poultry and
pigs) [37,38], and the environment (river water) [39]. Together with the current study’s
findings, these reports are substantial evidence that resistance to penicillins is of public
health significance within the uMgungundlovu District. Disinfection by chlorination used
in WWTPs alters the microbial community composition [40,41] but may also contribute to
selecting antibiotic-resistant E. coli [42]. Chlorine tolerance and chlorine-induced upreg-
ulation of ARGs in bacteria have been associated with resistance to β-lactams and other
antibiotics [42]. Resistance to ampicillin (94%) and amoxicillin (88%) was the highest in
this study, with increased percentages evident in chlorine-treated effluent samples in all
WWTPs. This finding is further supported by the fact that a high percentage of resistance
to these antibiotics had previously been reported in one of the main rivers that serve as a
receiving water body for some of the WWTPs studied [39].

3.3. Multidrug Resistance and ESBL Production

ESBL-production is among the commonly encountered mechanisms for MDR in
bacteria [6,7]. The phenotypically determined presence of ESBL in 49% of isolates was
genotypically corroborated in 31% of the isolates, and five isolates carried TEM-1 ARG
(Table 2). The variation could be attributed to unexplored ESBLs or other resistance
mechanisms, such as the possible presence of unexamined AmpC β-lactamase in some
of the isolates. Six isolates that were genotypically negative for ESBL-production showed
resistance to cefoxitin associated with AmpC cephalosporinase activity. Overexpressed
AmpC β-lactamase can either mask the phenotypic detection of an ESBL or present as
an ESBL-phenotype in the absence of an ESBL [43]. Moreover, other studies have also
indicated the discrepancy of phenotypic methods of ESBL detection [44–46]. For example,
Ojer-Usoz et al. [45] examined WWTP water samples in Navarra, Spain. They identified
ESBL-producing Enterobacterales (n = 185) using Chrom ID ESBL agar plates (100%), with
varying levels of detection compared to the combination disk test (86.5%), double-disk
synergy test (75.7%), and PCR (71.3%) as a confirmatory method. As a result, molecular
techniques remain the gold standard in the identification of ESBL-producing bacteria.



Antibiotics 2021, 10, 860 8 of 15

The prevalence of ESBL-producing E. coli in this study was similar to the findings of
Nzima et al. [24], who reported an ESBL prevalence of 28.6% in E. coli isolated from WWTP
and effluent-receiving river in Durban, South Africa. The β-lactamase-producers were
relatively higher in the effluent isolates (48%; n = 19) than influent isolates (28%; n = 11).
A recent multi-country study (Denmark, Spain, and the United Kingdom) revealed that
although wastewater arising from urban areas may contain large amounts of ESBL and
carbapenamase-associated ARGs, their concentrations were drastically reduced within the
sewer systems, resulting in lower values during sewer convergence [47]. This observation
could explain the lower ESBL prevalence in the influent samples in our study. However,
unlike [47] that further reported that the ESBL ARG concentration dropped even further
after the treatment process, the current study results revealed that the WWTP favoured
the proliferation of ESBL-producing bacteria, resulting in higher counts in the effluent
samples. These discrepancies could be due to the sample size and the sampling regime
used, as the current study was a point-prevalence study within a single locality, compared
to the multi-country approach used in the previous study. Our findings were nevertheless
similar to a previous study [48], that reported a higher prevalence of ESBL-producing E.
coli in the effluent samples (0.6%) compared to the influent samples (0.3%) recovered in a
WWTP in Besançon, France, indicating a higher tolerance of ESBL-producers to the water
treatment protocol of the WWTP for the elimination of bacteria. The increased frequency
of ESBL-producers in the effluent could also be attributed to high bacterial biomass and
nutrient levels in the WWTPs, favouring proliferation and interchange of ARGs among
bacteria [49,50].

ESBL-producing E. coli isolates demonstrated varying resistance percentages to cepha-
losporins irrespective of the ESBL-type or variant they carried. ESBL-positive isolates were
resistant to at least one or more cephalosporins tested, with higher resistance observed in
the first and second-generation cephalosporins (>76%). The highest resistance to the third-
and fourth-generation cephalosporins was observed to cefixime (72%) and cefotaxime (80%)
compared to ceftazidime and cefepime (52%). Isolates carrying a gene that encodes for CTX-
M-28 and CTX-M-3 variants demonstrated a similar hydrolytic efficiency for cephalosporins
(i.e., LEX-CEF-CFM-CXM-CTX) except for one CTX-M-3-producing isolate, which was
resistant to all cephalosporins. Ten isolates that carried one ARG or co-carried multiple
ARGs viz blaCTX-M-15, blaSHV-28, blaTEM-181 (n = 3), blaCTX-M-15, blaSHV-28, blaTEM-213 (n = 1),
blaCTX-M-15, blaSHV-28 (n = 4), blaTEM-116 (n = 1) and blaCTX-M-15 (n = 1) also demonstrated
resistance to all the cephalosporins tested. The World Health Organization listed late-
generation cephalosporins among priority antibiotics for human medicine [51], and thus
the occurrence and spread of bacterial strains resistant to these and other antibiotics present
a serious clinical threat. ESBL-producing E. coli were isolated in influent samples leading
from WWTPs A and D, which process hospital wastewater. Thus, the isolates may be of
hospital origin, further highlighting the role of WWTPs as a proxy for the types of ESBL-
producing strains circulating within the community. This necessitates the pre-treatment of
hospital effluent using methods such as coagulation-flocculation and flotation [52] before
discharge into the municipal sewage system [26].

WWTPs receive animal and human-associated wastewater frequently containing
contaminants such as metals, biocides, disinfectants, antibiotics, ARGs, and high bac-
terial biomass [25,29,33,53]. The pressure by these contaminants on microbial popula-
tions in the WWTPs may exert selection pressure that can promote upregulation or en-
richment of ESBL and other ARGs carried by bacteria through selection or co-selection.
Studies have indicated that ESBL-producers demonstrate co-resistance to other antibi-
otic classes, including fluoroquinolones, aminoglycosides, tetracyclines, and trimetho-
prim/sulfamethoxazole [32,45]. Resistance to ciprofloxacin (60%), nalidixic (72%), tetra-
cycline (88%), and trimethoprim/sulfamethoxazole (92%) was observed among ESBL-
producing isolates in the current study. Similarly, Dolejska et al. [54] reported high
resistance to ciprofloxacin (100%), nalidixic (100%), tetracyclines (73%), and trimetho-
prim/sulfamethoxazole (73%) in ESBL-positive E. coli isolated from a WWTP in the Czech
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Republic. Nzima et al. [24] also reported high resistance to tetracyclines (80%) in ESBL-
producing E. coli isolates recovered in a WWTP in Durban, South Africa. Isolates that
produced CTX-M-3 and CTX-M-28 were resistant to fluoroquinolones, and CTX-M-15-
producing isolates demonstrated varying percentages of resistance to this antibiotic class.
Non-ESBL TEM-1-producing isolates also demonstrated some resistance to these antibiotics.
Co-resistance to aminoglycosides (36%) was also observed in some ESBL-producing E.
coli, but resistance to this antibiotic class was generally low. Lower resistance percentages
were noted for nitrofurantoin, chloramphenicol, tigecycline, and carbapenems (Table S1;
Supplementary Materials).

The CTX-M-type ESBLs were the most prevalent ARGs detected in this study (Table 2).
CTX-Ms are currently the most prevalent ESBLs, classified into six subgroups [55,56]. The
predominance of the CTX-M ESBL observed in E. coli isolates in the current study was
similar to a previous study [32] that found a higher prevalence of CTX-M producing E.
coli isolates in the effluent samples (100%) of a WWTP in Curitiba, Brazil. This indicates
that WWTPs are a microcosm of ARGs circulating within a community and a hotspot
for proliferation and dissemination of CTX-M-producing E. coli in the environment via
effluent discharge.

CTX-M-type ESBLs belonging to the CTX-M-1 sub-lineage were detected in this study.
The sub-lineages CTX-M-1 and CTX-M-9 constitute the most common variants within the
CTX-M family [55,57]. CTX-M-15, the most globally dispersed genotype within the CTX-M
family [8,58], was the most frequently detected ESBL variant mainly detected in effluent
water samples in all WWTPs. CTX-M-15-producing bacteria are clinically relevant [59], and
the presence of CTX-M-15 producing E. coli in WWTP effluent implicates isolates of clinical
origin, hence a picture of their presence in the study community. Furthermore, some
CTX-M-15 producing E. coli isolates co-carried other ESBLs genes, a common phenomenon
among clinical isolates that may increase drug resistance. Studies have indicated that the
global prevalence of CTX-M-15 could be attributed to specific clones [60]. However, the
CTX-M-15 producing E. coli detected in this study were evident in multiple isolates.

3.4. Clonality of Isolates

ERIC-PCR fingerprinting of E. coli isolates using a similarity index of ≥50% showed
a high diversity of E. coli strains. A higher number of clonal clusters was observed in
the influent sample than the effluent sample (Figure 1). This could be attributed to the
fact that the sewage network leading to WWTPs is vast, consisting of diverse bacterial
strains of different origins, suggesting that different ESBL-producing E. coli strains could be
circulating within the different communities they serve. This was further supported by the
decline in the number of clonal clusters in the effluent isolates. The WWTPs used the same
treatment processes resulting in the observed decrease in clonal clusters. The decreased
clonal clusters in the effluent samples could also be attributed to some clones being more
susceptible to the wastewater treatment processes of the WWTP for the elimination of
bacteria. Despite the high diversity, some E. coli isolates recovered from influent samples
of WWTP A, B and D showed some similarity in major ERIC-types XVI and XIII. Similar
ERIC-types in geographically distinct collection points indicate the endemicity of certain
clones in the uMgungundlovu District communities. More than 60% of the influent E. coli
isolates from the same sampling point of the three WWTPs (A, B, and C) fell under different
ERIC-types, except for the clonal cluster designated as ERIC-type VIII, which constituted
of several isolates from WWTP D influent sample, indicating the predominance of this
clone in the region around this WWTP.

While the current study reveals that diverse ESBL-producing E. coli clones circulate
within the studied community, the presence of these bacteria was not determined in the
surrounding aquatic environment. Further studies that would also sample the receiving
water bodies into which these WWTPs discharge their effluent could provide more infor-
mation on whether these resistant bacteria are present in rivers within the community.
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Ascertaining this would help prevent the risk of infection with resistant bacteria in parts of
the community using the water directly for different needs.

4. Materials and Methods
4.1. Study Sites

The study site consisted of four wastewater treatment plants (A–D) in the uMgun-
gundlovu District. WWTPs A and D treat industrial wastewater, hospital wastewater, and
domestic wastewater from 117,303 of the 679,039 persons with flush toilets connected to
the sewage system within Msunduzi local municipality. These WWTPs have an average
inflow capacity of 76 (A) and 0.5 (D) megalitres/day. WWTP B has an inflow capacity of
5.6 megalitres/day, including industrial wastewater, hospital wastewater, and domestic
wastewater from 31,322 of the 109,867 persons with flush toilets connected to the sewage
system within uMngeni local municipality. WWTP C has an inflow capacity of 0.54 megal-
itres/day, mainly domestic wastewater from 11596 persons residing in the surrounding
suburbs. These WWTPs use aeration basins for biological nutrient removal, clarifiers for
the separation process, and chlorine disinfection.

4.2. Sampling

Water samples were collected once-off from the WWTPs’ influent in the primary
sedimentation tank, while the effluent samples were collected at the treated wastewater
discharge point in the chlorine contact tank. Samples were collected using sodium thio-
sulfate (20 mg/L) coated sterile 500 mL bottles (JVL Laboratories, Durban, South Africa),
following standard procedures prescribed for examining wastewater [61]. Water samples
were transported to the Antimicrobial Research Unit (ARU), University of KwaZulu-Natal,
in a portable 4 ◦C cooler-box for processing within six hours from collection.

4.3. Quantitative Analysis and Isolate Identification

Ten millilitres (10 mL) of each water sample were serially diluted (101 to 106) in 90 mL
of sterile distilled water. A thoroughly homogenised mixture was vacuum filtered through
a 0.45 µm pore membrane filter (Pall Corp, Port Washington, NY, USA) using the Sterifil
Aseptic System apparatus (Pall Corp). The membrane filter was aseptically inoculated onto
eosin methylene blue agar plates (Oxoid™, Waltham, MA, USA) and incubated at 37 ◦C
for 24 h. Colonies with morphology and colour characteristics of E. coli (i.e., green metallic
sheen with dark centres) were counted in each plate and recorded as colony forming units
per millilitre (CFU/mL). Randomly selected presumptive E. coli colonies were sub-cultured
on nutrient agar (Oxoid™) and incubated at 37 ◦C for 18–24 h, after which isolates were
phenotypically identified using the API 20E test kits (BioMerieux, Marcy-l’Étoile, France).
Ten putative E. coli isolates per sampling point were randomly selected and individually
stored in a Muller Hinton broth: glycerol (70:30) mixture in cryovials at −80 ◦C for further
processing, giving 40 influent and 40 effluent isolates from the four WWTPs.

4.4. Molecular Confirmation of E. coli by Real-Time Polymerase Chain Reaction (PCR)

Genomic DNA of overnight Muller Hinton broth (Oxoid™) cultures (20 h at 37 ◦C)
was extracted using the GeneJet Genomic DNA purification kit (ThermoFisher Scientific™,
Waltham, MA, USA) to detect the presence of the E. coli housekeeping gene, malate dehy-
drogenase (mdh), using real-time PCR. DNA purity and concentration were determined
using a NanoDropTM 8000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA)
at 260/280 nm wavelength. DNA samples were subsequently stored at −20 ◦C for fur-
ther examination.

PCR assays were performed in a 10-µL final volume comprising of 5 µL of Luna® Uni-
versal qPCR Master Mix (New England BioLabs® Inc., Ipswich, MA, USA), 1 µL of nuclease-
free water (ThermoFisher Scientific™), 0.5 µL of each forward and reverse primer at a final
concentration of 0.5 µM (Inqaba Biotechnical Industries (Pty) Ltd., Pretoria, South Africa)
and 3 µL of template DNA. The primers used were mdh-F (5′GGTATGGATCGTTCCGACCT-
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3′) and mdh-R-(5′-GGCAGAATGGTAACACCAGAGT-3′) [62], under conditions previously
described [63]. All reactions were run in a QuantStudioTM 5 Applied Biosystems real-time
thermocycler (ThermoFisher Scientific™). E. coli ATCC 25922 (American Type Culture Col-
lection, ATCC, Manassas, VA, USA) was used as a positive control. The no template control
contained all the reagents except template DNA. Results were interpreted by melt curve
analysis using the QuantStudio Design and Analysis software version 1.4.3 (ThermoFisher
Scientific™) under default mode.

4.5. Antibiotic Susceptibility Testing and Determination of ESBL Production

Antibiotic sensitivity profiles of E. coli isolates were examined against 23 antibiotics
using the standard disc diffusion method [64]. The following antibiotic panel (Oxoid™)
was used: amoxicillin/clavulanic acid (AMC 20/10 µg), amoxicillin (AMX 10 µg), amikacin
(AMK 30 µg), ampicillin (AMP 10 µg), cefepime (FEP 30 µg), cephalothin (CEF 30 µg),
cefotaxime (CTX 30 µg), cefoxitin (FOX 30 µg), cefixime (CFM 5 µg), ceftazidime (CAZ
30 µg), cephalexin (LEX 30 µg), cefuroxime (CXM 30 µg), chloramphenicol (CHL 30 µg),
ciprofloxacin (CIP 5 µg), gentamicin (GEN 10 µg), imipenem (IPM 10 µg), meropenem
(MEM 10 µg), nitrofurantoin (NIT 100 µg), piperacillin (PIP 100 µg), tetracycline (TET 30 µg),
tigecycline (TGC 15 µg), nalidixic (NAL 30 µg) and trimethoprim/sulfamethoxazole (SXT
1.25/23.75 µg). Susceptibility profiles were determined according to the Clinical Laboratory
Standard Institution (CLSI) guidelines [65], and E. coli ATCC 25922 was used for quality
control. The double-disc synergy test [66] using 30 µg cefotaxime in the presence and
absence of 10 µg clavulanic acid (MAST Group Ltd., Bootle, UK) was undertaken to
identify ESBL-producing isolates. E. coli isolates displaying resistance to one or more
antibiotics from three different antibiotic classes were assigned as multidrug-resistant
(MDR) isolates.

4.6. Genotypic Characterisation of ESBLs

The previously extracted template DNA was used to detect ESBLs-encoding genes
(blaCTX-M and blaSHV) by real-time PCR. These reactions were carried out in a 25 µL final
volume consisting of 12.5 µL of Luna® Universal qPCR Master Mix (New England BioLabs®

Inc., Ipswich, MA, USA), 5.5 µL of nuclease-free water (ThermoFisher Scientific™), 1 µL of
each forward and reverse primer with a final concentration of 1 µM and 5 µL of template
DNA. Amplification reactions were conducted in a QuantStudioTM 5 Applied Biosystems
(ThermoFisher Scientific™) using specific primer sets (Inqaba Biotechnology Industries
(Pty) Ltd.) (Table S2; Supplementary Materials). The cycling conditions included a hot-start
initial activation at 98 ◦C for 50 s, followed by 35 cycles of denaturation at 95 ◦C for 10 s,
final extension at 72 ◦C for 20 s and annealing temperature at 58 ◦C for 1 min. Results were
interpreted by melt curve analysis using the QuantStudio Design and Analysis software
version 1.4.3 (ThermoFisher Scientific™).

The TEM gene was amplified in a Thermal Cycler T100TM (Bio-Rad, Hercules, CA,
USA) in 25 µL final volume using 12.5 µL of DreamTaq Green PCR Master Mix (Ther-
moFisher Scientific™), 5.5 µL of nuclease-free water (ThermoFisher, Scientific™), 1 µL of
each forward and reverse primer (Inqaba Biotechnology Industries (Pty) Ltd.) at a final
concentration of 1 µM and 5 µL of template DNA. PCR conditions were an initial activation
at 94 ◦C for 3 min, and 35 cycles of denaturation at 94 ◦C for 1 min, annealing at 55 ◦C for
1 min, extension at 72 ◦C for 90 s and a final extension at 72 ◦C for 7 min. Five microliters
of each PCR product was subsequently electrophoresed on a 1.5% agarose gel for 3 h at
70 V using 1 × Tris-acetate EDTA (TAE) buffer and stained for 30 min by immersing in
0.1 mg/mL ethidium bromide solution. Amplicons were visualised using a Bio-Rad molec-
ular imager Gel DocTM XR+ imaging system (Bio-Rad). Previously confirmed blaCTX-M,
blaTEM, and blaSHV positive isolates from the ARU laboratory collections were used as inter-
nal positive controls. The no template control, consisting of all reagents except DNA, was
concurrently run during amplification reactions. PCR products (20 µL) of CTX-M-positive
isolates (n = 20), TEM-positive isolates (n = 17), and SHV-positive isolates (n = 8) were se-
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quenced using the Sanger sequencing method at Inqaba Biotechnology Industries (Pty) Ltd.
to identify ESBL genes and ascertain point mutations conferring novelty (if any). Sequence
results were interpreted using Chromas (http://technelysium.com.au/wp/chromas/, ac-
cessed on 26 April 2020) and BioEdit (https://bioedit.software.informer.com, accessed on
26 April 2020) software.

4.7. Strain Typing by ERIC-PCR

The Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR assay was executed
in a 20 µL final volume comprising of 16 µL of DreamTaq PCR Master Mix (2X) (Ther-
moFisher Scientific™), 1 µL of nuclease-free water, 0.5 µL of Eric 1 primer (ATGTAAG
CTCCTGGGGATTCAC) and 0.5 µL of Eric 2 primer (AAGTAAGTGACTGGGGT GAGCG)
(Inqaba Biotechnology Industries, (Pty) Ltd.) [67] and 3 µL of template DNA. Amplifica-
tion reactions were conducted in a Bio-Rad T100TM thermal cycler (Bio-Rad) under the
following cycling conditions: initial activation at 94 ◦C for 3 min, 30 cycles of denaturation
at 94 ◦C for 30 s, annealing at 50 ◦C for 1 min, extension at 65 ◦C for 8 min and a final
extension at 65 ◦C for 16 min. Five microliters of each PCR product was subsequently
electrophoresed on a 1% agarose gel for 3 h at 70 V using 1 × Tris-acetate EDTA (TAE)
buffer and stained for 30 min by immersing in 0.1 mg/mL ethidium bromide solution.
Amplicons were visualised using the Bio-Rad molecular imager Gel DocTM XR+ imaging
system (Bio-Rad), and E. coli ATCC 25922 was used as a positive control. Captured gel
images were analysed using the BioNumerics software version 6.6 (Applied Maths NV,
Sint-Martens-Latem, Belgium) as previously described by McIver et al. [37]. Clusters were
determined at a 50% similarity cut-off value [68].

5. Conclusions

The current study demonstrated the ubiquity of antibiotic-resistant ESBLs-producing
E. coli in the uMgungundlovu District by examining four major WWTPs. Despite the high
removal efficiency observed in the WWTPs, substantial ARB numbers were discharged
into the receiving water bodies through the effluents, which may present a route for wide
dispersion of ESBLs-producing E coli. This poses a public health threat to communities who
use waters contaminated with WWTPs effluent discharge for their domestic water demands.
The high prevalence of clinically relevant CTX-M-15 producing E. coli in WWTPs indicates
they might be of clinical origin. Therefore, while measures are developed and implemented
to curb the problem of AMR, specifically those linked to ESBL, within communities in
South Africa, the need for pre-treatment of hospital wastewater before it is channelled to
municipal WWTPs should be highlighted to minimise transmission.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10070860/s1, Table S1: Multidrug-resistant E. coli phenotypes identified in the study,
Table S2: Primer sets for the amplification of TEM, SHV, and CTX-M-type ESBLs.
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