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Abstract: Since the first report of the plasmid-mediated, colistin-resistant gene, mcr-1, nine mcr
genes and their subvariants have been identified. The spreading scope of mcr-1~10 varies greatly,
suggesting that mcr-1~10 may have different evolutionary advantages. Depending on MCR family
phylogeny, mcr-6 is highly similar to mcr-1 and -2, and mcr-7~10 are highly similar to mcr-3 and -4.
We compared the expression effects of MCR-1~5 on bacteria of common physiological background.
The MCR-1-expressing strain showed better growth than did MCR-2~5-expressing strains in the
presence of colistin. LIVE/DEAD staining analysis revealed that MCR-3~5 expression exerted more
severe fitness burdens on bacteria than did MCR-1 and -2. Bacteria expressing MCRs except MCR-2
showed enhanced virulence with increased epithelial penetration ability determined by trans-well
model (p < 0.05). Enhanced virulence was also observed in the Galleria mellonella model, which may
have resulted from bacterial membrane damage and different levels of lipopolysaccharide (LPS)
release due to MCR expression. Collectively, MCR-1-expressing strain showed the best survival
advantage of MCR-1~5-expressing strains, which may partly explain the worldwide distribution of
mcr-1. Our results suggested that MCR expression may cause increased bacterial virulence, which is
alarming, and further attention will be needed to focus on the control of infectious diseases caused
by mcr-carrying pathogens.

Keywords: mcr-1~5; fitness cost; virulence; prevalence

1. Introduction

Colistin is considered a “last-resort” antibiotic for treating infections caused by
multidrug-resistant bacteria. However, the therapeutic effect of colistin has been greatly
compromised by the emergence of the mobile colistin-resistance gene mcr-1 [1]. mcr-1-
positive bacteria have been detected worldwide from humans, animals, the environment,
and aquatic sources [2–5]. The mcr gene family has expanded to different bacterial species,
such as Escherichia coli in Belgium (mcr-2) [4], Enterobacteriaceae and Aeromonas in China
(mcr-3) [5], Salmonella and E. coli in Spain and Belgium (mcr-4) [6], Salmonella in Germany
(mcr-5) [7], Moraxella spp. in the United Kingdom (mcr-6) [8], K. pneumoniae in China
(mcr-7, -8) [7,9], Salmonella enterica serotype Typhimurium in the USA (mcr-9) [10], and
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Enterobacter roggenkampii in China (mcr-10) [9]. mcr genes have a large and diverse epi-
demiological distribution, while mcr-1-positive bacteria have been reported across six
continents. However, the distribution of the other mcr genes (mcr-2~10) is relatively lim-
ited [11]. Whether the fitness costs for bacteria caused by mcr genes can influence the gene’s
dissemination remains uncertain.

The biological costs imposed by a plasmid-mediated resistance gene affect its mainte-
nance in the bacterial community, because resistant strains with the extra burden could
easily be replaced by susceptible strains in the absence of antibiotic pressure [12,13]. Previ-
ous studies have verified that mcr gene expression affected bacterial growth conditions [12].
Expression of MCR-1 and MCR-3 exerted fitness costs on the first 50 generations of host
bacteria, and compensatory mutations can alleviate these costs [12]. mcr-carrying plasmids
with different replicon types are varied in their fitness burdens on host bacteria. The IncI2,
IncHI2, and IncX4 plasmid-carrying mcr-1 genes are stable and hardly affect bacterial
growth, which explains why most reported mcr-1-bearing plasmids belong primarily to
these types [12,13]. Although the fitness costs of mcr-1-carrying strains have been thor-
oughly studied under different conditions, few studies have compared the fitness costs of
different mcr genes in a common physiological background.

MCR transfers the phosphoethanolamine (pEtN) on lipid A, alters its negative charge,
and decreases the colistin-binding efficiency. However, MCR-mediated lipid A modifi-
cation and its subsequent effect on bacterial virulence remain largely unexplored. It is
reported that there is a complicated relationship between colistin resistance and bacterial
virulence [14]. Increased colistin resistance along with decreased virulence was observed
in E. coli [1]. However, some A. baumannii exhibited increased colistin resistance but also in-
creased virulence gene expression [15]. Worryingly, some pathogenic clonal lineages, such
as E. coli ST131, have been isolated from clinical patients, food animals, and environments
harboring mcr, which is alarming because carrying of mcr in this clonal may not only result
in therapeutic failure, but also varied virulence to host animal [16–18]. All this indicates
that it is necessary to figure out the association between MCR mediated colistin resistance
and virulence variation in bacteria.

Herein, in this study, we analyzed the fitness costs and virulence of bacteria carrying
mcr-1~5, which contributed to exploring the causes of mcr genes’ widespread distribution
and was a reminder of the risk of mcr-carrying bacteria outbreak.

2. Materials and Methods
2.1. Bacterial Strains, Plasmids, Cell Lines, and Culture Conditions

Bacterial strains, plasmids, and cell lines used in this study are listed in Table 1. Bacteria
carrying mcr-1~5 were isolated previously and kept in our lab. Strains were grown in LB broth
(Luqiao, Beijing, China) under 37 ◦C with proper antibiotics. E. coli TOP10 (mcr-1~5/pBAD)
was constructed by cloning mcr-1~5 genes in frame into arabinose-inducible pBAD-hisA
expression vector with primers listed in Table A1; hence, the expression of MCR-1~5 can be
regulated with L-arabinose (Sigma-Aldrich, St. Louis, MO, USA) induction. E. coli TOP10
transformed with empty pBAD vector was used as the control group. Bacteria were cultured
in Luria–Bertani (LB) medium (Luqiao, Beijing, China) at 37 ◦C. The growth medium was
supplemented with antibiotic and/or L-arabinose.

Cell line Caco-2 was grown in 12 well trans-well cell culture inserts (Nunc, Rochester,
NJ, USA) to confluency. The inserts were cultured 18–22 days at 37 ◦C, 10% CO2 in
minimum essential medium (MEM, Gibco, Waltham, MA, USA) supplemented with fetal
bovine serum (FBS, Gibco, Waltham, MA, USA), 1% non-essential amino acids (Gibco,
Waltham, MA, USA), and 1% penicillin/streptomycin (Gibco, Waltham, MA, USA). The
cell culture medium was changed every other day until the cells were fully differentiated.
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Table 1. Bacteria and cells used in this study.

Name Description Source or Reference

Strains
SHP45 WT E. coli strain with mcr-1 of pig origin [17]

DH5α-mcr-2 Constructed E. coli strain with mcr-2 [18]
WJ1 WT E. coli strain with mcr-3 of pig origin [19,20]
D32 WT E. coli strain with mcr-4 of pig origin Laboratory collection
D13 WT E. coli strain with mcr-5 of pig origin Laboratory collection

mcr-1/pBAD E. coli TOP10 with mcr-1/pBAD This study
mcr-2/pBAD E. coli TOP10 with mcr-2/pBAD This study
mcr-3/pBAD E. coli TOP10 with mcr-3/pBAD This study
mcr-4/pBAD E. coli TOP10 with mcr-4/pBAD This study
mcr-5/pBAD E. coli TOP10 with mcr-5/pBAD This study

pBAD E. coli TOP10 with pBAD This study
ATCC25922 E. coli, quality control strain Laboratory collection

Cells
Caco-2 Human colon carcinoma cell line Laboratory collection

2.2. Antimicrobial Susceptibility Testing

Colistin susceptibility of constructed strains was assessed by broth microdilution
according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST).
Briefly, cells were resuspended to 0.5 McFarland standard and used to inoculate 96-well
microtiter plates (Corning Inc., Corning, NY, USA) containing cation-adjusted Mueller–
Hinton medium (Luqiao, Beijing, China) with colistin (0.06~128 µg/mL). L-arabinose was
added to experimental wells to a final concentration of 0~0.2% (w/v). Plates were incubated
16~18 h at 37 ◦C. Experiments were carried out in duplicate.

2.3. Bacteria Growth Kinetics Detection

Bacteria were streaked on LB agar supplemented with ampicillin. Single clones were
inoculated into 1 mL of LB broth supplemented with 100 mg/L ampicillin and shaken at
37 ◦C for 6 h to log phase. The bacteria were diluted to a turbidity of 0.5, which was diluted
100 times in LB broth with L-arabinose 0.02% (w/v). Bacteria only or bacteria as well as
drugs were added to the 96-well plate then placed in a microplate reader and cultured at
37 ◦C. The growth state of the bacteria was monitored for 24 h, and the OD value of each
well was measured intermittently using a wavelength of 600 nm. The growth curves of the
bacteria were fitted using GraphPad prism by triplicate growth kinetics assays.

2.4. Confocal Microscopy Imaging Using LIVE/DEAD Staining

Strains were grown overnight in LB broth supplemented with 100 mg/L ampicillin
at 37 ◦C (120 rpm). Overnight cultures were standardized to OD600 0.05 and inoculated
(1:10; v/v) into fresh LB broth for 2 h (37 ◦C; 120 rpm). The L-arabinose (0.02%, w/v) was
added and further incubated for 2 h. The strains were stained with 6% LIVE/DEAD® (v/v;
BacLightTM Bacterial Viability Kit, Invitrogen, CA, USA) in phosphate-buffered saline
before CLSM imaging (Leica TCS SP8, Leica, Wetzlar, Germany) with a ×63 lens. The
CLSM images were analyzed using ImageJ version 1.52a analysis software.

2.5. Membrane Permeability Test Assay

Strains were inoculated in LB broth with 0.02% L-arabinose and cultured at 37 ◦C,
180 rpm for 2 h. NPN (1-N-phenylnaphthylamine, Sigma-Aldrich, St. Louis, MO, USA)
with final concentration at 10 µM was added and incubated at 37 ◦C for 30 min in the
dark; fluorescence was detected at the excitation and emission wavelengths of 350 and
420 nm, respectively.



Antibiotics 2021, 10, 872 4 of 12

2.6. Cell Infection Experiment

To detect bacterial ability to penetrate the epithelial barrier, we challenged the apical
surface of Caco-2 monolayers by the addition of 1 × 106 CFU/mL strains with or without
mcr genes after L-arabinose induction. After incubation at 37 ◦C, the lower cell liquid was
gathered and inoculated on LB agar. After overnight incubation, CFU on agar was counted.
Every time before and after the experiment, mcr genes were detected by PCR with primers
pBAD-F (5′ATGCCATAGCATTTTTATCC3′) and pBAD-R (5′GATTTAATCTGTATCAGG3′)
to make sure the gene is still maintained in host bacteria.

2.7. G. mellonella Infection Model

In vivo virulence of strains was evaluated using G. mellonella infection model, as
described by Qiue [1]. Briefly, bacterial pellets were washed and diluted to an appropriate
density with PBS. We injected 10 µL aliquots of serially diluted bacterial suspension
(108 CFU/mL) into the hemocoel of each larvae through the rear left proleg. A group of
5 larvae was randomly chosen to inject inoculation in triplicate. After injection, larvae were
incubated at 37 ◦C, and the melanization of larvae were observed 1 h after infection. In all
cases, no dead larvae were observed in the control groups.

After G. mellonella was ground, the homogenate was diluted in gradient and the
bacteria was removed by filtration with 0.2 µm filters. The samples were quantified for
the presence of LPS using the LAL. Briefly, samples and LPS standards (Sigma-Aldrich,
St. Louis, MO, USA) were diluted to the concentration between 0.1 and 1 endotoxin unit
and incubated for 10 min with LAL lysates (Thermo Scientific™, Waltham, MA, USA) at
37 ◦C. Then, the samples with LAL lysates were treated with chromogenic reagent and
color stabilizer reagents. LPS levels were determined by detecting absorptions at 405 nm.

2.8. Statistical Analysis

All assays were repeated three times. Data are expressed as the mean ± standard
error of the mean (SEM). Statistical significance (***, p < 0.001; **, p < 0.01; *, p < 0.05; ns
(not significant)) was calculated via two tailed t-test to compare treatment/experimental
and control groups. Analyses was performed by using GraphPad prism 8.0 (GraphPad
Software, La Jolla, CA, USA).

3. Results
3.1. Mcr-1~5 Mediated Colistin Resistance Levels

To compare mcr-mediated resistance to colistin in a common physiological back-
ground, we expressed MCR in TOP10 E. coli by cloning mcr into pBAD expression vectors,
which was confirmed by PCR and sequencing (Table 1). MCR expression was induced
under different L-arabinose concentrations after 2 h of inoculation in LB broth. As the
concentration of L-arabinose increased within 0~0.02% (w/v), the minimum inhibitory
concentrations (MICs) against colistin increased (Figure 1). However, when the L-arabinose
concentration reached 0.2%, the MICs for colistin of the mcr-1~3-carrying strains were the
same as those at 0.02%, while those of mcr-4 and -5 were decreased by half (1 mg/L). All
constructed strains exhibited maximal MICs (2 mg/L) to colistin under 0.02% L-arabinose,
which was 8~32 times higher than the MICs without L-arabinose induction, and no higher
MICs were observed. Therefore, we used 0.02% L-arabinose as the induction concentration
in subsequent experiments.

3.2. MCR-1~5 Expression Conferred Varied Fitness Costs on the Host Strain

To determine the impact of MCR-1~5 expression on bacterial growth, we constructed
growth curves in the presence/absence of 1 mg/L colistin. All data were fitted with
logistic regression to show the host strain growth phase. The bacterial growths of MCR-3,
-4, and -5 overexpression without colistin were significantly inhibited in the log phase
(p < 0.01) compared with that of the control group, while MCR-1 imposed a slight fitness
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disadvantage in the lag phase (p < 0.05; Figure 2). Surprisingly, MCR-2 showed a similar
growth kinetic to that of the host strain (Figure 2a).
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MCR-1- and MCR-2-expressing strains could grow with different kinetics in the log
phase with 1 mg/L colistin. However, the growths of strains expressing MCR-3, -4, and
-5 were significantly inhibited in the log phase (p < 0.01), and no normal growth curves
could be detected after 24 h (Figure 2c,g). Interestingly, when colistin was added, MCR-2-
expressing strains showed poorer growth than did MCR-1-expressing strains (Figure 2c,d)
in the logarithmic phase.

We performed LIVE/DEAD double-staining assays to reflect cell viability (Figure 3a–f).
Compared with the control bacteria that only harbored pBAD, MCR-1, -3, -4, and -5 ex-
pressions caused significantly high ratios of dead bacteria to all bacteria (p < 0.05), while
MCR-2 expression yielded comparable ratios to those of the control group (Figure 3g).
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Because 1-N-phenylnaphthylamine (NPN) is hydrophobic, it cannot penetrate intact
membranes, whereas NPN uptake may be enhanced in bacteria with damaged outer mem-
branes. We detected the outer membrane permeability of the strains after L-arabinose
induction by measuring the NPN uptake in bacteria. The strains expressing MCR-1~5
showed significantly increased membrane permeability (p < 0.05), with the order of mem-
brane damage being MCR-4 > MCR-3 > MCR-5 > MCR-1 > MCR-2. Membrane permeability
in the MCR-2-expressing strains was similar to that of the control bacteria (Figure 3h).
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3.3. MCR Expression Increased Bacterial Virulence In Vitro and In Vivo

Intestinal epithelial cells can generate various types of barriers to protect the intestinal
mucosa from commensal and pathogenic microorganisms. Here, we explored whether
MCR-catalyzed lipid A modification could affect the ability of bacteria to penetrate the
epithelial barrier via a trans-well model in vitro (Figure 4a). The translocated bacteria were
quantified by counting the viable cells. Bacteria expressing MCR-1, -3, -4, and -5 showed
a significantly higher capacity to translocate the Caco-2 monolayer than did the control
group (p < 0.05), where MCR-3-expressing strains showed the highest capacity to penetrate
the epithelial barrier. However, MCR-2-expressing strains showed a similar penetration
capacity to the non-pathogenic pBAD control group (Figure 4b). MCR-1 expressing strain
showed intermediate ability to penetrate Caco-2 monolayer, which is higher than MCR-2
but lower than MCR-3~5-expressing strains.
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We used G. mellonella to evaluate bacterial virulence in vivo. The movement abilities
of G. mellonella infected with strains expressing MCR-1, -3, -4, and -5 were shown to be
rapidly decreased, while the skin of the larvae quickly darkened within 1 h after injection
(Figure 5a). In this model, MCR-2-expressing strains still showed similar results to those of
the control group.

We detected the LPS concentrations in the fluid of ground G. mellonella. The G. mellonella
infected with bacterial strains expressing MCR-1, -3, -4, and -5 contained significantly higher
LPS concentrations in the larvae grinding fluid (p < 0.05) than did the MCR-2-expressing
strains, which were similar to those of the control group injected with only pBAD-harboring
strains (Figure 5b).
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4. Discussion

MCR family proteins catalyze an additional pEtN group on lipid A, which results in
attenuating the bacterium’s affinity for colistin, and obviously compromises the efficacy
of colistin as a last-resort antibiotic. Although mcr genes (mcr-1~5) belong to one family,
their prevalence is significantly varied. Of mcr-1~5, mcr-1 is the most widely disseminated
variant, however, there are only sporadic reports of mcr-2~5 which dissemination across a
limited area [11]. Resistance-associated fitness costs may inhibit gene further spread in the
absence of antibiotics. In our research, the expressions of MCR-3~5 conferred more severe
fitness burdens on bacteria than those of MCR-1 and -2, suggesting that mcr-1 and -2 exhibit
better mutual adaptation with the host bacteria (in our study is E. coli) than do mcr-3~5.
On this basis, mcr-1 and -2 should have a similar prevalence level; however, mcr-1 is much
more widespread than mcr-2. We further compared the growths of strains under colistin
exposure; on this occasion, MCR-1-expressing strains showed the best growth among MCR-
1~5, which might explain the widespread of mcr-1 but not mcr-2. Currently, most of the
mcr-1-positive isolates are limited to Enterobacteriaceae. A global surveillance revealed that,
among the 29 mcr-positive Enterobacteriaceae isolated from 2014 to 2016, 24 (82.75%) carried
mcr-1 or its variants [21]. A report on mcr-1~5 prevalence in Enterobacteriaceae showed
that 54 of 61 mcr-positive isolates were E. coli [22]. Colistin-resistant E. coli isolates in
food-producing animals in Italy during 2014–2015 were shown to carry mcr genes; among
the 15 mcr-positive E. coli, 14 harbored mcr-1, and only one tested positive for mcr-4 [23].
The better mutual adaptation between mcr-1 and E. coli in terms of our result of varied
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fitness cost may partially explain why mcr-1 is the most prevalent gene in the mcr family.
Inconsistent results about fitness cost conferred by MCR expression have been reported in
K. pneumoniae and E. coli, with reduced biological fitness being observed [1,24]. However,
mcr-1 was also reported as being able to confer fitness advantages to the host when carried
by IncI2 and IncX4 plasmids, suggested different host strain and plasmid combinations may
exert varied fitness effects. This might explain why IncI2 and IncX4 are the major vehicles
of mcr-1 worldwide [15], as certain genes on these plasmids may help strains compensate
for the fitness costs of MCR expression [25]. Except for fitness cost, the types of plasmids
that carry mcr genes could also result in large different in its distribution, as the globally
distributed mcr-1 has been associated with the broad host range plasmids including IncI2,
IncX4, and IncHI2 [13,26]; however, mcr-2 was currently only observed carried by IncX4
plasmid [4,6]. Whether there are other contributing factors for the widespread of mcr-1 will
be explored in subsequent studies.

Acyl chains and phosphate groups of disaccharides are the major moieties that con-
tribute to endotoxicity of lipid A [27]. Removing of phosphate groups from lipid A makes
some bacterial species less toxic [28]. Studies have yielded conflicting results regarding
how modifying lipid A with pEtN alters bacterial virulence. In this study, we used in vitro
and in vivo models to understand the role of mcr genes in bacterial virulence. Strains
overexpressing mcr (except mcr-2) showed increased virulence compared with that of the
control group. Our results were inconsistent with those of Yang et al., who reported that
acquisition of naturally generated mcr-1 carried by wild-type plasmids in E. coli markedly
depleted its virulence [1]. However, in their study, acquisition of the mcr-1-carrying plas-
mid did not affect bacterial growth, and the fitness cost was moderate. Thus, we inferred
that the increased virulence observed in our research might be related to fitness costs gener-
ated by MCR overexpression. MCR-mediated modification of lipid A is reported to cause
profound changes in the bacterial outer membrane architecture in E. coli [1]; subsequently,
membrane modification may further result in important membrane component release
and could increase bacterial virulence in vivo [29,30]. To test our hypothesis, we detected
the LPS concentrations in G. mellonella after bacterial infection. G. mellonella infected with
MCR-expressing strains showed higher tissue LPS concentrations than did the control
group. The result supports our hypothesis that MCR overexpression mediated lipid A
modification result in LPS release and increase bacterial virulence. Our results are similar
with those of Kaito Chikara et al.’s report, where, by developing a silkworm infection
model, the researchers found that non-pathogenic E. coli could acquire virulence by mutat-
ing essential gene in growth or LPS transport, and this mutation could increase the amount
of LPS in the outer membrane vesicle fraction [31]. In our trans-well assay, we observed an
increased amount of bacteria expressing MCR penetrate the in vitro epithelial barrier, as it
was reported that lipid A remodeling could trigger LPS liberty and the liberated LPS could
increase intestinal tight junction permeability [32,33]; thus, we hypothesized that MCR
expressing may help bacteria destroy epithelial barrier function by remodeling bacteria
membrane and liberating the LPS. Regarding virulence and fitness costs of MCR-expressing
strains, we also noticed that strains with greater fitness burden tended to be more virulent;
however, depending on the present study, we could not directly correlate the variation
in bacterial virulence to the fitness costs. Hence, the mechanisms of the variations in
mcr-mediated bacterial virulence are complex and remain unclear, and therefore further
studies are needed.

Our study had some limitations. We observed phenotypic differences in fitness costs
and virulence among mcr-1~5-carrying bacteria. However, we could not explain the reason
for these differences. Hence, we hypothesized some potential reasons for these differences.
First, the expressions of different MCRs are precisely regulated in host bacteria, and the
transcriptional level of the plasmids that carry mcr is controlled by both the promoter and
the genomic background of the host bacteria. This is because the mcr-1 carried by different
plasmids and transformed in the same host strain (EC600) have shown the same expression
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at baseline [34]. Second, the previous reports confirmed different enzymatic efficiencies of
different MCR proteins [35].

5. Conclusions

Collectively, we explored the effect of MCR-1~5 expression on host bacteria. Among
MCR-1~5, MCR-1-expressing strains showed the best survival under colistin exposure and
the moderate fitness costs, which might be a critical factor for the increased global dissem-
ination of mcr-1. We also detected the varied effect of mcr genes on enhancing bacterial
virulence, which may be a potential risk of increased infection along with compromising
colistin efficacy. Thus, we should emphasize the importance of the mcr genes’ threat to
human and animal health, and more attention should be paid to deciphering prevalence
and mechanism of mcr.
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Appendix A

Table A1. Primers used in this research.

Primers Sequences Source

mcr-1-F ggctaacaggaggaattaaccatggATGATGCAGCATACTTCTGTGTG This study
mcr-1-R gccaaaacagccaagcttcgaattcTCAGCGGATGAATGCGGTG This study
mcr-2-F ggctaacaggaggaattaaccatggATGACATCACATCACTCTTG This study
mcr-2-R gccaaaacagccaagcttcgaattcTTACTGGATAAATGCCGC This study
mcr-3-F ggctaacaggaggaattaaccatggATGCCTTCCCTTATAAAAATAAAAATTG This study
mcr-3-R gccaaaacagccaagcttcgaattcTTATTGAACATTACGACATTGAC This study
mcr-4-F ggctaacaggaggaattaaccatggGTGATTTCTAGATTTAAGACGTTATC This study
mcr-4-R gccaaaacagccaagcttcgaattcCTAATACCTGCAAGGTGC This study
mcr-5-F ggctaacaggaggaattaaccatggATGCGGTTGTCTGCATTTATC This study
mcr-5-R gccaaaacagccaagcttcgaattcTCATTGTGGTTGTCCTTTTC This study
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