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Abstract: Fungi from the Candida genus are widespread commensals and, at the same time, are the
leading cause of fungal infections worldwide. For instance, vulvovaginal candidiasis (VVC) affects
approximately 75% of women at least once in their lifetime, remaining the second most common
gynecological infection. On the contrary, hospital-acquired fungal bloodstream infections (BSIs),
although less frequent, are characterized by a high mortality rate. Undoubtedly, the main reason for
this situation are virulence factors that these yeast-like fungi can produce, and the ability to form a
biofilm is one of the most important of them. Due to the low effectiveness of classic antimycotics
against Candida biofilms, an intense search for new drugs capable of eradicating this structure is
highly demanded. One of the most promising groups of compounds exhibiting such properties are
antimicrobial peptides (AMPs). This study focuses on a comparison of the efficacy of Omiganan
and fluconazole alone and in combination against Candida strains isolated from BSIs. The obtained
results are consistent with our previous reports on the effectiveness of Omiganan against clinical
strains isolated from VVC. This is also the first report on the combinatory application of Omiganan
in the context of fungal BSI. The majority of combinations with fluconazole showed an additive
effect, as well as a synergistic effect in the range of certain concentrations. Importantly, such effects
are visible at concentrations much lower than for those compounds used individually. Potentially,
this entails the possibility of limiting the adverse effects (e.g., toxicity) of Omiganan and fluconazole
applied in vivo, thus improving the safety profile of this particular antifungal therapy.
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1. Introduction

Candida species are widespread commensals that can be part of the microbiota of
mucous membranes and skin. Moreover, some data show that they even occur in 50–70%
of the population [1,2]. Despite the fact that Candida spp. belong to normal flora, they may
lead to opportunistic infections and, at the same time, they are indicated as a frequent
cause of symptomatic infections all over the world [3].

Vulvovaginal candidiasis (VVC) is diagnosed if the typical symptoms of vaginitis and
vulvitis are accompanied by the presence of Candida spp. in a material obtained from the
external genitalia [4]. VVC affects approximately 75% of women at least once during their
lifetime, which makes it the second most common vulvovaginal infection in the world,
after bacterial vaginosis (BV) [5]. In more than half of cases, VVC occurs at least twice
a lifetime, and in 5–8%, at least four times a year (recurrent vulvovaginal candidiasis
(RVVC)) [6]. For instance, recent epidemiological data indicate that RVVC affects nearly
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138 million women annually (500 million women during their lifetime), and the number of
these infections is constantly increasing. [7,8].

In fact, Candida spp. are noticed in every fifth healthy woman’s vaginal swabs, and the
most common risk factors are pregnancy, hormone replacement therapy, diabetes, states of
compromised immunity, antibiotic therapy, and steroid therapy [6,9,10]. In the majority
of cases (80–95%), the etiological factor of VVC is Candida albicans; however, recently, the
percentage of infections caused by other species belonging to this genus (non-Candida
albicans Candida (NCAC)), such as C. glabrata, C. parapsilosis, C. krusei, and C. tropicalis,
is increasing. In some populations, they are responsible for every fifth fungal vaginosis,
occurring even more often in RVVC [6,10–13]. NCAC are usually characterized by a higher
virulence and a weaker response to standard antifungal treatment, which often results in
therapeutic failures [14]. Although vaginal candidiasis does not increase overall mortality,
it significantly worsens the quality of life of a large number of women, causing pain,
burning sensations, and discomfort, both physical and psychological, resulting in poorer
self-esteem and decreased sexual satisfaction [6].

This means that VVC has become a serious and global threat, especially when con-
sidering the growing number of incidences, as well as the costs for the healthcare system.
Undoubtedly, the main reason for this situation is the decreased susceptibility or resistance
of Candida strains to azoles [15]. It should be noted that low effectiveness of the commonly
used antifungals leads to prolonged therapy, which secondarily induces resistance. For
C. albicans, several mechanisms have been described. For example, the most common are
mutations in the ERG11 gene and overexpression of the efflux pumps associated genes
(e.g., CDR and MDR1). The first leads to the lowered affinity of drugs, while the second
prevents intracellular accumulation [16,17]. Other mechanisms include over-expression
of membrane transporters and mutations in genes associated with the biosynthesis and
import of sterols [18].

In bloodstream infections (BSIs), fungal cells infiltrate the systemic circulation in large
numbers. As a result, they can invade internal organs and tissues, and can cause symptoms
of sepsis. The most important risk factor for BSI is immunodeficiency, especially neutrope-
nia, but other ones, such as cancer, diabetes, postoperative conditions, and treatment in
the intensive care unit, cannot be ignored. Nowadays, the frequency of invasive fungal
infections is increasing [19]. In fact, C. albicans is an etiological factor in approximately
half of all cases [20,21]. However, recent data highlight that the number of infections
caused by NCAC such as C. dubliniensis, C. glabrata, C. guilliermondii, C. kefyr, C. krusei,
C. parapsilosis, and C. tropicalis is still rising [2,22]. Nevertheless, the multitude of virulence
factors of Candida spp., increasing the resistance to standard antifungal drugs and the fact
that BSIs mainly affect patients with comorbidities, often in profound immunosuppression,
determine the poor prognosis of this group of patients [2,23,24].

Among the virulence factors of some yeast-like fungi, the ability to create a biofilm
is one of the most important for their pathogenicity. It seems to be essential primarily
in the case of chronic and recurrent mucocutaneous candidiasis, including RVVC, and
infections related to biomaterials (artificial valves, endoprostheses, and intravascular or
urinary catheters). Biofilms are characterized by a high resistance to antifungal drugs, even
at very high concentrations [25,26].

Due to the low effectiveness of classic antifungals against Candida biofilms, an intense
search for new drugs effective against this structure has arisen recently. Recent advances in
this field include a quaternary ammonium derivative of pyridoxine and terbinafine with
antibiofilm activity against both Candida and bacterial strains [27]. Studies are focused not
only on derivatization, but also on the potentiation of antifungal activity of terbinafine and
azoles by, e.g., the synergistic effect of 2(5H)-furanone derivative [28]. A relatively new and
very promising group of compounds exhibiting such properties are antimicrobial peptides
(AMPs), characterized by a unique mechanism of action and a relatively low potential for
generating resistance [29,30].
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Omiganan is a synthetic analog of indolicidin—a peptide primarily isolated from
granules of bovine neutrophils [31]. Moreover, this molecule has been subjected to the
final phase of clinical trials in the treatment of rosacea, juvenile acne, atopic dermatitis,
genital warts, and vulvar intraepithelial neoplasia (VIN) [32–35]. The initial results also
showed great potential in the treatment of fungal infections [36,37]. This study focuses on
a comparison of the efficacy of Omiganan and fluconazole and their combination against
planktonic forms and biofilms of blood-derived and vaginal isolates of Candida spp.

2. Materials and Methods
2.1. Microorganisms

The studies were conducted on clinical strains of various Candida species, including
32 isolates acquired from women with VVC and 30 isolates from patients with candidemia
(BSI). Among the VVC strains, 30 were identified as C. albicans, and the other two were
C. lusitaniae and C. kefyr. NCAC strains accounted for the majority (21/30) of the blood-derived
isolates. These included 10 strains of C. glabrata, four strains of C. parapsilosis, three strains of
C. krusei, two strains of C. tropicalis, and two strains of C. kefyr. The remaining nine isolates
were C. albicans strains. All clinical strains were obtained from the internal collection
of the Department of Microbiology, Wroclaw Medical University. Two reference strains
(C. albicans ATCC 90028 and C. glabrata ATCC 15126) were obtained from the Polish Collection
of Microorganisms (Polish Academy of Sciences, Wroclaw, Poland).

2.2. Peptide Synthesis

Omiganan (ILRWPWWPWRRK-NH2) was synthesized as described previously [38].
The peptide was synthesized manually by the solid-phase method using Fmoc chem-
istry on polystyrene Rink amide resin with a loading of 1.0 mmol/g (Orpegen Peptide
Chemicals GmbH, Heidelberg, Germany). Single deprotection of the Fmoc group was
performed with a 20% (v/v) piperidine (Merck, Darmstadt, Germany) solution in DMF
(Honeywell, Seelze, Germany) for 15 min. Acylation of Fmoc-AA-OH was conducted in a
DCM/DMF (1:1, v/v) solution with OxymaPure and DIC as coupling reagents (equimolar
mixture of reagents) for 1.5 h using a threefold molar excess based on the resin. Every step
was preceded by rinsing the resin and running the chloranil test. Cleavage of Omiganan
was accomplished in TFA (Apollo Scientific, Denton, UK) and scavengers’ mixture—TIS
(Sigma-Aldrich, St. Louis, MO, USA), phenol (Sigma-Aldrich, St. Louis, MO, USA), and
deionized water (92.5:2.5:2.5:2.5, v/v/v/v) for 1.5 h with agitation. The cleaved peptide
was precipitated with cold diethyl ether and lyophilized. Omiganan was purified by
reversed-phase high-performance liquid chromatography, and its identity was confirmed
by mass spectrometry (ESI-MS).

2.3. Antimicrobial Activity

In the first stage of the study, the minimum inhibitory concentrations (MICs) for each
strain were determined. The MIC values were evaluated by the microdilution method
using RPMI 1640 in accordance to the CLSI recommendations [39]. Suspensions of the
tested strains (0.5–2.5 × 103 CFU/mL) were applied to 96-well polystyrene plates with
previously prepared serial dilutions of fluconazole or Omiganan ranging in concentra-
tion from 0.125 to 256 µg/mL. The plates were incubated for 24 h at 37 ◦C, and subse-
quently, the MICs were read. In the case of the fungistatic azole, the optical density (OD)
was read spectrophotometrically (BiochromAsys UVM 340) at a wavelength of 530 nm.
The MIC was considered as the concentration at which the growth inhibition of at least
50% of microorganisms was detected. For this purpose, the following equation was used:
(ODwell − ODK−)/(ODK+ − ODK−) × 100%), where ODwell is the absorbance of the well-
being assessed, ODK− is the value for the negative control (background), and ODK+ is
the value obtained in the control positive (strain growth control). With regard to the pep-
tide, the visual method was adapted, considering the minimum inhibitory concentration
value at which no turbidity, indicative of fungal growth, was observed. All experiments
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were conducted in triplicate and included a strain growth control (positive control) and a
negative control, which served as a medium sterility test.

In the next stage, the minimum biofilm eradication concentrations (MBECs) were
determined. Prepared microbial suspensions with a density of 1–5 × 106 CFU/mL
in RPMI 1640 medium were transferred to 96-well plates and incubated for 24 h at
37 ◦C. The pre-formed biofilm was then washed three times with a sterile 0.9% NaCl
solution. Then, the test compounds were added to ranging concentrations of Omiganan
(0.125–256 µg/mL) and fluconazole (0.25–512 µg/mL). After 24 h of incubation at 37 ◦C, a
solution of MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) at a con-
centration of 1 mg/mL was added to each well and incubated for 3 h at 37 ◦C in the dark.
Then, the results were read visually. The concentration at which no color change was
observed (yellow MTT is reduced by living cells to dark colored formazan) was considered
as the MBEC [40]. All experiments were conducted in triplicate and included positive and
negative controls.

A preliminary assessment of the interaction between both compounds was carried
out by determining the fractional inhibitory concentration index (FIC index) using the
checkerboard method [41]. This assay was conducted on 24 randomly selected strains,
including C. albicans ATCC 90028 and C. glabrata ATCC 15126, 10 VVC-derived strains,
and 12 BSI-derived strains. The strains were numbered, and a randomization program
(http://www.graphpad.com/quickcalcs/index.cfm, accessed date: 15 June 2021) was used
for selection. To determine the FIC index value, 96-well plates containing serial dilu-
tions of fluconazole (horizontal) and Omiganan (vertical) were prepared. Such an approach
provided a final concentration range of 0.5–64 µg/mL for both compounds. Then, strain
suspensions prepared analogically to those during the MIC determination were added to
the wells of the plate. After 24 h of incubation at 37 ◦C, the plates were read visually, and
the inhibitory concentrations were taken as those for which no growth of microorganisms
was observed. The experiments were conducted in triplicate and included a positive control
and a negative control. The following formulas were used to determine the FIC index:

A
MICA

+ B
MICB

= FICA + FICB = FIC,

FIC index = ∑ FIC
n

Compound A was fluconazole and compound B was Omiganan. The MIC concentra-
tions previously determined for each strain were taken into account during the calculations.
The values of A and B were the concentrations determined using the checkerboard method
(n = 8). The described method is presented in Supplementary Table S1.

The FIC index values, obtained as described above, were interpreted in accordance
with the recommendations [41], which are presented in Table 1.

Table 1. Interpretation of the interactions between the two compounds tested using the checkerboard
method, based on of the obtained FIC index values.

FIC Index Interpretation

≤0.5 Synergism (SYN)
>0.5 to 1.0 Addition (ADD)

>1.0 to ≤2.0 Indifference (IND)
>2.0 Antagonism (ANT)

3. Results
3.1. Minimum Inhibitory Concentration (MIC)

In the case of the VVC-derived isolates, all strains were found to be sensitive to
fluconazole, and the highest MIC value was 1 µg/mL (C. kefyr). For the vast majority of
strains (27/32, 85%) the obtained MIC was 0.125 µg/mL or less. Among the BSI-derived
strains, the distribution of the MIC values was less heterogeneous and ranged from ≤0.125

http://www.graphpad.com/quickcalcs/index.cfm
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to 64 µg/mL. The most common MIC was 0.125 µg/mL or less (7/30, 23%). The value of
the minimum inhibitory concentration for fluconazole was not species-dependent. The
MIC value distribution of fluconazole is presented in Figure 1.

Antibiotics 2021, 10, 1001 5 of 13 
 

the distribution of the MIC values was less heterogeneous and ranged from ≤0.125 to 64 
µg/mL. The most common MIC was 0.125 µg/mL or less (7/30, 23%). The value of the 
minimum inhibitory concentration for fluconazole was not species-dependent. The MIC 
value distribution of fluconazole is presented in Figure 1. 

 
Figure 1. Distribution of the MICs of fluconazole among the vaginal (VVC) and blood-derived (BSI) Candida strains. 

Omiganan turned out to be active against the tested fungi in the concentration range 
of 32–256 µg/mL. For the vaginal strains, the most common MIC value was 128 µg/mL 
(19/32, 59%). Both of the VVC-derived NCAC species presented lower MICs (64 µg/mL) 
than the other vaginal C. albicans strains. The MIC value among the blood-derived isolates 
was not dependent on the species, and the dominant MIC was 256 µg/mL (17/30, 57%). 
The MIC results for Omiganan are presented in Figure 2. Detailed data on the obtained 
MIC values of fluconazole and Omiganan are available in Supplementary Material in Ta-
bles S2–S4. 

0

5

10

15

20

25

30

≤0.125 0.25 0.5 1 2 4 8 16 32 64 128 256

No
. o

f s
tr

ai
ns

Concentration [µg/mL]

Fluconazole

VVC BSI

Figure 1. Distribution of the MICs of fluconazole among the vaginal (VVC) and blood-derived (BSI) Candida strains.

Omiganan turned out to be active against the tested fungi in the concentration range
of 32–256 µg/mL. For the vaginal strains, the most common MIC value was 128 µg/mL
(19/32, 59%). Both of the VVC-derived NCAC species presented lower MICs (64 µg/mL)
than the other vaginal C. albicans strains. The MIC value among the blood-derived isolates
was not dependent on the species, and the dominant MIC was 256 µg/mL (17/30, 57%). The
MIC results for Omiganan are presented in Figure 2. Detailed data on the obtained MIC values
of fluconazole and Omiganan are available in Supplementary Material in Tables S2–S4.

To determine the selectivity of Omiganan toward human and Candida cells, we referred
to previous results from cytotoxicity studies (IC50) against HaCaT cell line (immortalized
human keratinocytes) conducted by Jaśkiewicz et al. [42]. The IC50 value was included in
the Selectivity Index (SI) calculation, which is its quotient and the geometric mean (GM) of
the obtained MIC in this research. The results are shown in Table 2.

Table 2. Geometric mean of the MIC values (GM), IC50, and calculated Selectivity Index (SI) of
Omiganan against combined vaginal (VVC) and blood-derived (BSI) Candida strains.

Peptide GM IC50 [42] SI

Omiganan 166.43 79.39 0.48
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Figure 2. Distribution of the MICs of Omiganan among the vaginal (VVC) and blood-derived (BSI) Candida strains.

3.2. Minimal Biofilm Eradication Concentration (MBEC)

Fluconazole was ineffective in eradicating the biofilms of both the VVC and BSI-derived
isolates. In both strain pools, the dominant MBEC value was 512 µg/mL (17/32, 53% for
vaginal strains; 17/30, 57% for blood-derived strains). For the remaining isolates, the MBEC
exceeded the applied concentration range. There were no noticeable differences in the
distribution of MBECs between the VVC and BSI Candida isolates.

In the case of Omiganan, the MBEC values against almost all of the tested strains were
equal to 256 µg/mL. Among the VVC strains, this value was observed in 97% of cases
(31/32). Only one of the C. albicans isolates was characterized by a lower MBEC value
(128 µg/mL). For all blood isolates, these values were equal to 256 µg/mL. Detailed
data on the obtained MBEC values of fluconazole and Omiganan are available in
Supplementary Material in Tables S2–S4.

3.3. FIC Index

The study of the interaction between fluconazole and Omiganan clearly showed an
overall additive effect of the combination of these two compounds. The FIC index value for
21 out of the 24 tested strains did not exceed 1, which, according to the commonly accepted
interpretation, indicates addition. For the remaining three isolates (identified as C. albicans)
this effect was indifferent. In both the vaginal and blood-derived strains, the addition was
the most common effect and affected the majority of C. albicans isolates (6/8 with VVC and
5/6 with BSI) and 100% of the strains from the NCAC group. The described results are
shown in Figure 3.

As the obtained FIC indexes are the arithmetic means of eight individual FIC values
calculated for various concentrations of the tested compounds, the search for the most
favorable specific combination of fluconazole and Omiganan concentrations was based on
the analysis of individual FICs. For each individual strain, there was a specific combination
of the concentrations of fluconazole–Omiganan at which growth inhibition was observed.
Taking into account such combinations and their interpretation, for 12 (out of 24) strains, it
was possible to determine at least one FIC value (FICA + FICB), indicating a synergistic
effect (FIC ≤ 0.5). Similarly, for two out of the three strains for which an indifferent
effect of the combination of fluconazole and Omiganan was observed (FIC index), it was
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possible to achieve an additive effect at specific compound concentrations. The peptide
concentrations in the synergistic and additive combinations with fluconazole were at least
one-half lower than the corresponding MICs of Omiganan alone. A comparison of the MIC
values of Omiganan with the peptide concentrations indicative of the most favorable effect
in combination with fluconazole for the 24 isolates tested in the checkerboard method are
shown in Figure 4. The geometric mean of the MICs obtained for Omiganan was 147.89,
while in case of combination of compounds, the GM of this peptide was 49.35. Detailed
data on the obtained FIC values are available in Supplementary Material in Table S5.
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4. Discussion

Candida species are the leading etiological factor of fungal infections worldwide [43].
The number of cases caused by these pathogens is increasing, both in the general popula-
tion and among hospitalized patients [44,45]. Studies conducted so far indicate that among
women of reproductive age, as many as 70–75% will experience VVC at least once in their
lifetime, and almost half of them (40–50%) may experience recurrence [12,46]. To date, the
most commonly isolated pathogen in women with VVC is C. albicans, detected in up to
90% of cases [10]. The nature of systemic candidiasis is often endogenous, and Candida spp.
are the fourth most common trigger of infection among the patients of intensive care
units. Therefore, these fungi have to be considered as a serious cause of morbidity and
mortality [19,20,47,48]. C. albicans is responsible for more than half of all candidemias
that occurs in hospitalized patients, including intensive care units and hematology de-
partments, and 55% of all fungal infections [49,50]. Interestingly, the species belonging to
the NCAC group, which are often resistant to traditional antifungal treatment, play an
increasingly important role in the etiology of both VVC and BSI [10,51,52]. Numerous
sources suggest that the mechanism of this resistance is multifactorial and can include
incomplete penetration of antibiotics and host immune cells through the components of
the extracellular matrix, initiation of structural and functional changes in biofilm cells and
its environment, the ability to react to the differences in the density of the cell population
by the regulation of gene expression (quorum sensing), and the expression of transport
proteins that remove xenobiotics to the extracellular space (efflux pumps) [10,12,53]. Azoles
are a common fungistatic drugs used in the treatment of fungal infections [54]. One of the
most commonly prescribed medicaments from this group is fluconazole, often considered
as the first-line drug in the prevention and treatment of yeast infections [55]. The wide
range of indications and the extensive use of azoles have significantly contributed to the
selection of resistant strains [54]. As a matter of fact, numerous resistance mechanisms
responsible for this condition, as well as biofilm formation, are indicated [56]. Nevertheless,
Candida spp. causing VVC clinically refractory to first-line therapy often show sensitivity to
fluconazole under laboratory conditions [57,58]. It has been suggested that the key factor
of the virulence responsible for the lack of therapeutic effects may be the ability to create
biofilms [46,51,59]. For this reason, it is necessary to search for alternative methods of
treating fungal infections based on antimicotics that effectively eradicate this structure.
Antimicrobial peptides (AMPs), including Omiganan, might meet this criterion, as promis-
ing activity has already been described [38]. In the case of VVC, the MIC results obtained
in this study show that fluconazole is highly active against planktonic forms of Candida.
In 85% of cases of VVC isolates, the MIC values for fluconazole were ≤0.125 µg/mL,
which is consistent with the available data from the literature [60,61]. Apart from three
strains, all BSI Candida isolates also proved to be sensitive to fluconazole—the MIC values
did not exceed 16 µg/mL. Omiganan also turned out to be active against the planktonic
forms of the tested fungi from both VVC and BSI. The most common MIC values of the
tested AMP were 128 µg/mL for VVC isolates and 256 µg/mL for BSI isolates. Unfortu-
nately, taking into account previous studies on the cytotoxicity of Omiganan conducted by
Jaśkiewicz et al., attention should be paid to the poor selectivity of this compound toward
Candida, since the calculated selectivity index appeared to be very low (0.48) [42]. However,
to assess the safety profile reliably, comprehensive research on its cytotoxicity—for example,
toward the vaginal epithelium cell lines—should be conducted. Based on the obtained
very high biofilm eradication concentrations of fluconazole, it should be concluded that
this mycostatic compound is ineffective against fungal biofilm, which has already been
emphasized in the literature [62,63]. On the contrary, the obtained MBECs of Omiganan
were also relatively high for the majority of strains (256 µg/mL) (61/62). However, the
activity of this compound against planktonic forms (MIC) was identical or similar to the
activity against Candida biofilms (MBEC). In the case of 44% (28/64) of the strains, the
MIC value was identical to the MBEC. For another 47% (30/64), these values differed only
by one order of magnitude. Considering the need to conduct more detailed studies on
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the toxicity of Omiganan, its greatest advantage may be the comparable activity against
Candida in both the planktonic forms and biofilms.

The FIC indexes representing the simultaneous use of both tested drugs turned out
to be particularly interesting. Although, initially, in our previous report for three strains
of Candida spp., the FIC determination indicated an antagonism between Omiganan and
fluconazole. However, in the course of our studies on a larger group of strains, we
found an additive and/or synergistic effect [38]. In both the vaginal and blood-derived
strains, addition was the most common effect, affecting the majority of C. albicans isolates
(6/8 with VVC and 5/6 with BSI) and 100% of the strains from the NCAC group. Among
the strains that showed synergy and/or addition in the action of Omiganan and fluconazole,
the MIC values for each of these substances used alone were at least two times higher
than those obtained in combination. The observed outcomes demonstrate the potential
of combined therapy with the use of AMPs and classic fungistatics. The likely reason for
the greater effectiveness of the combination of both compounds is the complementarity of
their mechanisms of action. After penetrating into the fungal cell, fluconazole inhibits the
Erg11 enzyme involved in the synthesis of ergosterol, being a component of the fungal cell
membrane. It has been observed that under the influence of azoles, there is a change in
the fungal cell membrane correlated with the disturbance of its structure and increased
permeability to ATP and K+ ions, which is directly responsible for the fungistatic effect
of this group of compounds [2,64,65]. Omiganan, on the contrary, acts directly on the
fungal cell membranes, leading to their permeabilization and, as a result, cell death [38].
It is assumed that Omiganan facilitates the penetration of fluconazole into the cell interior,
and thus helps to achieve its molecular target [33,66]. Similar observations indicating a
positive effect of the combined action of fluconazole and AMPs have been observed in
many other studies [38,67–70]. For example, AMPs showed synergistic activity against
C. albicans not only when used with fluconazole, but also with capsofungin—a semi-
synthetic lipopeptide [70]. Almost identical results concerning the combination therapy
of Omiganan and fluconazole were obtained with the use of retro-Omiganan [38]. In the
case of fungal strains resistant to standard treatment, it seems reasonable to search for
alternative forms of therapy by examining the effect of combination therapy. Such an
approach may not only allow for more effective treatment of severe or recurrent fungal
infections, but it will also presumably lead to a reduction of the dose of the used antifungal
drug, hence lowering the risk of complications of pharmacotherapy.

5. Conclusions

Our present study on BSI isolates confirmed previous reports on the effectiveness of
Omiganan as a biocide against Candida spp. clinical strains, particularly in biofilm forms,
isolated from the vaginas of women with vulvovaginal candidiasis. Despite the observed
strong antifungal properties of Omiganan, its advantage over fluconazole in inhibiting
the growth of the planktonic forms of Candida was not demonstrated, but regarding the
biofilms, it was still more effective than conventionally used azole. The combined use of
both compounds generally showed an additive effect, but at some concentrations, they
acted synergistically. The described outcome occurred at concentrations well below the MIC
values for fluconazole or Omiganan when they are tested separately. Such a result indicates
the possibility of reducing their concentrations in combination therapy, thus lowering the
risk of side effects using combination therapy. Nevertheless, due to the limited number of
tested strains and the incomplete data on the toxicity of synthetic antimicrobial peptides,
especially in combination with other drugs, it is necessary to conduct further research in
this area.
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fluconazole and Omiganan against reference Candida strains. Table S3. Distribution of MIC and
MBEC values (µg/mL) of fluconazole and Omiganan among vaginal (VVC) Candida strains. Table S4.
Distribution of MIC and MBEC values (µg/mL) of fluconazole and Omiganan among vaginal (VVC)
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