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Abstract: We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial
pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions
are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds
could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential
roles in intra- and interspecies interactions like communication and antimicrobial defense. In the
last years, an increasing number of studies showed bioactivities of bacterial volatiles, including
antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting
source for novel antimicrobial compounds. In this review we introduce the chemical diversity of
bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we
discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.
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Many would argue that the discovery of antibiotics changed the world of medicine.
Penicillin is often reported as the first antibiotic available to the public, whereas it was
actually sulfamidochrysoidine [1,2]. In contrast to penicillin, sulfamidochrysoidine, which
was sold under the trade name Prontosil, was toxic for humans and disappeared quickly

from the market and history books [1]. However, with the introduction of penicillin in the
1940s, antibiotics have saved millions of lives and the subsequent years are often referred as
the “golden age” of antibiotics due to the discovery of numerous novel classes [3]. In fact, in
the end of the 1960s around 24 novel classes of antibiotics were introduced to the market [2],
but since the 1970s only three classes, namely pseudomonic acids [4,5], oxazolidiones [6]
and lipopeptides [7] have been introduced to the market. One of the latest promising
antibiotics is the peptide teixobactin, which due to its highly conserved targets is unlikely
published maps and institutional affil- 0 induce resistance but is still not available on the market [8]. Interestingly, Alexander
{ations. Fleming understood the fragility of the powerful tool antibiotic and warned at his Nobel
Prize speech in 1945: “The time may come when penicillin can be bought by anyone in
the shops. Then, there is the danger that the ignorant man may easily underdose himself
By and by exposing his microbes to non-lethal quantities of the drug make them resistant” [9].
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In his speech, Fleming indicated the risk of antimicrobial resistance—an issue that we are
facing today.

How is it possible that, despite Alexander Fleming’s warning, resistant pathogens
could become a global issue? In human medicine antibiotics are often overused as well
as misused. That means that antibiotics are prescribed as a prophylactic or the actual
pathogen is not identified before prescription. Furthermore, patients may take antibiotics
without referring to a doctor. Additionally, the massive and prophylactic use of antibiotics
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in agriculture causes resistance which may be transferred to humans. Globalization makes
the spread of resistant pathogens very easy and the hurdles for (economically driven)
pharmaceutical companies are very high. However, these are only the main reasons
and have already been reviewed in detail [10]. This misuse of antibiotics has led to the
development of numerous antibiotic-resistant pathogens resulting in an antimicrobial
resistance crisis on a global scale [10-12]. There are already at least 700,000 deaths caused
every year by drug-resistant pathogens globally [13] and scientists predict that by 2050
antibiotic resistance could be responsible for over 10,000,000 deaths per year [14]. Moreover,
the global COVID-19 pandemic has caused an increased use of antibiotics due to bacterial
co-infections or prophylactic treatment with antibiotics to avoid those co-infections [15].
In order to address this crisis, we need to explore alternatives to classical antibiotics.
Numerous pharmaceutical options to counter the antimicrobial resistance crisis are under
discussion [16,17]. One approach is to discover novel sources for antimicrobial compounds
that can be developed into future treatments. In recent years, more and more studies have
reported volatiles with antimicrobial activity which indicates that volatiles might play
an important role in countering the antimicrobial resistance crisis [18-21]. For example,
the new volatile antibiotics albaflavenone and pentalenolactone produced by Streptomyces
coelicolor and Streptomyces avermitilis, respectively were discovered [22].

In this review we introduce the chemical characteristics of volatiles, provide an
overview of antimicrobial volatiles of bacterial origin and the main methods used for
testing their antimicrobial activity. Concluding, we discuss the potential role of volatiles as
a novel class of antimicrobials.

2. Biochemistry of Volatiles: Diverse and Diffusive

Volatiles form a chemical class of molecules that all have one characteristic in common:
their high vapor pressure at ambient temperatures [23]. Additionally, volatiles are charac-
terized by their low molecular weights of a maximum of 200-500 Dalton, low boiling points
and often lipophilic moieties [23-25]. Volatiles significantly differ from soluble compounds
in one key characteristic: they do not depend on solvents. Although many volatiles are non-
polar showing low solubility in water due to their restricted number of functional groups,
this solubility is sufficient to allow dissemination into the water phase. Hence, volatiles
spread fast in both the gas and water phase [26]. Via the gaseous phase, volatiles can spread
in highly complex ecosystems such as soil [27], insect nests [28] and spider nests [29] and
can fulfill functions such as communication [30] and antimicrobial defense [31] which
cannot be performed by solvents due to the lack of effective spreading.

Volatiles belong to diverse chemical classes such as hydrocarbons, aromates, alcohols,
aldehydes, acids, esters, amines and thiols [23]. Bacterial volatiles in particular were for
the first time systemically reviewed by Schulz and Dickschat in 2007 describing in detail
the biosynthesis of common volatiles like fatty acids or sulfur-compounds which are
produced by most bacteria but also rare volatiles like halogenated compounds [32]. Volatile
biosynthesis is usually based on pyruvate and therefore takes place in primary metabolism
(Figure 1) [24,33]. Pyruvate can be directly metabolized to short acids or alcohols [33].
Bacillus spp. for example, which are well known for producing volatiles as we will discuss
later in this review, produces mainly 2,3-butanediol and acetoin via fermentation [34].

Under aerobic conditions pyruvate will be metabolized to acetyl-CoA and can enter the
fatty acid anabolism, citric acid cycle or be converted to terpenes. The fatty acid metabolism
results mainly in alkanes, alkenes, aliphatic alcohols and ketones. The 3-oxidation with
acetyl-CoA results only in fatty acids with even numbers, for odd-chain fatty acids propionyl-
CoA replaces one acetyl-CoA in the final step [33]. Typical volatile products from the fatty
acid pathway are aldehydes such as nonanal, ketones such as nonan-2-one or fatty acids
such as nonanoic acid [26].
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Figure 1. Overview of main biochemical pathways for the production of bacterial volatiles. The
chemical structures show representative examples: alcohols (2,3-butanediol), acids (acetoin), alkanes
(general structure), alkenes (general structure), ketones (general structure), terpenes (geosmin),
aromatic volatiles (2-phenylethanol), S-containing volatiles (dimethyl disulfide) and N-containing
volatiles (2,5-dimethylpyrazine). Details are described in the main text.

When acetyl-CoA enters the citric acid cycle it is metabolized to the precursors of most
amino acids, which act again as precursors for aromatic, nitrogen-containing and sulfur-
containing volatiles [24]. Aromatic volatiles are metabolized based on aromatic amino acids
or directly via the shikimate pathway. 2-Phenylethanol for example, a common aromatic
volatile compound, can be metabolized based on the amino acid phenylalanine [32,33].
Pyrazines are usually based on amino acids due to their nitrogen-containing aromatic ring.
Additionally, sulfur-containing volatiles such as dimethyl disulfide and dimethyl trisulfide
which are produced by most bacteria are based on methionine [32].

Another important group of volatiles are terpenes, which are well known to be present
in essential oils [35] but in recent years have also been discovered frequently in bacterial
volatile blends [36]. Terpenes are synthesized via the mevalonate or desoxyxylulose path-
way [26]. The mevalonate pathway starts with acetyl-CoA from the glycolysis and was
for a long time assumed to be the only way to biosynthesize isopentenyl diphosphate
and dimethylallyl diphosphate, the precursors of terpenes. However, the desoxyxylulose
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pathway starts with pyruvate, the precursor of acetyl-CoA [37,38]. The sesquiterpene
geosmin, which is produced by actinomycetes, myxobacteria and cyanobacteria has a
characteristic soil-like smell [32,33]. Interestingly, different geosmin synthases were found
in actinobacteria compared to myxobacteria and cyanobacteria [36].

Alongside organic volatiles, bacteria produce inorganic volatiles such as hydrogen
sulfide, hydrogen cyanide, nitric oxide or ammonia [36]. Ammonia for example is produced
in high amounts by Streptomyces spp. and is produced within amino acid catabolism [39,40].
Moreover, ammonia was shown to be antimicrobial against Gram-positive and -negative
bacteria and can act therefore as a long-distance (several centimeters) antibiotic [39].

3. Bacterial Antimicrobial Volatiles: An Overview

Recently, an increasing number of studies have revealed individual volatiles or volatile
blends of bacterial origin with antimicrobial activities [18]. These studies indicate that the
antimicrobial potential of volatiles is as diverse as their biochemistry (Table 1). A bulk
of the investigated volatiles were reported for their antifungal activities and cause for
reduced hyphal extension and/or hyphal biomass as well as spore germination. For ex-
ample, the volatile blends produced by Paenibacillus polymyxa Sb3-1 and Bacillus velezensis
I3 were shown for their antifungal activities [41,42]. However, several studies also re-
ported bacteria that produce antibacterial [43] or anti-oomycete volatiles [44]. Beyond that,
some volatiles were reported for their broad antimicrobial spectrum. For example, the
volatile 2,5-bis(1-methylethyl)-pyrazine produced by Paenibacillus sp. AD87 revealed a
broad-spectrum activity against a range of human and plant pathogens. The volatile inhib-
ited the bacterial pathogens Escherichia coli and Staphylococcus aureus, the fungal pathogens
Fusarium culmorum and Rhizoctonia solani as well as the yeast Candida albicans [21,45]. At
the same time 2,5-bis(1-methylethyl)-pyrazine showed very low toxicity on mammalian
cells [45]. Another example of volatiles with broad spectrum antimicrobial activity is
v-Butyrolactones, active against fungi, yeasts, and bacteria [46].

Table 1. Overview of recent (2017-2021) studies showing the antimicrobial activity of bacterial
volatiles. The studies are ordered alphabetically by the volatile producer’s name. Only studies that
trapped the antimicrobial volatiles in the gas phase and/or showed the antimicrobial effect via the
gas phase are listed. blend = The volatile blend might be analyzed in the cited study but only the
antimicrobial activity of the blend was tested. f = antifungal, b = antibacterial, o = anti-oomycete.

Volatile Producer Volatile(s) Bioactivity Reference
blend

Bacillus amyloliquefaciens CPA-8 L3-pentadiene f [47]
thiophene
acetoine

Bacillus amyloliquefaciens DA12 blend f [48]
blend

. . . 1,2-benzisothiazol-3(2H)-one

Bacillus amyloliquefaciens FZB42 benzaldehyde b [49]
other
blend

Bacillus amyloliquefaciens L3 Z-heptanone

yrolq 2-ethyl-1-hexanol f [50]

other
2-nonanone
other
blend

Bacillus artrophaeus LSSC22 1,2-benzisothiazol-3(2H)-one b [49]
other

Bacillus cereus CHP20 blend o [44]

Bacillus megaterium KU143 blend f [51]
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Table 1. Cont.

Volatile Producer Volatile(s) Bioactivity Reference
Bacillus pumilus TM-R blend f [52]
Bacillus siamensis 1.Z88 blend f [53]
Bacillus (diverse spp.) blend f [54]
blend
2-undecanone
Bacillus (diverse spp.) benzothiazole f [55]

1,3-butadiene
N,N-dimethyldodecylamine

other
Bacillus sp. BO53 blend b [43]
Bacillus sp. D13 blend b [56]
Bacillus sp. TM-I-3 blend [57]
Bacillus subtilis CHP14 blend 0 [44]
blend
benzaldehyde
Bacillus subtilis FA26 nonanal b [58]
benzothiazole
acetophenone
blend
1-butanol
. - acetic acid butyl ester
Bacillus subtilis M29 1-heptylene-4-alcohol f [59]
3-methyl-3-hexanol
other
blend
diacetyl
Bacillus velezensis BUZ-14 benzaldehyde f [41]
isoamyl alcohol
other
Bacillus velezensis G341 blend f [60]
Bacillus velezensis 13 blend f [41]
bacterial community blend f [31]
Cronobacter muytjensii JZ38 blend o [61]
Frigoribacterium endophyticum CHP33 blend o [44]
Microbacterium testaceum KU313 blend f [51]
Paenibacillus sp. AD87 2,5-bis(1-methylethyl)-pyrazine b, f [21]
Paenibacillus polymyxa Sb3-1 blend f [42]
Proteus mirabilis 04 blend b [62]
Pseudoalteromonas sp. GA327 blend b [43]
Pseudomonas chlororaphis subsp. aurantiaca KNU17Pcl ~ blend f [63]
blend
3-methyl-1-butanol
Pseudomonas chlororaphis subsp. aureofaciens SPS-41 phenylethyl alcohol f [64]
2-methyl-1-butanol
other

Pseudomonas protegens AS15 blend f [51]
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Table 1. Cont.

Volatile Producer

Volatile(s)

Bioactivity

Reference

Pseudomonas protegens CHAOQ

dimethyl trisulfide

2-ethylhexanol

ammonium hydroxide

phenol f
acetophenone

1,3-diphenylpropane
3-phenylpropiophenone

[65]

Pseudomonas putida BP25

blend
2-ethyl-5-methylpyrazine

[66]

Pseudomonas putida BP25

2,5-dimethyl pyrazine

2-methyl pyrazine

2-ethyl-5-methyl pyrazine b, f, 0
2-ethyl-3,6-dimethyl pyrazine

dimethyl trisulfide

[67]

Pseudomonas stutzeri E25

blend
dimethyl disulfide

[68]

Sphingobacterium multivorum Bel3-4

blend f

[54]

Stenotrophomonas maltophilia CR71

blend
dimethyl disulfide

[68]

Stenotrophomonas maltophilia
(TD1 and GH1-5)

blend f

Streptomyces alboflavus TD-1

blend

anisole

dimethy] trisulfide
[-pinene
benzenamine
1,5-cyclooctadiene

[69]

Streptomyces fimicarius BWL-H1

phenylethyl alcohol

ethyl phenylacetate

methyl anthranilate

a-copaene o
caryophyllene

methyl salicylate

4-ethylphenol

[70]

Streptomyces lavendulae SPS-33

blend
2-methyl-1-butanol
3-methyl-1-butanol
pyridine
phenylethyl alcohol
other

[71]

Streptomyces sp. MBT11

blend

[39]

Streptomyces venezuelae (ATCC 15439)

blend

lon

[39]

Streptomyces yanglinensis 3-10

blend f, o
methyl 2-methylbutyrate
2-phenylethanol
[3-caryophyllene

[72]

Xenorhabdus szentirmaii PAM 25

| s e

blend

[73]

3.1. Sulfur-Containing Volatiles

Often, described antimicrobial volatiles of bacterial origin are alcohols, pyrazines and
sulfides (Table 1). Especially sulfur-containing volatiles such as dimethyl sulfide, dimethyl
disulfide and dimethyl trisulfide are often reported because they are commonly produced
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by bacteria and apparently have strong antimicrobial activities [26]. For example, dimethyl
disulfide has antibacterial potential, as it revealed bacteriostatic effects against the two plant
pathogens Agrobacterium tumefaciens and Agrobacterium vitis [74]. However, the volatile
is also known for its antifungal activity. Currently, dimethyl disulfide is used as a novel
fumigant (PALADIN®) to target soil-borne plant pathogens [25]. The chemically related
volatile dimethyl trisulfide significantly inhibited the growth of three human pathogens
Serratia marcescens, Escherichia coli and Staphylococcus aureus [75]. As well as linear sulfur-
containing compounds, scientists also report from aromatic sulfur-containing compounds.
Gotor-Vila reported thiophene in the volatilome of Bacillus amyloliquefaciens CPA-8 and
showed its antifungal activity [47].

3.2. Bacillus and Streptomyces as Volatile-Producers

Most likely, all bacterial genera produce volatiles, but Bacillus species especially are
often reported to produce volatiles with antimicrobial potential (Table 1). For example,
volatiles emitted by Bacillus amyloliquefaciens FZB42 including benzaldehyde, 1,2-benzisothiazol-
3(2H)-one and 1,3-butadiene showed strong inhibitory activities against Ralstonia solanacearum,
a bacterial plant pathogen causing wilt disease [49]. Other studies report the same from
Bacillus amyloliquefaciens strains but with antifungal activities [47,48,50]. Alongside Bacillus,
Streptomyces species were also often investigated because the genus is well known for its
antimicrobial potential, including volatiles [39,76]. For example, terpenoid volatiles are
abundantly emitted by Streptomyces species and pose interesting antimicrobial properties.
The soil isolate, Streptomyces albidoflavus, was shown to produce a sesquiterpene, namely
albaflavenone, with antibacterial properties [77]. Lately, albaflavenone was isolated from
other Streptomyces species and fungi [78,79]. Another sesquiterpene compound with an-
tibacterial activity is dihydro-p-agarofuran, produced by Streptomyces species [80]. The
antimicrobial volatile pentalenolactone emitted by Streptomyces roseogriseus was discovered
to possess antibacterial activity against Gram-positive and Gram-negative bacteria. Fur-
thermore, anisole, emitted by Streptomyces albulus, was reported to inhibit the growth of
fungal plant pathogens Sclerotinia sclerotiorum and Fusarium oxysporum [81].

3.3. Co-Cultivation and Volatile Blends

Some studies revealed that the co-cultivation of different microbial strains can influ-
ence the metabolism of bacteria (Table 2). For example, Paenibacillus sp. AD87 was shown
to produce the antimicrobial volatile 2,5-bis(1-methylethyl)-pyrazine when cultivated alone.
After co-cultivation of Paenibacillus sp. AD87 together with the phylogenetically different
strain Burkholderia sp. AD24, the headspace concentration of 2,5-bis(1-methylethyl)-pyrazine
was increased [21]. Due to the growth inhibiting effect of 2,5-bis(1-methylethyl)-pyrazine
on Burkholderia sp. AD24, it is likely that the volatile production of Paenibacillus sp. AD87
was increased as a response to the competition. As well as the increased production of the
pyrazine, the co-cultivation resulted in a changed gene expression in both bacteria. For
example, Burkholderia sp. AD24 showed an increased expression of a type IV secretion
system gene which is involved in virulence. Paenibacillus sp. AD87 showed increased
expression of genes involved in antibiotic resistance. Another study cultivated five bac-
terial strains together, among others likewise Paenibacillus sp. AD87 and Burkholderia sp.
AD24 [82]. The analysis of the collective volatile blend of the five bacteria revealed among
others 2,5-bis(1-methylethyl)-pyrazine as well. Interestingly, the pyrazine was only found
in the collective volatile blend but neither in the volatilome of Paenibacillus sp. ADS87
nor in one of the others indicating production activation by the co-cultivation. Rybakova
et al. co-cultivated the bacterium Paenibacillus polymyxa Sb3-1 with the fungus Verticillium
longisporum EVL43 resulting in several up- and downregulations of the volatile blends of
both strains, including volatiles that are most likely related to antimicrobial defense [42].
Furthermore, the corporate production of volatiles was shown under lab conditions [83].
By co-cultivation of Serratia plymuthica 4Rx13 and Staphylococcus delphini without physical
contact they produced corporately the volatiles schleiferon A and B. Separately, none of
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the bacteria was able to produce those products. Furthermore, Abis et al. analyzed the
relation between microbial diversity and volatile emission in general [84]. Interestingly,
they could show that a reduced microbial diversity in soil correlates with an increased
volatile emission and a smaller number of released volatiles. They discussed that these
findings might be caused by a bacterial volatile absorption. However, it is certain that
the microbial diversity and community influence the volatile blend in an ecosystem, even
when the detailed relations still remaining unknown.

Table 2. Examples of bacterial volatiles that were upregulated or downregulated in co-cultures.
blend = The volatile blend might be analyzed in the cited study but only the antimicrobial activity of
the blend was tested. f = antifungal, b = antibacterial, o = anti-oomycete, na = not analyzed.

Co-Culture Volatile(s) Bioactivity Reference

Burkholderia sp. AD24
Paenibacillus sp. AD87

Burkholderia sp. AD024
Paenibacillus sp. AD087

2,5-bis(1-methylethyl)-pyrazine b, f [21]

2,5-bis(1-methylethyl)-pyrazine

Dyella sp. AD056 ther na [82]
Janthinobacterium sp. AD080 othe
Pseudomonas sp. AD021
: blend
Chryseobacterium sp. AD48 . e b, f, 0
Tsukamurella sp. AD106 dimethyl trisulfide b [75]
other
; ) blend
Janthinobacterium sp. AD80 . e f,o
Dyella sp. AD56 dimethyl trisulfide b [75]
other
blend ¢
Paenibacillus polymyxa Sb3-1  trans-2,2,4,5-tetramethyl-1,3-dioxolane na [42]
Verticillium longisporum EVLA43  1-butanol na
other
Serratia plymuthica 4Rx13 schleiferon A and B na [83]

Staphylococcus delphini

Mixtures of volatiles may result in increased antimicrobial activities compared to
single volatiles. For example, a mix of four monoterpenes (y-terpinene, 1S-x-pinene, (3-
pinene and (3-myrcene) revealed strong antibacterial activity against the pathogenic bacteria
Escherichia coli and Staphylococcus aureus [85]. However, as single compounds they revealed
little or no antimicrobial activity. Furthermore, for a number of fungal and bacterial isolates,
antimicrobial activities of their volatile blend are reported, but the compounds responsible
for this activity remained unknown (Table 1). It is plausible that not a single volatile but a
mix of compounds is responsible for this activity.

3.4. Modes of Action and Abiotic Factors

Although, for many microbial volatiles, powerful antimicrobial activities have been
reported, little is known about modes of action of these molecules on the target organisms.
Some microbial volatiles can interfere with well-known bacterial chemical communication
systems like N-acylhomoserine lactones’ (AHLs) quorum-sensing. Bacteria use AHLs” quo-
rum sensing to regulate certain phenotype expressions, such as biofilm formation, virulence
factor expression, motility and others. Many lactones (10-methylundec-2-en-4-olide, 10-
methylundec-2-en-3-olide, 10-methyldodecan-4-olide, 10-methyldodecan-5-olide, others)
positively or negatively influenced the quorum-sensing bacterial communication. This
influence could be due to the structural similarity between lactones and AHLs. However,
other classes of volatiles such as dimethyl disulfide could also impact bacterial quorum
sensing communication by significantly suppressing the transcription of AHLs synthase
genes [86]. The above discussed 2,5-bis(1-methylethyl)-pyrazine resulted in more direct
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damages which depend interestingly on the concentration. At high levels, the volatile
resulted in DNA damage, whereas at low levels cell-wall damages were observed [45].
Likewise, another study investigating the volatile blend activity of a Streptomyces species
against the oomycete plant pathogen Peronophythora litchi showed, among others, cell-
wall damages [70]. A study investigating the antimicrobial activity of the monoterpenes
linalyl acetate, menthol and thymol indicates that those volatiles modify the membrane
permeability which causes leakage of intracellular material [87]. Furthermore, it is likely
that the altered membrane allows the volatiles to enter the cells and might cause further
damages. Nevertheless, detailed information about the modes of actions of antimicrobial
volatiles are lacking yet and need further investigation. Moreover, detailed information
about volatile concentrations are mostly lacking which makes clear statements about the
ecological relevance of often challenging volatiles [88].

Additionally, the emission of microbial volatiles is influenced by various abiotic factors
such as nutrient availability, temperature and pH. For example, a nutrient-poor growing
condition triggered higher levels of terpene emission at an early growth stage of the fungal
isolate Fusarium culmorum [82]. It is plausible that such compounds have strong antimicro-
bial activity and are important for the producing organisms to survive under competitive
interactions. Another study showed changes in antifungal activity of the volatile blend
of Bacillus amyloliquefaciens CPA-8 when cultivated on different media [47]. Similarly, the
production of antifungal volatiles by the mycophagous soil bacterium Collimonas was
strongly influenced by different nutrient conditions [89].

4. Antimicrobial Activity of Volatiles: The Testing Methods

The approaches to test the antimicrobial activity of volatiles can be divided into two
main categories: indirect and direct (Figure 2). In indirect approaches the volatiles need
to diffuse through the gas phase (usually air) to influence the test organisms. In contrast,
direct approaches allow the volatiles to make contact with the test organisms via the liquid
phase (usually water) and do not need to diffuse through the gas phase.

One of the most common indirect approaches is the use of two-chamber Petri dishes
(Figure 2A) [27,75]. Two-chamber Petri dishes contain a physical wall to divide the inside
space into two chambers, making it possible to fill each side with a different media. One
side can be inoculated with volatile producing organism or pure volatiles, whereas the
other side is inoculated with test organism. After a common incubation, the growth of
the test organism is analyzed, e.g., by counting colony forming units or analyzing the
growth area. The Petri dishes are commercially available with two, three, or four chambers
allowing combination of several organisms or pure compounds with each other. In contrast,
the double plate approach is based on standard Petri dishes (Figure 2B) [30]. The bottom
and top parts can be filled with different media, whereas one part is inoculated with the
volatile producing organisms or pure volatiles and the other part with test organisms. The
growth of the test organisms under exposure of the volatiles can be analyzed similarly to the
two-chamber Petri dish approach. The vial approach is based on vials filled with solutions
containing volatiles (Figure 2C) [90]. The lid contains filter paper with a defined inoculum
of test organisms and is exposed to the volatiles before it is incubated in liquid medium to
analyze the growth of the test organism. Recently, the AntiBio Vol approach was published
(Figure 2D) [91]. Defined biofilms in a 24-well plate were placed upside-down on a second
24-well plate filled with solutions containing volatiles. After common incubation the
biofilm is transferred to fresh, liquid broth, incubated shortly and the biomass is analyzed.

In contrast to indirect approaches, direct approaches do not compel the volatiles to
actually diffuse through the gas phase, which comes with the advantage of better control
of the volatile concentrations but the drawback that those approaches are not suitable
with many volatiles due to their frequent lipophilic moiety, which may require the use of
organic solvents [23]. The agar diffusion test is widely used to test the antimicrobial activity
of pure compounds on solid media (Figure 2E) [46,92]. Cotton discs prepared with pure
compounds are placed on agar plates that were inoculated with test organisms. The test



Antibiotics 2022, 11, 109

10 of 15

compounds diffuse through the agar and may result in a zone of inhibition (ZOI) around
the cotton disc. The application of different concentrations of test compounds can be
used to determine the minimal inhibitory concentration (MIC). However, a more common
approach to investigate the MIC is the two-fold dilution approach which is based on liquid
media (Figure 2F). For the approach a defined concentration of the test compound in liquid
broth is prepared and subsequently several times 1:2 diluted [93]. Often, this approach is
performed using 96-well plates to reach high throughputs with little material usage.
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Figure 2. Overview of indirect (A-D) and direct (E F) approaches to test the antimicrobial activity
of volatiles. Indirect approaches such as the two-chamber Petri dish (A), double plate (B), vial (C)
and AntiBio Vol approach (D) compel the volatiles to diffuse through the gas phase to reach the test
organisms. In contrast, direct approaches such as the agar diffusion approach (E) and the minimal
inhibitory test (F) allow direct contact between the volatiles and test organisms. Details are described
in the main text.

5. Concluding Remarks and Future Perspectives

Recent studies clearly demonstrate the ability of various bacteria to produce antimi-
crobial volatiles that inhibited the growth of either human or plant pathogens, indicating
their antibiotic potential and possible application in agriculture and medicine. The demand
for new approaches and compounds is high in both agriculture (due to an EU ban of many
chemical pesticides) and healthcare (due to antibiotic resistance and side-effects). As the
research of antimicrobial volatiles is a newly developing field, there are still many novel
volatile compounds to be discovered and chemically characterized. Individual compounds
might be commonly found in many often unrelated strains, while others are restricted only
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to a certain group of strains. Usually, mixtures of compounds are released with widely
varying concentrations. Yet, their effects on other organisms and their biosynthesis need
to be investigated in more detail in the future. Furthermore, the effects of antimicrobial
volatiles need to be evaluated on non-target beneficial (micro)organisms. Many fundamen-
tal questions about the modes of action of antimicrobial volatiles and possible resistances
remain unanswered and need to be investigated in order to advance our basic knowledge
in this research field.

Alongside the treatment of pathogens with volatiles alone, another approach is to
combine volatiles with common antibiotics. For example, when exposed to the volatile
blend of a Streptomyces species, Bacillus subtilis showed increased sensitivity against several
antibiotics [39]. Interestingly, other studies indicate opposite effects. Bacillus subtilis exposed
to triethylamine showed reduced sensitivity to tetracycline [94]. However, a selective
combination of volatiles and common antibiotics may be a successful tool against resistant
bacteria in future.

Volatiles may be also used for fast and reliable detection of pathogen infections as
pathogens emit volatiles as well. For example, by analyzing the volatile profile of plant
pathogenic fungi and oomycetes, we revealed that each isolate emits a specific blend of
volatiles [24]. Another study investigated the breath volatile profile of swine infected with
Influenza A, resulting in volatiles that could be related to the infection [95]. Other studies
worked with human cells lines (lung epithelium) and combined those with Pseudomonas
aeruginosa causing ventilator-associated pneumonia showing likewise volatiles that could
potentially be used as biomarkers [96,97]. Staphylococcus aureus is a common bacterium
infecting children with cystic fibrosis and a recent study detected this pathogen in cystic
fibrosis patients using breath volatile profiles [98].

In agriculture as well volatiles can provide information of early pathogen infrac-
tions. Volatiles emitted during the infection of apple plants by bacterial pathogens Erwinia
amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass
spectrometry and proton transfer reaction-mass spectrometry. Infected plants showed
a disease-specific emission of volatiles, including several bioactive compounds, such as
hexenal isomers and 2,3-butanediol [99]. Those approaches are non-invasive, fast, reliable
and have the potential to avoid the prophylactic and wrongly use of antibiotics.

Finally, the potential use of volatiles as antimicrobials is often criticized because of
their physicochemical properties. In fact, numerous volatiles are liquid at room temperature
if not solid and could therefore be solved in appropriate solvents. Furthermore, Avalos
suggested the inhaling of volatiles as possible therapy in future [18]. We are convinced
that innovative and novel approaches are needed, and antimicrobial volatiles could be a
future solution.
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