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Abstract: Microbial resistance, caused by the overuse or inadequate application of antibiotics, is a
worldwide crisis, increasing the risk of treatment failure and healthcare costs. Plant essential oils (EOs)
consist of hydrophobic metabolites with antimicrobial activity. The antimicrobial potential of the
chemical diversity of plants from the Atlantic Rainforest remains scarcely characterized. In the current
work, we determined the metabolite profile of the EOs from aromatic plants from nine locations
and accessed their antimicrobial and biocidal activity by agar diffusion assays, minimum inhibitory
concentration, time-kill and cell-component leakage assays. The pharmacokinetic properties of the
EO compounds were investigated by in silico tools. More than a hundred metabolites were identified,
mainly consisting of sesqui and monoterpenes. Individual plants and botanical families exhibited
extensive chemical variations in their EO composition. Probabilistic models demonstrated that
qualitative and quantitative differences contribute to chemical diversity, depending on the botanical
family. The EOs exhibited antimicrobial biocidal activity against pathogenic bacteria, fungi and
multiple predicted pharmacological targets. Our results demonstrate the antimicrobial potential of
EOs from rainforest plants, indicate novel macromolecular targets, and contribute to highlighting the
chemical diversity of native species.

Keywords: ADME; biological activity; GC-MS; network analyses; terpene; volatiles

1. Introduction

Antimicrobial resistance is the main cause of relapsing infections and treatment failure
in microbe-induced pathogenesis, leading to higher rates of patient morbidity and mortality,
but also imposing increased costs to healthcare [1]. The selective pressure enforced by the
overuse and/or misuse of antimicrobials triggers genetic and metabolic modifications in
pathogenic microorganisms that allow them to extrude or detoxify multiple drugs, giving
rise to Multidrug-Resistant (MDR) pathogens [1]. The molecular mechanisms underlying
drug resistance are classified into three main groups: (i) reduction in the intracellular
concentration of the antimicrobial agent; (ii) molecular modifications of the antimicrobial
target; and (iii) inactivation of the antimicrobial molecule [2]. The evolution of pathogenic
microorganisms shuffles and combines these general mechanisms to overcome the mode of
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action of several classes of antimicrobial compounds. Thus, new therapeutic molecules are
continuously sought after to combat MDR pathogens.

Several plant compounds and mixtures of compounds exhibit antimicrobial poten-
tial, including Essential Oils (EOs) [3]. EOs are an important part of the volatile organic
metabolites, produced by four major biosynthetic routes: the shikimate/phenylalanine, the
mevalonic acid, the methylerythritol phosphate and lipoxygenase pathways [4–7]. EOs con-
sist of hydrophobic metabolites stored in and released by specialized secretory structures
of the plants, involved in a wide range of biotic interactions in the natural environment,
including with herbivores and their parasitoids, pollinators, and other plants [4,6,7]. Chem-
ically, EOs consist of complex blends of terpenoids, benzenoids/phenylpropanoids, volatile
carotenoid derivatives, and methylated volatiles [6,7]. The hydrophobicity and variable
degree of reactivity of EO metabolites make them interesting therapeutic products to be
used against pathogenic microorganisms, alone or in combination with traditional antibi-
otics [8–10]. However, a large portion of the plants’ chemical diversity remains unexplored,
as most studies have focused on domesticated species. The flora in the Brazilian portion of
the Atlantic Rainforest is considered one of the richest in the world, consisting of more than
forty-thousand species, with nearly half of them being endemic [11]. The biome is also one
of the primary biodiversity hotspots in the world, with approximately twenty-thousand
species [11]. The plants in the Atlantic Rainforest exhibit high inter- and intra-specific
genetic variation, which, coupled with the distinct environmental conditions, allows them
to produce hundreds of thousands of distinct specialized metabolites [12]. The chemical
diversity of the EOs from rainforest plants remains scarcely characterized. Comprehensive
chemical characterization of the EOs from undomesticated species may discover novel
aspects of the plants metabolic diversity and contribute alternative compounds for green
chemistry applications, including the design of novel pharmaceuticals.

The current work aimed at investigating the chemical composition and antimicro-
bial potential of the EOs from plant species found in the Atlantic Rainforest. The results
demonstrate expressive inter- and intra-specific chemical variation, significant antimicro-
bial activity and interesting pharmacokinetic characteristics and macromolecular phar-
macological targets of the EO compounds. These findings can contribute to their use in
pharmaceutical applications.

2. Results
2.1. Botanical and Chemical Characterization

Fifty distinct aromatic plant species, belonging to fifteen botanical families, were identi-
fied in nine locations of the Atlantic rainforest in the State of São Paulo (Table S1, Figure S1).
The number of families with associated traditional use were found in coastal locations
(Ubatuba and Pariquera-Açu) and the transition region in Votuporanga (Figures S1 and S2).
The metabolite profile of 63 EO samples was determined by GC-MS (Figure 1, Table 1).
The oil yield was highly variable, ranging between 0.004 and 2.88%, with shrubs pro-
ducing approximately 1.6 times higher contents than trees (Figure S3). The highest EO
contents were found in Pipearaceae shrubs (Figure S3). The biological metabolite varia-
tion ranged between trace amounts (≤0.05) and 94.46%. The complete chemical data and
their associated metadata are deposited at the National Metabolomics Repository, under
identifier ST000606.

A total of 113 metabolites were identified, consisting mostly of monoterpenes (MT)
(29%) and sesquiterpenes (ST) (56%), along with phenylpropanoids (PP) (7.5%), benzyl
alcohols (BA) (3%) and ketones (MK) (3%) (Figure 1). More than 50% (63/113) of the
metabolites were present as major components (Table 1) and most metabolites in the
EOs chemical composition (≥80%) were identified in all samples (50 out of 63, 79.4%)
(Table 1, Figures 1 and 2). The percentage of unidentified metabolites ranged between
1.12% (Lp6101606, Piper aduncum) and 44.2% (Lp6101714, Eugenia myrcianthes) of the total
(Figure 1). The number of metabolites per sample ranged between 2 (Lp051901, Myrcia
spectabilis) and 28 (Lp6101822, Campomanesia guavirota) (Figure 1).



Antibiotics 2022, 11, 1844 3 of 25

Antibiotics 2022, 11, x FOR PEER REVIEW 3 of 27 
 

A total of 113 metabolites were identified, consisting mostly of monoterpenes (MT) 
(29%) and sesquiterpenes (ST) (56%), along with phenylpropanoids (PP) (7.5%), benzyl 
alcohols (BA) (3%) and ketones (MK) (3%) (Figure 1). More than 50% (63/113) of the 
metabolites were present as major components (Table 1) and most metabolites in the EOs 
chemical composition (≥80%) were identified in all samples (50 out of 63, 79.4%) (Table 1, 
Figures 1 and 2). The percentage of unidentified metabolites ranged between 1.12% 
(Lp6101606, Piper aduncum) and 44.2% (Lp6101714, Eugenia myrcianthes) of the total 
(Figure 1). The number of metabolites per sample ranged between 2 (Lp051901, Myrcia 
spectabilis) and 28 (Lp6101822, Campomanesia guavirota) (Figure 1). 

 
Figure 1. Summary of the metabolite profiles of aromatic plants from the Atlantic Rainforest. (a) 
Percentage of identified metabolites per chemical class for each botanical family. (b) Percentage of 
unidentified features per EO. (c) Chemical complexity of EO samples represented as heatmap. 

  

Figure 1. Summary of the metabolite profiles of aromatic plants from the Atlantic Rainforest.
(a) Percentage of identified metabolites per chemical class for each botanical family. (b) Percent-
age of unidentified features per EO. (c) Chemical complexity of EO samples represented as heatmap.

The identified metabolites were classified in monoterpenes (MT) (29%), sesquiterpenes
(ST) (56%), phenylpropanoids (PP) (7.5%), benzenoids (BA) (3%), and ketones (MK) (3%)
(Table 1, Figures S4–S6). The most frequent compound was α-pinene, followed by bicy-
clogermacrene, germacrene D and trans-caryophyllene (Table 1). The least frequent metabo-
lites, present above trace levels, were geraniol and methyl-geranate (Table S1). Coastal
locations (Pariquera-Açu and Ubatuba) exhibited higher botanical diversity of aromatic
species, alongside the plateau sites in Campinas and Votuporanga (Figures S1 and S2).
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Table 1. Main components (≥10%) of the essential oil extracted from plant species from the Atlantic
rainforest. Plant species are presented within botanical families. Latitude and longitude coordinates
are represented as decimal values. Essential oil yield is presented as dry weight (w/w) percentages.
Complete chemical profile, literature, and calculated retention indices (RI) and experiment metadata
are deposited at the National Metabolomics Repository under identifier ST000606.

Family/Species Sample/Herbarium Code Location (Coordinates,
Elevation) Yield (%) Major Components (%)

Anacardiaceae

Schinus terebinthifolius Raddi R1772/IAC 47521
Ribeirão Preto

(47◦51′58.72′′ S,
21◦12′52.36′′ W, 570 m)

0.26 α-phellandrene (23.2); α-pinene
(18.2); β-phellandrene (16.8)

Annonaceae

Annona dioica A.St.-Hil. Lp06101603/IAC 47955
Votuporanga

(50◦3′55.60′′ S,
20◦27′41.20′′ W, 463 m)

0.37
bicyclogermacrene (30.1);

germacrene D (21.0);
trans-caryophyllene (12.2)

Guatteria australis A.St.-Hil. R1598/ IAC 46831 Ubatuba (45◦7′39.30′′ S,
23◦25′18.60′′ W, 26 m) 0.14 spathulenol (27.4); caryophyllene

oxide (18.8)

Xylopia aromatica (Lam.) Mart. Lp6101712/ IAC 47969
Votuporanga

(50◦3′34.99′′ S,
20◦27′15.20′′ W, 4 m)

0.16 limonene (71.7)

Xylopia brasiliensis Spreng. R1739/IAC 47266
Pariquera-Açu
(47◦52′48.76′′ S,

24◦36′48.42′′ W, 25 m)
0.17 1,8-cineole (11.1); spathulenol

(28.3)

Araceae

Monstera cf. adansonii Schott L52008/IAC 47079 Ubatuba (45◦7′47.57′′ S,
23◦24′49.97′′ W, 180 m) 0.14 β-phellandrene (36.7), α-pinene

(17.2), 2 tridecanone (17.0)

Araliaceae

Dendropanax cuneatus (DC.)
Decne. & Planch. C010/IAC 47099 Jundiai (46◦55′40.69′′ S,

23◦6′42.70′′ W, 770 m) 0.12
caryophyllene oxide (15.6), trans
caryophyllene (13.2), β pinene

(10.9)

Dendropanax cuneatus (DC.)
Decne. & Planch. Lp6101818/IAC 47975 Adamantina (51◦9′6.80′′ S,

21◦39′47.01′′ W, 380 m) 0.004

spathulenol (22.1), trans
caryophyllene (18.4),

bicyclogermacrene (15.7),
δ-3-carene (12.5)

Dendropanax cuneatus (DC.)
Decne. & Planch. R1770/IAC 47519 Mococa (46◦59′55.30′′ S,

21◦25′24.56′′ W, 568 m) 0.21 bicyclogermacrene (32.8)

Asteraceae

Baccharis dracunculifolia DC. R1755/IAC 47282
Pariquera-Açu
(46◦59′44.79′′ S,

24◦37′15.32′′ W, 25 m)
0.42

trans-nerolidol (30.5),
β-copaen-4-α-ol (12.0), limonene

(11.6)

Baccharis dracunculifolia DC. R1773/IAC 47522
Ribeirão Preto

(47◦52′12.64′′ S,
21◦11′27.63′′ W, 557 m)

0.54 trans-nerolidol (27.3), limonene
(17.4)

Cyrtocymura scorpioides (Lam.)
H. Rob. C005/IAC 47097 Jundiai (46◦55′40.69′′ S,

23◦6′42.70′′ W, 770 m) 0.32 germacrene D (36.1), β-pinene
(26.6)

Euphorbiacae

Croton celtidifolius Baill. Lp52912/IAC 29030
Monte Alegre do Sul

(46◦40′30.18′′ S,
22◦41′58.52′′ W, 743 m)

0.16 cis-β-guaiene (15.8), germacrene D
(11.7), trans-nerolidol (11.1)

Croton floribundus Spreng. R4167/IAC 46976 Campinas (47◦4′3.36′′ S,
22◦51′45.72′′ W, 670 m) 0.09 trans-caryophyllene (21.9),

caryophyllene oxide (13.7)

Croton urucurana Baill. R1768/IAC 47517 Mococa (46◦59′55.30′′ S,
21◦25′24.56′′ W, 568 m) 0.11 bicyclogermagrene (43.4),

germacrene D (24.0)

Croton warmingii Müll. Arg. R4165/IAC 46974 Campinas (47◦4′3.57′′ S,
22◦51′45.79′′ W, 670 m) 0.15 bicyclogermacrene (17.4),

trans-caryophyllene (16.8)
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Table 1. Cont.

Family/Species Sample/Herbarium Code Location (Coordinates,
Elevation) Yield (%) Major Components (%)

Lauraceae

Aiouea sp. R1736/IAC 47263
Pariquera-Açu
(46◦59′44.79′′ S,

24◦37′15.32′′ W, 25 m)
0.28 α-phellandrene (24.5),

trans-nerolidol (19.4)

Aniba viridis Mez R1746/IAC 47273
Pariquera-Açu

(47◦52′48.76′′ S, 24◦

36′48.42′′ W, 25 m)
0.59 benzyl salicylate (23.4), benzyl

benzoate (14.1)

Aniba viridis Mez Lp51907/ AC 47071 Ubatuba (45◦7′39.29′′ S,
23◦25′18.59′′ W, 29 m) 0.42 linalool (11.1), trans-nerolidol

(73.1)
Endlicheria paniculata (Spreng.)

J.F.Macbr. R1622/IAC 46801 Campinas (47◦4′3.30′′ S,
22◦51′50.00′′ W, 652 m) 0.05 α-selinene (34.5), spathulenol

(15.3), γ-muurolene (11.8)
Nectandra megapotamica

(Spreng.) Mez Lp6101820/IAC 47986 Adamantina (51◦9′7.50′′ S,
21◦39′47.00′′ W, 349 m) 0.13 cis-β-guaiene (23.4), spathulenol

(15.6)
Nectandra megapotamica

(Spreng.) Mez R1761/IAC 47510 Mococa (46◦58′51.65′′ S,
21◦26′53.71′′ W, 600 m) 0.27 α-pinene (27.1), β-pinene (28.2),

bicyclogermagrene (16.4)

Nectandra megapotamica
(Spreng.) Mez R1774/IAC 47523

Ribeirão Preto
(47◦52′12.64′′ S,

21◦11′27.63′′ W, 557 m)
0.10 oxygenated sesquiterpene (28.1),

α-pinene (18.7), β-pinene (17.3)

Nectranda megapotamica
(Spreng.) Mez Lp052902/IAC 47084

Monte Alegre do Sul
(46◦39′57.60′′ S,

22◦42′15.12′′ W, 778 m)
0.07 cis-β-guaiene (22.7), α-pinene

(21.2), β-pinene (18.5)

Ocotea odorifera (Vell.) Rohwer R1747/IAC 47274
Pariquera-Açu (47◦52′

48.76′′ S, 24◦36′48.42′′ W,
25 m)

2.88 camphor (50.5), methyl-eugenol
(20.0)

Meliaceae

Trichilia elegans A.Juss. Lp6101709/IAC 47961
Votuporanga

(50◦3′30.60′′ S,
20◦27′27.50′′ W, 479 m)

0.28 germacrene B (44.3)

Myristicaceae

Virola bicuhyba (Schott ex
Spreng.) Warb. Lp52003/IAC 49465 Ubatuba (45◦7′20.86′′ S,

23◦24′34.06′′ W, 50 m) 0.14 cis-β-guaiene (21.4),
trans-caryophyllene (18.1)

Myrtaceae

Calyptranthes lanceolata O.Berg R1745/IAC 47272
Pariquera-Açu
(47◦52′48.76′′ S,

24◦36′48.42′′ W, 25 m)
0.12 methyl eugenol (80.4)

Calyptranthes lucida Mart. ex
DC. Lp52009/IAC 47080 Ubatuba (45◦7′39.29′′ S,

23◦25′18.59′′ W, 30 m) 0.19
caryophyllene oxide (17.3),
trans-caryophyllene (16.9),
bicyclogermacrene (12.4)

Campomanesia guavirota (DC.)
Kiaersk. Lp6101822/IAC 47988 Adamantina (51◦9′8.20′′ S,

21◦39′46.50′′ W, 355 m) 0.33 α-pinene (12.3), linalool (11.8)

Eugenia moraviana O.Berg. Lp06101816/ IAC 47973 Adamantina (51◦9′6.19′′ S,
21◦39′47.80′′ W, 373 m) 0.04

β-pinene (16.2),
trans-caryophyllene (14.2), β

elemene (11.0)

Eugenia neoverrucosa Sobral R1626/IAC 46825 Campinas (47◦4′0.30′′ S,
22◦51′52.03′′ W, 650 m) 0.42 α-pinene (94.5)

Eugenia prasina O.Berg Lp51905/IAC 47069 Ubatuba (45◦7′39.29′′ S,
23◦25′18.59′′ W, 29 m) 0.28 limonene (61.4), α-pinene (12.6)

Eugenia pyriformis Cambess. C009/IAC 34660 Jundiai (46◦55′40.69′′ S,
23◦6′42.69′′ W, 770 m) 0.17 β-pinene (39.7), α-pinene (31.5)

Eugenia myrcianthes Nied. Lp6101714/ IAC 47971
Votuporanga

(50◦3′30.10′′ S,
20◦27′20.99′′ W, 488 m)

0.06 β-copaen-4-α-ol (31.7)

Marlierea exocoriata Mart. Lp52006/IAC 47077 Ubatuba (45◦7′8.70′′ S,
23◦24′32.52′′ W, 38 m) 0.28 α-pinene (37.6), β-pinene (18.2),

sabinene (11.2)

Myrcia spectabilis DC. Lp051901/IAC 47045 Ubatuba (45◦7′39.29′′ S,
23◦25′18.59′′ W, 29 m) 0.41 trans-cis-farnesol (52.1),

cis-cis-farnesol (41.1)

Myrcia splendens (Sw.) DC. C007/IAC 37365 Jundiai (46◦55′40.51′′ S,
23◦6′42.52′′ W, 770 m) 0.21 α-pinene (28.1), germacrene D

(20.9)

Myrcia tomentosa (Aubl.) DC. Lp06101817/IAC 47974 Adamantina (51◦9′6.40′′ S,
21◦39′46.70′′ W, 370 m) 0.15 germacrene D (33.09%),

trans-caryophyllene (20.41%),



Antibiotics 2022, 11, 1844 6 of 25

Table 1. Cont.

Piperaceae

Piper aduncum L. Lp52911/IAC 47090
Monte Alegre do Sul

(46◦40′20.99′′ S,
22◦42′0.36′′ W, 743 m)

0.51
spathulenol (10.6), valencene (9.7),

α-pinene (6.4), asaricin (14.9),
safrole (13.3)

Piper aduncum L. Lp6101606/IAC 47958
Votuporanga

(50◦3′53.10′′ S,
20◦27′46.30′′ W, 458 m)

1.52 asaricin (80.1), safrole (10.8)

Piper aduncum L. Lp6101608/IAC 47960
Votuporanga

(50◦3′53.10′′ S,
20◦27′46.60′′ W, 465 m)

1.55 asaricin (73.4), safrole (10.5)

Piper amalago L. Lp06091202/IAC 32056 Campinas (47◦4′2.30′′ S,
22◦51′53.70′′ W, 664 m) 0.20 β-phellandrene (39.3), α-pinene

(14.8), germacrene D (11.7)

Piper amalago L. Lp06091206/IAC 46823 Campinas (50◦3′53.09′′ S,
20◦27′46.30′′ W, 458 m) 0.36

β-phellandrene (15.9), α-pinene
(6.7), sabinene (6.3),

bicyclogermagrene (20.8),
spathulenol (9.1)

Piper amalago L. R1763/IAC 47512 Mococa (46◦58′51.65′′ S,
21◦26′53.71′′ W, 600 m) 0.26 β-phellandrene (33.1), α-pinene

(11.7), bicyclogermagrene (15.0)

Piper amalago L. Lp6101821/IAC 47987 Adamantina (51◦9′7.89′′ S,
21◦39′47.19′′ W, 349 m) 0.23

β-phellandrene (12.3), sabinene
(8.2), myrcene (6.8),

bicyclogermagrene (19.4);
γ-muurolene (5.9), spathulenol

(5.6)

Piper amplum Kunth. R1740/IAC 7267
Pariquera-Açu
(47◦52′48.76′′ S,

24◦36′48.42′′ W, 25 m)
0.38

α-pinene (18.1), cis-β-ocimene
(10.5), limonene (8.6),

trans-caryophyllene (8.8),
germacrene D (5,5)

Piper cernuum Vell. L51904/IAC 7068 Ubatuba (45◦7′39.04′′ S,
23◦25′18.52′′ W, 30 m) 0.32

α-pinene (10.0), camphene (6.3),
dihydro-β-agarofuran (28.7),

10-epi γ-eudesmol (13.5),
4-epi-cis-dihydro-agarofuran (10.8)

Piper cernuum Vell. R1741/IAC 7268
Pariquera-Açu
(47◦52′48.76′′ S,

24◦36′48.42′′ W, 25 m)
1.84

dihydro-β-agarofuran (33.8),
10-epi-γ-eudesmol (12.2), α-pinene

(11.8), camphene (8.7)

Piper crassinervium Kunth. R1764/IAC 7513 Mococa (46◦59′55.30′′ S,
21◦25′24.56′′ W, 568 m) 0.53

β-pinene (11.6), α-pinene (11.5),
germacrene D (9,2),

trans-caryophyllene (7.8), guaiol
(5.5), bicyclogermacrene (5.1)

Piper gaudichaudianum Kunth. R1738/IAC 7265
Pariquera-Açu
(47◦52′48.76′′ S,

24◦36′48.42′′ W, 25 m)
0.16

trans-nerolidol (17.5), α-pinene
(12.2), caryophyllene oxide (8.5),

trans-caryophyllene (8.2), β-pinene
(7.0), trans-β-guaiene (6.9)

Piper leptorum Kunth. Lp052903/IAC 7085
Monte Alegre do Sul

(46◦39′53.99′′ S,
22◦42′13.32′′ W, 778 m)

0.60 seychellene (34.7), caryophyllene
oxide (12.5)

Piper rivinoides Kunth. L52007/IAC 47078 Ubatuba (45◦7′16.03′′ S,
23◦25′16.36′′ W, 30 m) 0.63 α-pinene (73.2), β-pinene (5.2)

Piper solmsianum C.DC. R1633/IAC 46832 Ubatuba (45◦7′8.79′′ S,
23◦24′32.47′′ W, 40 m) 0.39 δ-3-carene (66.9), myrcene (26.1),

α-pinene (22.7), α-selinene (5.5)

Piper umbellatum (L.) R4169/IAC 46978 Campinas (47◦4′4.69′′ S,
22◦51′54.60′′ W, 667 m) 0.18

germacrene D (55.8),
bicyclogermacrene (11.8),
trans-caryophyllene (6.3)

Piper xylosteoides (Kunth.)
Steud. L52004/IAC 47075 Ubatuba (45◦7′37.64′′ S,

23◦25′16.03′′ W, 30 m) 1.04

spathulenol (12.3), germacrene B
(10.6), β-copaen-4-α-ol (9.4),

trans-nerolidol (8.2),
trans-β-guaiene; (7.8)

Rutaceae

Esenbeckia febrifuga (A.St.-Hil.)
A.Juss. ex Mart Lp06091205/IAC 44591 Campinas (47◦4′3.49′′ S,

22◦51′47.19′′ W, 672 m) 0.14 caryophyllene oxide (46.7)

Helietta apiculata Benth. Lp6101823/IAC 47989
Adamantina

(51◦9′12.19′′ S,
21◦39′41.90′′ W, 365 m)

0.16 limonene (42.3)

Metrodorea nigra A.St.-Hil. Lp06091204/IAC 46826 Campinas (47◦4′0.52′′ S,
22◦51′52.24′′ W, 650 m) 0.05

spathulenol (23.6),
bicyclogermacrene (16.6),

germacrene D (15.3)

Zanthoxylum petiolare A.St.-Hil.
& Tul. Lp6101710/IAC 47962

Votuporanga
(50◦3′29.80′′ S,

20◦27′27.40′′ W, 479 m)
0.18 β-phellandrene (40.7), germacrene

D (22.0)



Antibiotics 2022, 11, 1844 7 of 25

Table 1. Cont.

Salicaceae

Casearia sylvestris Sw. R1643/IAC 46842 Ubatuba (45◦7′26.44′′ S,
23◦24′37.87′′ W, 50 m) 0.16 trans-β-guaiene (12.2),

1,10-di-epi-cubenol (12.1)

Sapindaceae

Cupania vernalis Cambess. L4160/IAC 46969 Campinas (47◦4′1.63′′ S,
22◦51′47.24′′ W, 670 m) 0.20

bicyclogermacrene (35.9),
germacrene D (21.4),

trans-caryophyllene (16.1)

Verbenaceae

Aloysia virgata (Ruiz & Pav.)
Juss. C004/IAC 4614 Jundiai (46◦55′40.45′′ S,

23◦6′42.48′′ W, 770 m) 0.22 γ-muurolene (32.7),
trans-β-guaiene (24.6)
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(b) variable (metabolite contents) contributions to the total variance. Contribution is a variable
scaled version of the squared correlation between individual profiles/variables and component axes,
represented as color scale. (c) Sparse Partial Least Square (sPLS) classification of the EO chemical
profiles using the botanical families as discriminant (DA). Confidence ellipses at 95% were generated
by 100 times bootstrapping and are color-coded. (d) Relevance network for metabolite and botanical
family association at 75% threshold. Chemical classes and sPLS−DA association are represented
by colors.

Multivariate analyses demonstrated that a large portion (86.3%) of the variation in
the chemical composition of the EOs remained unexplained, even when considering ten
principal components (Figures 2 and S4). A sparse Partial Least Squares Regression (sPLS)
approach, using the botanical families as discriminant variables (DA, discriminant analysis),
was employed to reduce data dimensionality (Figure 2). The supervised classification
was not enough to clearly attribute the EOs’ chemical composition to a given botanical
family, as a wide range of metabolites was shared by the investigated individuals. We
hypothesized that the unbalanced nature of the data—that is, the uneven frequency of
botanical families among the locations—could have contributed to the poor prediction
performance of the method. Therefore, simulations with balanced data were carried out
(Figure S4), although they were not sufficient in increasing the classification performance
of the method, suggesting the existence of high intra-specific chemical variation. The
presence of family-specific compounds, such as geraniol in Annonaceae and n-octane in
Euphorbiaceae, contributed to group separation.

The significant intra-group variation prompted us to investigate the chemical diversity
among the individuals within the most frequent botanical families, applying Gaussian
Mixture (GMM) modelling to the EO chemical profiles (Figures 3 and S6). The agreement
between the model and the actual data classification, estimated by the adjusted Rand index
(ARI), was higher than 65% for all botanical families, with the exception of Annonaceae
(Figure 3). The best-fit GMM models demonstrated that quantitative differences in the
chemical composition were the principal contributors to sample separation in Asteraceae
and Piperaceae (model VII) and Myrtaceae and Lauraceae (model VEI), whereas, in Euphor-
biaceae and Rutaceae (model VEV), qualitative chemical differences also contributed to
the within-group covariance (Figures 3 and S6). The groups of chemical profiles in the EOs
from Euphorbiaceae were highly variable, although the number of identified metabolites
was approximately 1.7-fold smaller than in Myrtaceae and Piperaceae (Figures 3 and S6).
The relative contribution of mono and sesquiterpenes to the best-fit GM model of the
EOs’ composition was investigated and the qualitative (n) and quantitative (q) differences
between the contribution of mono and sesquiterpenes to the EO models is shown (Figure 3).
Monoterpenes had the most significant contribution to the composition of Piperaceae EOs,
and sesquiterpenes to Myrtaceae, whereas benzyl alcohols are relevant metabolites in
Lauraceae (Figure 3).

The metabolic models were associated with the phylogenetic classification at the genus-
level for Lauraceae and Myrtaceae, and at the species-level for Piperaceae; these were the
botanical families with the highest agreement between the theoretical model and the ob-
served chemical composition. In Lauraceae, relevance networks demonstrated that benzyl
alcohols were strongly associated with the genus Aniba, whereas allo-aromadendrene,
germacrene D and δ-cadinene were more intricately linked to Nectandra. Myrcene, trans-
β-guaiene and bicyclogermacrene were relevant to the EO composition of all of the in-
vestigated genera in Myrtaceae, although the relevance network analyses differentiated
the chemical profile of EOs from the genera Myrcia, Eugenia and Calyptranthes (Figure 3).
Germancre B was relevant to Myrcia and Eugenia, whereas spathulenol and aromadendrene
were significant to Eugenia and Calyptranthes (Figure 3). In Piperaceae, the metabolic profile
of Piper amalago EOs was the most divergent, with contributions from α-phellandrene,
β-bourbonene and 1-epi-cubenol, whereas several metabolites were shared with P. aduncum
and P. cernuum EOs, although high camphene levels and the presence of dihydro-agarofuran
sesquiterpenes were exclusive to the latter (Figure 3).
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Simultaneous hierarchical clustering of the samples based on the PLS similarity ma-
trix and relevance network analyses demonstrated that the significant associations were
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caused by the presence or absence of specific metabolites, such as dihydro-agarofuran
sesquiterpenes in Piper cernuum and benzyl alcohols in Lauraceae, and the absence of
monoterpenes in Salicaceae and Sapindaceae (Figures 1–3). Among the distinct metabolite
profiles, monoterpenes were not detected in Eos from Casearea sylvestris (Salicaceae) and
Cupania vernalis (Sapindaceae).

2.2. Chemical Composition and Antimicrobial Activity

Certified tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel) EO and four
pathogenic bacteria were used to determine the working concentration for the growth
inhibition assays (Figure 4). The dilution medium (mineral oil) did not interfere with
bacterial growth, whereas, the broad-spectrum antibiotics (cefotaxime) prevented bacterial
growth at 100 µg.mL−1 (Figure 4). Concentrated EO completely inhibited Staphylococcus epi-
dermidis growth and caused 35%, 51%, and 78% reduction in the propagation of Escherichia
coli, S. aureus, and Corynebacterium xerosis, respectively (Figure 4). The growth inhibition of
the frequent skin and mucous membrane colonizers S. epidermidis and C. xerosis were the
most responsive to EO treatment (Figure 4), whereas E. coli and S. aureus were less affected
by EO-induced growth inhibition (Figure 4). The tea tree EO concentration at 5% (v/v)
allowed us to clearly identify growth inhibition for the investigated pathogens and was
employed in the large-scale disk diffusion agar assays of the antimicrobial potential of the
EOs from the rainforest species.
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C. xerosis. (c) PCA biplot of bacterial growth inhibition by the individual EOs. (d) Heatmap rep-
resentation of the correlation between EO composition and minimum inhibitory concentration for
pathogenic fungi and bacteria. Pearson’s correlation coefficients and their corresponding p-values are
shown in Table S2.

Most of the EOs from the rainforest plants exhibited antibacterial activity, although
individual EO antibacterial activity was highly variable (Figures 4 and S7). The maximum
growth inhibition reached up to 60% against E. coli (Lp6101823, from Helietta apiculata,
Rutaceae) (Figures 4 and S7). Other EOs also exhibited a high potential to impair bacterial
growth, such as 45% against S. epidermidis (R1598, Guatteria australis, Annonaceae), 40%
against S. aureus (R1745, Calyptranthes lanceolata, Myrtaceae) and 30% against C. xerosis
(Lp52006, Marlierea exocoriata, Myrtaceae), representing 2.4-, 1.6-, 3.7- and 1.6-fold the in-
hibitory effect of certified M. alternifolia EO at the same concentration (Figures 4 and S7).
The composition of the bacteria cell wall influenced the susceptibility to EO activity, con-
tributing to approximately 41% of the variation in the PC analyses (Figure 4). The weight
of the Gram-negative type of cell wall (E. coli) most strongly affected the first component,
whereas the Gram-positive wall assembly (staphylococci and C. xerosis) exerted greater
influence on the first component (Figure 4). The capacity to inhibit bacterial growth by
the EO from native rainforest species was often higher or equivalent to certified Melaleuca
alternifolia oil (Figure S7).

Ten EOs were selected for Minimum Inhibitory Concentration (MIC) assays against the
previously investigated bacteria, plus the opportunistic pathogen Pseudomonas aeruginosas,
the skin pathogen Propionibacterium acnes, the filamentous fungus Aspergillus niger, and
the infective yeast Candida albicans (Table 2). The antibacterial activity was confirmed for
concentrations as low as 0.124 µL/mL (Lp6101712, Xylopia aromatica, Annonaceae) against
C. xerosis. Aspergillus niger and Candida albicans growth was impaired by all tested EOs
at 0.5 µL/mL (Table 2). The correlation between the contents of the major metabolites in
the essential oils and their antibacterial activity was investigated and are represented as a
heatmap (Figure 4), and the statistical significance is presented in Table S2. The contents
of oxygenated sesquiterpenes and bicyclogermacrene were positively correlated with the
inhibition of E. coli, C. albicans, P. aeruginosa, and A. niger (Figure 4, Table S2). The myrcene
contents were also positively correlated with the impairment of C. albicans, P. aeruginosa,
and A. niger propagation, whereas the levels of limonene were positively correlated with
the inhibition of P. acnes (Figure 4, Table S2). The contents of several major metabolites
exhibited weak correlation with the antimicrobial activity against the tested pathogens
(Figure 4).

To investigate the mechanism of action of the EOs against the tested pathogenic bac-
teria, we employed time-kill and cell component leakage assays (Figure 5). The bacterial
kinetics of the EOs demonstrated that complete killing was reached 2 h after treatment at
MIC with the EOs from Myrtaceae and Annonaceae against E. coli, Rutaceae, Myrtaceae,
Salicaceae, Annonaceae, and Lauraceae against S. epidermidis and S. aureus (Figure 5). None
of the tested EOs were able to induce the complete killing of C. xerosis at MIC, although
most of them were able to reduce propagation up to 8 h after treatment (Figure 5). The in-
vestigated EOs induced cell component leakage at MIC for all of the tested bacterial species
(Figure 5). The loss of nucleic acid and protein was detected, suggesting that EO treatment
caused the formation of non-selective pores. The investigated EOs caused a greater loss of
intracellular nucleic acids to S. aureus and C. xerosis, whereas protein leakage was higher
in E. coli, S. aureus, and C. xerosis (Figure 5). As shown in the growth inhibition, MIC
and time-kill assays, the most effective EOs for inducing bacterial intracellular component
losses were from Helietta apiculata (Rutaceae, Lp6101823), Xylopia brasiliensis (Annonaceae,
R1739), and Nectandra megapotamica (Lauraceae, R1774) (Figure 5). Correlation analyses
demonstrated that growth inhibition was positively correlated to nucleic acid leakage for
E. coli and, to a lesser extent, S. epidermidis (Figure 5, Table S3). In contrast, for S. aureus,
growth impairment was positively associated with protein loss (Figure 5, Table S3).
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Table 2. Minimum inhibitory concentrations (MIC) of selected EOs. Growth inhibition is presented
in µg mL−1 in comparison to normalized positive and negative controls plus/minus standard errors.

Microorganism

Botanical Family Bacteria Filamentous
Fungus Yeast

Plant Species
(Location)

Sample
Code C. xerosis E. coli P. acnes P.

aeruginosa S. aureus S.
epidermidis A. niger C. albicans

Annonaceae

Xylopia brasiliensis
(Pariquera-Açu) R1739 50 ± 2.2 50 ± 2.5 25 ± 1.3 25 ± 1.1 50 ± 2.5 50 ± 2.4 25 ± 1.2 25 ± 1.3

Xylopia aromatica
(Votuporanga) Lp6101712 6.2 ± 0.1 25 ± 1.2 12.5 ± 0.6 25 ± 1.2 25 ± 1.3 25 ± 1.2 25 ± 1.2 25 ± 1.2

Lauraceae

Nectandra
megapotamica

(Ribeirão Preto)
R1774 6.2 ± 0.1 12.5 ± 0.6 25 ± 1.2 25 ± 1.1 25 ± 1.2 25 ± 1.2 25 ± 1.1 25 ± 1.2

Myrtaceae

Eugenia neoverrucosa
(Campinas) R1626 6.2 ± 0.1 25 ± 1.2 25 ±1.2 25 ± 1.2 25 ± 1.1 25 ± 1.2 25 ± 1.2 25 ± 1.2

Eugenia prasina
(Ubatuba) Lp51905 12.5 ± 0.6 25 ± 1.2 25 ± 1.2 12.5 ± 0.6 25 ± 1.1 25 ± 1.1 25 ± 1.2 25 ± 1.2

Eugenia pyriformis
(Jundiai) C009 50 ± 2.3 50 ± 2.2 25 ± 1.2 25 ± 1.2 50 ± 2.2 50 ± 2.3 25 ± 1.2 25 ± 1.2

Myrcia splendens
(Jundiai) C007 12.5 ± 0.6 25 ± 1.2 12.5 ± 0.6 25 ± 1.2 25 ± 1.2 25 ± 1.2 25 ± 1.2 25 ± 1.2

Rutaceae

Helietta apiculata
(Adamantina) Lp6101823 12.5 ± 0.6 25 ± 1.2 12.5 ± 0.6 25 ± 1.2 25 ± 1.2 25 ± 1.2 25 ± 1.2 25 ± 1.2

Salicaceae

Casearia sylvestris
(Ubatuba) R1643 12.5 ± 0.6 25 ± 1.2 12.5 ± 0.5 25 ± 1.2 25 ± 1.3 25 ± 1.2 25 ± 1.2 25 ± 1.2

The performance of the EOs from the rainforest plants against pathogenic microorgan-
isms prompted us to investigate the pharmacokinetic properties of their major components
using in silico tools (Figure 6). The Absorption, Distribution, Metabolism, and Excretion
(ADME) properties, such as the number of heavy atoms, number of aromatic heavy atoms,
fraction Csp3, number of rotatable bonds, H-bond acceptors and donors, molecule pre-
dicted solubility, absorption, CYP inhibition prediction, violation of Lipinski, Ghose, Veber,
Egan, and Muegge parameters, bioavailability score, PAINS and Brenk alerts, Lead-likeness
violations and predicted synthetic accessibility, were investigated for 27 major EO compo-
nents (Table S4). Most of the metabolites present in the EOs exhibited adequate drug-like
predicted properties, individually (Table S4), indicating their medicinal potential alone or
in combination with other metabolites found in EOs. The complexity of EO composition
was not reflected in the number of predicted macromolecular targets, as EOs with a greater
number of major metabolites, such as R1643 from Casearia sylvestris (Salicaceae), exhib-
ited a similar number of predicted targets than those with a simpler composition, such
as Lp6101712, from Xylopia aromatica (Annonaceae), where limonene represented more
than 71% of the EO metabolites (Table 1, Figure 6). The EOs from Annonaceae (R1739
and Lp6101712, from Xylopia brasiliensis and X. aromatica) had the most divergent number
of predicted macromolecular targets, with 12 exclusive categories including the classes
Eraser, Primary active transporter, Other nuclear protein, Lyase, Reader, Transferase, and
Ligase (Figure 6, Table S5). The majority of the EO metabolites displayed the predicted
macromolecular targets of pharmacological interest (Figure 6).
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Figure 5. Eos antibacterial activity mode of action investigation. (a) Time-kill kinetics against
pathogenic bacteria. Positive and negative control curves are represented by triangle and EO by circle
markers and colors. (b) Cell component leakage assay, for nucleic acid (absorbance at 260 nm) and
protein (absorbance at 280 nm). (c) Heatmap representation of the correlation between cell component
leakage and inhibition of bacterial growth. Significance levels are represented as: ‘***’ 0.001, ‘**’ 0.01,
and ‘*’ 0.1. Pearson’s correlation coefficients and their corresponding p-values are shown in Table S3.
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3. Discussion

Essential oils are among the most studied plant extracts for treating infectious dis-
eases and controlling microbial growth, primarily due to the antimicrobial activity of
terpenes, phenylpropanoids, and flavonoids [3,8,10,13]. The antimicrobial mechanisms and
molecular target sites of the metabolites in plant EOs are distinct from those of traditional
antimicrobial agents, making them important elements in combinatorial strategies against
infectious microorganisms [10,13]. To address the knowledge gap in the antimicrobial
potential of EOs from the highly diverse rainforest, we have botanically classified and
chemically characterized the EOs of plant species from nine areas. The isolated EOS were
further characterized for antimicrobial and biocidal activity through agar diffusion assays,
minimum inhibitory concentration, time-kill, and cell-component leakage assays. Subse-
quently, we investigated the pharmacokinetic properties of the EO compounds using in
silico tools.

The chemical profiling of the EOs confirmed the roles of inter- and intra-specific ge-
netic variation and environmental conditions in determining the metabolic diversity of
rainforest plants [12]. In the EOs from 50 species, we identified 113 distinct metabolites. In
contrast, the chemical characterization of the EOs from 48 Lamiaceae species, including
basil, rosemary, lavender, and peppermint, revealed 83 compounds [14], although a review
work demonstrated that 150 compounds have been identified in EOs from Rosmarinus
officinalis L. alone [15]. In two commercial cultivars of lavender and lavandin, the chemical
characterization revealed 50 compounds in the EOs [16]. Fruits from the native African
Xylopia aethiopica produced EOs with 14 identified metabolites in GC-MS analyses [17]. Em-
ploying high-speed countercurrent GC, 15 compounds were identified in the EOs from the
rainforest native Piper mollicomum [18,19]. The genus Piper is widely distributed throughout
the tropics and more than 250 compounds were identified in the EOs from its species [20].
Thus, the resolution of the chemical profiles identified in our study are comparable to those
reported for EOs from cultivated and wild aromatic plants. As observed in the cultivated
and model plants [4,21,22], the investigated rainforest species also exhibited high intra-
specific chemical variation, although family-specific compounds were also present, such
as geraniol in Annonaceae and η-octane in Euphorbiaceae. Among the distinct metabolite
profiles, monoterpenes were not detected in the EOs from Casearea sylvestris (Salicacea) and
Cupania vernalis (Sapindaceae). Although known as a sesquiterpene-rich species, monoter-
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penes have been identified in the Eos of C. sylvestris [23,24]. The metabolite profile of
C. vernalis remains poorly characterized, although several extracts were demonstrated to
exhibit biological activity [25]. The significant intra-group variation in their EO chemical
composition was further investigated by applying Gaussian Mixture (GM) modelling.
GM clustering has a probabilistic nature and does not assume independence between
adjacent measures, making it suitable to study metabolites synthesized by the same or
shared pathways [26,27]. The chemical profiles of the EOs from Euphorbiacea were highly
variable, mostly due to quantitative differences [28,29], as shown for the Croton species.
The relative contribution of the chemical classes to EO composition was variable, with a
predominance of monoterpenes in Piperaceae, sesquiterpenes in Myrtaceae, and benzyl
alcohols in Lauraceae. The principal biosynthetic pathway of monoterpenes in plants is the
MEP/DOPX localized in plastids, whereas sesquiterpenes are synthesized from precursors
of the mevalonate pathway in the cytosol, although interaction between the pathways are
known [6,30]. The scaffold of sesquiterpenes in plants is catalyzed by Terpene Synthases
(TPS), which produce structurally distinct acyclic, mono-, bi- and tri-cyclic ST from common
prenyl diphosphate precursors [31]. Genomic studies have associated the transcription of
TPS genes to the ST profile in Myrtaceae [32,33], Lauraceae [34,35], and Piperaceae [36].
The shikimate pathway and phenylalanine biosynthesis from chorismate produce volatile
benzenoids, although the information is from plant reproductive structures and does not
include Lauraceae [37]. The extensive intra-specific chemical diversity of aromatic and
medicinal plant species is challenging for several steps required for their widespread use,
including yield, cultivation, and extraction conditions [38]. Similarly, the chemical varia-
tion within a given species reinforces the need for genetic and chemical profiling of the
individuals of interest [39,40].

The antibacterial activity of the isolated EOs was initially investigated by agar dif-
fusion assays against the frequent skin and mucous membrane colonizers Staphylococcus
epidermidis and Corynebacterium xerosis [41,42], as well as the leading bacterial pathogens
in healthcare-associated infections, Escherichia coli and S. aureus [43]. S. aureus, along with
Enterococcus spp., Klebsiella spp., Acinetobacter baumannii, Pseudomonas aeruginosa, and En-
terobacter spp., constitutes the “ESKAPE” group of multi-drug resistant pathogens [8].
Antibacterial activity was observed for most of the EOs from the rainforest, at higher levels
than that observed for certified Melaleuca alternifolia oil. The composition of the bacterial
cell wall determined the susceptibility to EO activity, as shown previously [8,13,44]. The
antimicrobial activity of the EOs was more variable for the Gram-negative type of cell wall
(E. coli), whereas the Gram-positive wall assembly (staphylococci and C. xerosis), consist-
ing of glycopolymers and proteins, associated with teichoic acids, polysaccharides, and
proteins, was less affected by the investigated EOs. These observations agree with the
roles of EO compounds in the destabilization of bacterial cellular architecture, due to the
disruption of the membrane’s integrity, leading to the impairment of cellular activities, such
as energy production and membrane transport, and the loss of cellular components and
ions [44]. These observations suggest a potential harmful effect of the EOs to non-target
cells; however, their use in cosmetics and household products has been shown to be safe
and able to impair bacterial growth. Moreover, combinatory therapeutic alternatives and
topic applications may contribute to reducing mutagenic, cyto- and geno-toxic, effects.

The metabolite profile and synergistic interactions among the compounds are critical to
EO antimicrobial activity [9,44,45]. The reactivity of the metabolites is associated with their
antimicrobial potential, as oxygenate and cyclic molecules have higher inhibitory effect on
microorganisms than hydrocarbons in mixtures or isolated [9,44]. The interactions among
the EO metabolites responsible for antimicrobial properties may lead to the enhanced
activity or attenuation of negative effects [44,45]. Moreover, the distinct molecular structure
of the EO compounds allow them to display a broader spectrum of action in comparison to
isolated substances [44,45].

The ability to inhibit bacterial growth allowed us to choose ten EOs for the MIC assays,
using the “ESKAPE” opportunistic pathogen Pseudomonas aeruginosas, the skin pathogen
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Propionibacterium acnes, in addition to the previously investigated bacteria, along with the
filamentous fungus Aspergillus niger and the infectious yeast Candida albicans. The MIC
assays confirmed the antimicrobial potential of the EOs, at levels similar to those reported
for oils from commercially cultivated plants, such as rosemary and thyme [8,46]. The
contents of oxygenated sesquiterpenes, bicyclogermacrene and myrcene were positively
correlated to microbial growth inhibition. Recent studies have demonstrated that phenolic
terpenoids display higher antibacterial activity against Gram-negative and Gram-positive
bacteria [47]. The author observed that treatment with phenolic terpenoids carvacrol and
thymol immediately caused the loss of cell membrane integrity and ion leakage. The
importance of the hydroxyl group of the phenol moiety was also highlighted in the work,
as O-methyl derivatives and benzylic partners were shown to be ineffective [47]. These
observations agree with the correlation results in our study. However, the contents of
several major metabolites exhibit weak correlation with the antimicrobial activity against
the tested pathogens, indicating a synergistic effect among the EO metabolites [8,48]. The
combination of carvacrol, thymol, eugenol and nootkatone was shown to exert the bacterio-
static and bactericidal effects, even at low concentrations, highlighting the complementary
effect of the different compounds in the EO [48].

The mechanism of the EOs’ action against the pathogenic bacteria was investigated
by time-kill and cell component leakage assays. The kill kinetics assays confirmed fast
bactericidal action, as shown previously for EOs from cultivated Origanum vulgare [49–51]
and tea tree [52]. However, viable cells were detectable at later stages for all treatments,
including broad-spectrum commercial antibiotics. Treatment with the EOs at MIC induced
the loss of nucleic acid and protein, suggesting the formation of non-selective pores. The
time-kill and cell component leakage results agree with the proposed modes of action of
EOs against bacterial pathogens, functioning to destabilize the cell structure, then leading
to perturbations in the integrity of the membrane system, disrupting several cellular
activities, such as energy production and cellular transport [44,51,52]. The disruption of
bacterial membranes by EOs appears to be non-selective and to induce a general leakage
of the cellular components and the loss of ions [44], although our indirect evidence from
correlation analyses indicate that EO-induced nucleic acid leakage is more prejudicial to
E. coli and S. epidermidis than to S. aureus and C. xerosis.

The use of plant-derived compounds in pharmaceutical applications is dependent on
their pharmacokinetic properties, Absorption, Distribution, Metabolism, and Excretion
(ADME), which is, in turn, dependent on the chemical structure of its individual compo-
nents [38,45]. In silico predictive tools demonstrated that the individual metabolites found
in the investigated EOs exhibit adequate drug-like predicted properties. Moreover, the
predicted macromolecular targets of the individual metabolites include several classes of
pharmacological interest, such as kinases, phosphatases, nuclear receptors and cytochrome
P450. The complexity of EO composition did not reflect the number of predicted macro-
molecular targets, but was associated with the molecular structure of its metabolites. The
EOs isolated from Xylopia brasiliensis and X. aromatica (Annonaceae) were predicted to
have 12 exclusive classes of macromolecular targets. The identification of macromolecular
targets of pharmacological interest suggests that the EOs may have further applications in
drug composition.

4. Materials and Methods
4.1. Biological Samples Collection and Environmental Data

Aromatic plants were sampled from nine Atlantic rainforest reserves at experimental
stations managed by Agência Paulista de Tecnologia dos Agronegócios (APTA) (Figure S1)
for botanical identification, herbarium mounts and chemical analyses. The families of
aromatic plants were selected based on their reported biological activity, aroma emission
and plant distribution (Table S6).

Plants were tagged and the coordinate reference determined by Global Positioning Sys-
tem (GPS). Voucher specimens were deposited at the Herbarium of Instituto Agronômico
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(IAC) (http://herbario.iac.sp.gov.br/ (accessed on 7 December 2022)), under the given
accession numbers (Table 1) and classified according to the list of species of Brazilian
flora [53].

4.2. Essential Oil Extraction

As this was a study of native aromatic plants, in order to preserve the species, only the
vegetative aerial parts were sampled, and the essential oils were extracted exclusively from
the leaves. The leaves were detached from the stalks and air-dried at room temperature,
in the absence of direct light. The EOs were extracted from 54 to 1870 g of dry material,
depending on availability, for two hours, by hydrodistillation in Clevenger-type apparatus,
according to the Brazilian Pharmacopeia [54]. The oils were stored in hermetically closed
vials at −20 ◦C before chemical profiling. Yield is represented as oil weight (g) per dry
material weight (g).

4.3. Chemical Characterization and Quantification of Essential Oils

The chemical composition of the EOs was determined by gas chromatography coupled
with mass spectrometry (GC-MS Shimadzu, model QP-5000, Kyoto, Japan), equipped with
fused silica capillary column OV—5 (30 m × 0.25 mm × 0.25 µm, Ohio Valley Specialty
Chemical, Inc., Marietta, OH, USA), using Helium as a carrier gas (1.0 mL min−1); op-
erating with injector temperature of 220 ◦C, the transfer line was kept at 230 ◦C, a split
ratio of 1:20, and an injection volume of 1.0 µL of EO solution (1 µL essential oil/1 mL
ethyl-acetate, chromatography grade) was employed using the auto-sampler. The GC
was operated under temperature-programmed conditions, between 60 ◦C and 240 ◦C, by
3 ◦C per min−1. The MS data were acquired in the full-scan mode (m/z 40–450) using
the electron ionization (EI), with an ionization voltage of 70 eV. The quantitative anal-
yses were performed by the area normalization method, as triplicate readings, by gas
chromatography with a flame ionization detector (GC–FID Shimadzu, model GC-2010).
The analyses were conducted under the same oven operating conditions used in GC-MS.
The metabolites were identified by the comparative analyses of mass spectra against the
system database (Nist 62.lib) and by retention indices [55] obtained from the injection
of a mixture of n-alkanes (C9H20-C25H52, Sigma Aldrich, St. Louis, MO, USA, 99%), ap-
plying the equation described by Van den Dool and Kratz [56]. The metabolites were
considered as major components when representing ≥ 10%. The complete chemical data
and their associated metadata are deposited at the National Metabolomics Repository
(https://www.metabolomicsworkbench.org/data/index.php (accessed on 7 December
2022)), under identifier ST000606.

4.4. Microbial Strains

Certified cultures of Escherichia coli (ATCC 8739), Staphylococcus aureus (ATCC 6538),
S. epidermidis (ATCC 12228), Corynebacterium xerosis (ATCC 373), Pseudomonas aeruginosa
(ATCC 9027), Propionibacterium acnes (ATCC 11827), Candida albicans (ATCC 10231) and As-
pergillus niger (ATCC 16404) were provided by Instituto Adolfo Lutz (São Paulo, SP, Brazil).
Bacterial cultures were started from isolated colonies, and fungal cultures, from single
spores. The bacterial concentration was estimated based on spectrophotometric absorbance
readings at 600 nm for E. coli and P. aeruginosa, 490 nm for S. epidermidis and P. aeruginosa,
530 nm for S. aureus and 578 nm for C. xerosis, for McFarland turbidity standard.

4.5. Estimation of EO Effective Concentration for Antimicrobial Activity

Certified commercial essential oil from tea tree (Melaleuca alternifolia, (Maiden and
Betche) Cheel) was used to estimate the effective concentration for antimicrobial activity
analyses. Serial EO dilutions were prepared in sterile mineral oil in a volume/volume basis
up to a total of 200 µL. The bacterial cultures were diluted to 0.5 McFarland standards in
Tryptone Soy Broth (TSB, Oxoid Thermo Scientific, Loughborough, UK) liquid medium
and supplemented with serial dilutions of tea tree EO. The suspensions were incubated

http://herbario.iac.sp.gov.br/
https://www.metabolomicsworkbench.org/data/index.php
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at 37 ± 2 ◦C, with continuous agitation at 200 rpm for 36 h. Absorbance readings of
1 mL aliquots were used to calculate growth inhibition, in comparison to the negative
control consisting of TSB supplemented with 200 µL of sterile mineral oil. Broad-spectrum
antibiotics cefotaxime (Merck/Sigma-Aldrich, St. Louis, MO, USA) was used as the positive
control at 500 µg mL−1. The minimum estimated concentration of tea tree EO impairing
bacterial growth (5% v/v) was used in further analyses with the 63 EO samples from the
rainforest plants.

4.6. Antimicrobial Activity Analyses

Antibacterial activity was investigated by growth inhibition in agar diffusion assays
for four bacterial species, and minimum inhibitory concentration (MIC) analyses were
used for the bacteria and fungi. For both assays, bacterial suspensions were initiated from
inoculating a single colony to 20 mL of TSB (Oxoid ThermoScientific, UK) and grown to
saturation at 28 ◦C, for approximately 14 h, with 200 rpm shaking. An aliquot of 1 mL was
transferred to 20 mL of fresh medium, and the procedure was repeated twice. Bacterial
concentrations on the final saturated suspension were corrected to 10−8 colony forming
unit (CFU) per mL−1 by absorbance readings at 600 nm for E. coli and P. aeruginosa, 490 nm
for S. epidermidis, 530 nm for S. aureus, and 578 nm for C. xerosis, to prepare the adjusted
inocula. For the agar diffusion assays, 1 mL of the saturated bacterial culture was added
to 400 mL of cooled, fused Nutrient Agar medium (Oxoid ThermoScientific, UK) and
supplemented with 1.5 mL of a 2% (w/v) solution of 2,3,5-triphenyl tetrazolium chloride
(TTC). The mixture was poured into 9 mm sterile Petri dishes containing five, evenly
distributed, sterile aluminum rings with a diameter of 6 mm. The rings were removed from
the solidified medium and 300 µL of essential oil at 5% (w/v) in sterile mineral oil were
added to the wells. The plates were incubated horizontally in a bacteriological oven at
37 ± 2 ◦C for 48 h, and after growth, the abaxial surface of the plates was digitalized, and
inhibition halos were measure in ImageJ2 [57], by applying the Measure function from the
Analyze menu. Melaleuca EO (absolute and 5% (w/v)) and cefotaxime (500 µg mL−1) and
the sterile mineral oils were used as positive and negative controls, respectively.

The minimal inhibitory concentration (MIC) was determined for nine EO samples
using the broth microdilution method, according to CLSI guidelines [58]. The EO samples
were diluted at 1% (v/v) in propylene glycol and submitted to serial dilutions (1:2) in
sterile 96-well microplates containing 100 µL of TBS. Actively growing microorganisms
from the adjusted cultures were diluted an optical density of 0.5 McFarland, equivalent
to 2 × 106 colony forming units (CFU).mL−1 in TSB and 20 µL of the diluted culture were
added to the wells to give a final inoculum of approximately 1 × 105 CFU.mL−1. The
microplates were incubated at 37 ± 2 ◦C for 48 h for bacteria or at 25 ± 2 ◦C for 72 h for
fungal and yeast cultures. The MIC values were determined by monitoring the microor-
ganism growth at the adequate optical density in the presence of multiple concentrations
of the EOs. After the incubation period, the plates were scanned for turbidity in an En-
zyme Linked Immunosorbent Assay (ELISA) reader. The negative controls consisted of
TS broth and TS broth inoculated with propylene glycol, without EO. The MIC values
are presented as the smallest concentration inhibiting microorganism growth in µg of EO
per mL ± standard error.

4.7. Mode of Action Investigations

The antimicrobial mode of action of the nine selected EO samples was investigated for
bactericidal activity and cell-component leakage analyses, as described in the Clinical and
Laboratory Standards Institute M26A approved guidelines [58]. In the time-kill kinetics
analyses, bacterial suspensions were grown in the TSBup to mid logarithmic phase, as
described. Dilutions corresponding to 0.5 McFarland (~10−8 CFU mL−1) were prepared
in 10 mM PBS buffer at pH 7.4, and added to 20 mL TBS supplemented with 200 µL of
EO at 50 µg mL−1. Aliquots were taken at 0, 2, 4, 8, 12, 16, 20 and 24 h after inoculation
and plated on TBS agar in triplicate. The plates were incubated overnight at 37 ◦C and the
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bacterial colonies were counted. Cefotaxime and sterile mineral oil were used as positive
and negative control, respectively.

The membrane permeability was investigated by cell-component leakage analyses, as
described [59]. Bacterial suspensions at 0.5 McFarland turbidity (~108 CFU mL−1) were
supplemented with 50 µg.mL−1 of EO, incubated at 37 ◦C with continuous agitation at
200 rpm for 12 h. Intact bacterial cells were precipitated by centrifugation at 9000× g for
10 min at 4 ◦C and the contents of extracellular nucleic acids and proteins were determined
by absorbance readings of the supernatant at 260 nm and 280 nm, respectively.

4.8. EO Metabolite Physicochemical and Pharmacokinetic Properties

The major metabolites of the nine selected EOs were compiled, their canonical Simpli-
fied Molecular-Input Line-Entry System (SMILES) format were obtained and their molecu-
lar structures were used for in silico prediction of physicochemical, drug-likeness, phar-
macokinetics, medicinal chemistry friendliness, and Absorption, Distribution, Metabolism
and Excretion (ADME) properties, using the SwissADME algorithm [60]. Macromolecular
target prediction was carried out using SwissTargetPrediction algorithm [60].

4.9. Data Analyses

Data preprocessing and analyses were performed using R [61]. The oil yield and
chemical composition data were averaged, centered and Pareto-scaled. Supervised and
unsupervised multivariate and modelling analyses were performed using mixOmics [62]
and mclust [63]. The best fitting model for the chemical data was determined by Bayesian
Information Criterion (BIC) and Integrated Complete-data Likelihood (ICL) and include the
number of mixing components and covariance parametrization [63]. For each component,
several parameters were computed, including the mean and the variance, as well as the
density mixing probabilities and the total number of gene pairs. Pearson coefficients and
correlation significance levels were obtained in Hmisc [64] and represented graphically
using corrplot [65].

This article does not contain any studies with human and/or animal participants
performed by any of the authors. The sampling of native plants for research purposes is
authorized under permit AD0077F, issued by Sistema Nacional de Gestão do Patrimônio
Genético e do Conhecimento Tradicional Associado (SisGen).

The metabolomics and metadata reported in this paper are available at Metabolomics
Workbench (https://www.metabolomicsworkbench.org/data/index.php (accessed on
7 December 2022)), study identifier ST000606.

5. Conclusions

In the current study, we have investigated the antimicrobial potential of the EOs
from aromatic plants from the Atlantic rainforest. EOs were isolated from 63 plants,
comprising 15 botanical families. The EOs’ chemical compositions consisted of 113 distinct
metabolites, primarily mono and sesquiterpenes. Multivariate analyses detected extensive
inter- and intra-specific variation in the chemical profiles of the EOs. These observations
were confirmed by Gaussian models, which revealed distinct contributions of quantitative
and qualitative differences within the botanical families. Relevance networks allowed the
identification of genera-specific metabolites for Lauraceae and Myrtaceae, and species-
specific profiles for Piperaceae. The EOs exhibited extensive antimicrobial potential against
pathogenic bacteria and fungi, and the biocidal capacity was demonstrated for a selected
group of EOs. The EOs’ treatment of pathogenic bacteria promoted a fast reduction in
the number of viable, colony-forming cells, and caused the loss of cellular components.
In silico analyses demonstrated that the major metabolites in the EOs have adequate
pharmacokinetic properties and interesting predicted pharmacological targets. Our results
may contribute to the development of new plant-based antimicrobial products.

https://www.metabolomicsworkbench.org/data/index.php
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