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Abstract: Staphylococcus aureus can cause a plethora of life-threatening infections. Antibiotics have
been extensively used to treat S. aureus infections. However, when antibiotics are used at sub-
inhibitory concentrations, especially for β-lactam antibiotics, they may enhance staphylococcal
pathogenicity and exacerbate the infection. The combination of antivirulence agents and antibiotics
may be a novel approach to controlling antibiotic-induced S. aureus pathogenicity. We have illus-
trated that under in vitro conditions, antivirulence agent M21, when administered concurrently with
ampicillin, suppressed the expression and production of virulence factors induced by ampicillin. In
a mouse peritonitis model, M21 reduced bacterial load irrespective of administration of ampicillin.
In a bacteremia model, combinatorial treatment consisting of ampicillin or ceftazidime and M21
increased the survival rate of mice and reduced cytokine abundance, suggesting the suppression of
antibiotic-induced virulence by M21. Different from traditional antibiotic adjuvants, an antivirulence
agent may not synergistically inhibit bacterial growth in vitro, but effectively benefit the host in vivo.
Collectively, our findings from this study demonstrated the benefits of antivirulence–antibiotic com-
binatorial treatment against S. aureus infections and provide a new perspective on the development
of antibiotic adjuvants.

Keywords: MRSA; antibiotics; combination; antivirulence; subinhibitory concentration; adjuvant

1. Introduction

The predisposition of S. aureus to cause infections requires the deployment of numer-
ous virulence factors. Using these factors, S. aureus colonizes, disseminates, and adapts to
various environments in the host and causes infections. Once they establish the infection
they subvert host functions, invade tissues, and overcome host defenses [1]. Antibiotics are
currently used to control the spread of S. aureus infections. They subside bacterial infections
either by killing, decelerating, or suspending their growth. During this process, antibiotics
raise pressure for the selection of resistant or tolerant strains [2]. One of the best examples
is the emergence of resistance to methicillin in S. aureus. The resistant strains were first
reported within two years after being marketed [3]. This robust emergence of resistance
in pathogens like S. aureus has made antibiotics ineffective [4]. In addition to discovering
novel antibiotics, finding antibiotic adjuvants is a promising approach to treating infections
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caused by resistant bacteria. Using these novel adjuvants, we can tackle the problems
arising from safe and old antibiotics.

In addition to antibiotic resistance, sub-inhibitory concentrations of antibiotics may
exacerbate infection by inducing staphylococcal pathogenicity [5]. For example, in previous
research, we found that sub-inhibitory doses of ampicillin increased the adhesion and
invasion of S. aureus on epithelial cells [6]. Thus, the quest for an alternate and long-lasting
antivirulence agent is essential and very important. Antivirulence agents operate differently
from antibiotics and have distinct benefits. For instance, the development of resistant or
tolerant strains may be challenging for this class of drugs, and their administration may
have no effect on the typical flora of the host [7]. In our previous study, we identified
an antivirulence agent, M21, which specifically inhibited the activity of a key virulence
determinant Clp protease. The inactivation of Clp protease by M21 further repressed
multiple virulence factors simultaneously. M21 reduced the ratio of adherence and invasion
in the host and attenuated the establishment of infection in mice by S. aureus [8]. Thus,
different from traditional antibiotic adjuvants, antivirulence agents may compensate for
the shortcomings of antibiotics and suppress S. aureus pathogenicity effectively.

In this work, we examined the impact of antivirulence agent M21 on staphylococcal vir-
ulence factors induced by sub-inhibitory concentrations of antibiotics. Using peritonitis and
bacteremia infection models, we found that the antibiotic adjuvant M21 substantially cur-
tailed the β-lactam-induced exacerbation of S. aureus infections. Thus, our findings proved
that the novel antibiotic adjuvant M21 can reduce virulence induced by sub-inhibitory
concentrations of antibiotics in vivo and illustrated the possibility of using a combination
therapy comprising antivirulence agents and antibiotics to treat staphylococcal infections.

2. Results
2.1. M21 Repressed the Virulence Gene Expression Induced by Ampicillin

Using the luminescence-based disc diffusion assay, we detected red rings across the
disc. This luminescence pattern confirmed virulence expression induced by ampicillin.
Discs with M21 alone substantially repressed the luminescence signal and suggested the
inhibition of S. aureus virulence. Open ring signals between ampicillin and M21 discs
indicated that M21 significantly reduced ampicillin-induced virulence gene expression
(Figure 1a).
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were placed in the middle; the other two are paper discs with 5 μL of compound M21 (50 mM). The 
distance between the paper discs is shown in the figure. (b,c) Effect of compound M21 on the ampi-
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Figure 1. M21 reduced the S. aureus virulence induced by antibiotics. (a) The interaction of compound
M21 and ampicillin on eight different promoters. Paper discs with 5 µL of 10 mM ampicillin were
placed in the middle; the other two are paper discs with 5 µL of compound M21 (50 mM). The
distance between the paper discs is shown in the figure. (b,c) Effect of compound M21 on the
ampicillin-enhanced adherence (b) and invasion (c) of USA300 in A549 cells. Relative invasion and
relative adherence assays were performed in triplicate and experiments were repeated twice. Using
non-parametric tests, the treated groups were compared with the control group. Data represent mean
values ± SEM (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

Since ampicillin can promote S. aureus adherence and invasion [6], while M21 can
inhibit these effects [8], a combination of ampicillin and M21 was attempted to test these
phenomena. M21 reduced S. aureus adherence and invasion at varying concentrations,
regardless of the presence of ampicillin (Figure 1b,c). This may be due to the combination
of ampicillin and M21, which resulted in decreased virulence factors production.

Using Western blotting, we confirmed that the ampicillin at a concentration of 25 µM
(9 µg/mL) stimulated the production of protein A and α-toxin in MRSA strain Mu3. The
induction of virulence gene expression by ampicillin was suppressed in the presence of M21
at various dosages (Figure 2a). This suggests that the antivirulence agent may compromise
the virulence enhancement effect of antibiotics. These findings indicated that the compound
M21 might exert some control over the virulence-inducing effects of antibiotics in vivo.
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Figure 2. Compound M21 suppress the production of virulence factors induced by ampicillin and
reduces S. aureus pathogenicity in vivo. (a) Ampicillin-induced production of protein A and α-toxin
was suppressed by different concentrations of compound M21. (b,c) M21 treatment reduced bacterial
loads in mice, liver (b), and spleen (c). (d,e) M21 in combination with ampicillin treatment, reduced
bacterial loads in mice, liver (d), and spleen (e). Non-parametric tests (Mann–Whitney test) for treated
groups, comparing with the vehicle group. Data represent mean values ± SEM (* p < 0.05; ** p < 0.01;
*** p<0.001).

2.2. M21 Suppressed the S. aureus Virulence Induced by Different β-Lactam Antibiotics

Supportive evidence from in vitro findings prompted us to study the role of combi-
natorial treatment under in vivo conditions. We first tested the in vivo efficacy of M21
in suppressing ampicillin-induced staphylococcal infection. In the mouse peritonitis in-
fection model, on day 3, mice treated with M21 alone showed a significant reduction in
the bacterial count (up to 1-log reduction), especially in livers (p = 0.0288) and spleens
(p = 0.0147) (Figure 2b,c). Later using the same model, we tested the efficacy of ampicillin
monotherapy and antivirulence combination therapy. When compared with ampicillin
monotherapy, combinatorial treatment consisting of both ampicillin and M21 significantly
reduced bacterial loads (up to 1-log reduction) in the spleen (p = 0.0006) and liver of mice
(p = 0.0054) on day 6 (Figure 2d,e).

In the bacteremia model, mice treated with ampicillin alone had higher mortality
than vehicle control. However, the mice treated with M21 or in combination with ampi-
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cillin recovered from the infection (Figure 3a). Thus, compound M21 suppressed the
ampicillin-induced virulence in vivo. The exacerbated disease resulting from sub-inhibitory
concentrations of ampicillin can be minimized by repressing S. aureus virulence, and the
application of antivirulence agents during antibiotic therapy is highly effective in reducing
antibiotic-induced pathogenicity.
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Figure 3. Combination of M21 with ampicillin or ceftazidime increased mice survival. (a) Ampicillin
combined with M21 improved the survival of mice suggesting diminished antibiotic-induced viru-
lence in S. aureus (MIC of M21 to Mu3 is higher than 500 µM). (b) Ceftazidime combined with M21
saved mice from antibiotic-induced S. aureus virulence. (c) No synergistic effect was detected among
M21 and ampicillin, or ceftazidime against USA300 and Mu3 strains. Log-rank (Mantel–Cox) test
was used for survival analysis and the treated groups were compared with the control group. Data
represent mean values ± SEM (* p < 0.05).

In addition to ampicillin, another antibiotic belonging to β-lactams, ceftazidime was
evaluated in combination with M21 to treat S. aureus infection. By using a mouse bacteremia
model, we found that when antibiotics such as ceftazidime are used alone, they failed
to save the infected mice (Figure 3b). The mice in the antibiotic treatment group died
earlier than in the vehicle group. In contrast to this observation, the addition of M21 to the
antibiotic therapies significantly increased mice survival rates. It is interesting to note that
the compound M21 did not alter the MIC of ampicillin and suggested a novel adjuvant
mechanism for antibiotics. Since there is no synergistic effect between M21 and selected
antibiotics in vitro (Figure 3c), the antivirulence property of M21 appeared to be a decisive
factor in reducing the antibiotic-induced virulence under in vivo conditions.

2.3. Combinatorial Treatment of Antivirulence Agent and Antibiotic Reduced Host
Cytokine Expression

Aggravation of virulence and pathogenesis in S. aureus by different classes of antibi-
otics at sub-inhibitory concentrations hinted us to envisage the host-immune response
during infection. By inducing the expression of S. aureus virulence factors, β-lactam an-
tibiotics simultaneously enhanced the expression of cytokines, IL-6, and TNF-α genes in
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mouse kidneys. This drastic increase in proinflammatory cytokines might have contributed
to an excessive systemic inflammatory response leading to the mortality of mice [9]. M21
treatment did not reduce cytokine expression when used alone. However, the antibiotic-
induced immune response was suppressed when the mice were treated with M21 and
antibiotics (Figure 4a,b). The total bacterial load in this combinatorial treatment was similar
in different groups (Figure 4c). This suggests that antibiotics tend to induce MRSA viru-
lence and trigger the unmanageable immune response which resulted in the death of mice.
Thus, an antivirulence agent in combination with antibiotics may also help to address the
antibiotic-induced host immune response during infection.
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Figure 4. Cytokine gene expression in response to antibiotic-induced bacterial virulence. (a,b) q-PCR
analysis of cytokine expression in mouse kidneys after bacterial infection and antibiotics treatment.
Gene expression levels were relative to the hprt gene. (a) IL-6; (b) TNF-α; (c) On day 2, ceftazidime
and ampicillin in combination with M21 did not increase bacterial load in bacteremia model. Non-
parametric tests were performed, and the treated groups were compared with the vehicle group.
Data represent mean values ± SEM (* p < 0.05; ** p < 0.01).

2.4. The Virulence Suppressing Effect of M21 Is Common in Different Strains

To further investigate the virulence suppressing effect of M21 in combination with
antibiotics in different clinical isolates, we performed a paper disc diffusion assay. In this
assay, M21 suppressed the virulence factors induced by the sub-inhibitory concentration
of cefoxitin in 20 clinical isolates (Figure 5, Table 1, and Supplementary Figure S1). These
findings justify the need for antivirulence agents to control antibiotic-induced pathogenicity
by S. aureus and serve as a novel therapeutic strategy.
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Figure 5. Paper disc assay showing the interaction of M21 with cefoxitin in isolate 14. Cefoxitin
(4 mM, 5 µL) induced hla expression against different clinical isolates. M21 (4 mM, 5 µL) repressed
hla expression even in the induced state.

Table 1. Interaction between M21 and cefoxitin in different isolates *.

Isolates Cefoxitin Induced Virulence M21 Antivirulence Effect Interaction

Isolate 14 5 −6 0
Isolate 86 1 −5 0
Isolate 22 5 −6 0
Isolate 24 9 −6 0
Isolate 25 4 −3 1
Isolate 34 2 −8 0
Isolate 42 3 −7 0
Isolate 43 5 −8 0
Isolate 44 2 −3 1
Isolate 45 4 −5 0
Isolate 46 5 −3 0
Isolate 63 2 −2 1
Isolate 64 2 −2 1
Isolate 65 6 −4 1
Isolate 72 3 −2 1
Isolate 73 6 −5 1
Isolate 76 9 −5 −1
Isolate 83 1 −1 −2
Isolate 84 7 −3 0
Isolate 85 1 −8 0

*: 1 to 9: induction; −9 to −1: repression.

3. Discussion

The objective of conventional drug development strategies is to discover the next
chemical or molecular entity with a novel mode of action. For each promising novel
substance, the journey from early discovery to market introduction is slow, expensive, and
rife with obstacles. Moving a novel medicine from pre-clinical stages to the market typically
involves a minimum of 10 to 12 years and costs over USD 2 billion [10]. Antibiotics, which
are considered one of the greatest discoveries of humankind, received immense scientific
and pharmaceutical attention in the 20th century. However, the emergence of antibiotic-
resistant strains created irreparable damage not only to the pharmaceutical industry but
also to the people suffering from life-threatening bacterial infections. To combat these
drawbacks, the zeal for the discovery of novel antibiotics or adjuvants, or alternatives to
antibiotics has not stopped. Especially, there has been tremendous progress in the discovery
of novel adjuvants with the hope that they can “Make Antibiotics Great Again” [11].
However, studies have shown that the sub-inhibitory concentration of antibiotics such as
ampicillin can induce virulence expression in S. aureus. Despite this drawback, there has
been limited progress in discovering novel molecules that can control antibiotic-induced
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virulence. Thus, to address this lacuna, in the current study we focused on one such
novel molecule called M21, which not only displayed antivirulence properties against
MRSA but also functioned as an adjuvant for β-lactam antibiotics and suppressed the
antibiotic-induced virulence.

Combination regimens for the prevention or reversal of antibiotic resistance are already
a widespread method. They usually consist of two drugs, an antibiotic plus an antibiotic
adjuvant [12]. A combination of an antibiotic and an antibiotic adjuvant varies from a
combination of two antibiotics. In the former, the adjuvant may have little to no in vitro
action against bacteria, particularly at clinically relevant levels [13]. The adjuvant’s principal
function is to improve antibiotic activity. Additionally, these adjuvants may act as anti-
resistant or antivirulence molecules by targeting specific pathways in the bacterial system.
For example, adjuvants are reported to inhibit quorum sensing pathways in bacteria and
prevented the formation of biofilm under in vitro and in vivo conditions [7,14]. Owing to
these findings, the antivirulence properties of M21 were reassessed to address the bacterial
virulence induced by antibiotics.

Virulence in S. aureus is mediated by several factors such as surface proteins, toxins,
and superantigens. Among these factors, surface proteins contribute to the initial adhesion
and colonization of bacteria to the host surface and promote bacterial virulence. Once they
colonize, toxins attack the host immune cells and favor the survival of S. aureus in the host,
leading to life-threatening infections [15]. Thus, combating S. aureus infection through viru-
lence suppression by the non-antibiotic method is a promising alternative approach [16,17].
Thus, in the present study, the combination of antibiotics and an antivirulence agent was
tested to control antibiotic-induced S. aureus virulence.

β-lactams comprise a class of therapeutically significant antibiotics that are commonly
employed as the first line of treatment for infectious diseases. However, more than 75%
of patients with MRSA infections were shown to receive inappropriate agents for initial
antimicrobial treatment [3]. Due to the differences in tissue distribution, clearance, and
metabolism rates, even when suitable antibiotics and dosages are utilized, the concentra-
tions in certain organs of the human body might be lower than the MIC for some time
periods [18]. Antibiotics that are used for an extended period of time and at a low dose
can develop resistance and increase pathogenicity. At non-lethal concentrations, β-lactam
antibiotics induce the production of α-toxin and PVL toxin, toxic shock syndrome toxin
(TSST), enterotoxins, and LukED, which should contribute to the alteration of therapy and,
therefore, contribute to worse outcomes [19,20]. Induced bacterial adhesion by antibiotics
commonly used in the management of S. aureus infections may encourage invasive intra-
cellular strains, which may have an important effect on the persistence and recurrence
of infections [3]. Numerous investigations established a relationship between methicillin
resistance and poor clinical outcomes. MRSA strains were not shown to be considerably
more virulent than MSSA strains [21]. If antibiotic exposure is included, a resistant strain
is more likely to be exposed to an unsuitable substance, resulting in greater pathogenic-
ity [22]. By introducing an antivirulence agent, we can control the antibiotics-induced
virulence, to manage MRSA infection. A combination of β-lactam antibiotics and an an-
tivirulence drug is preferable than using β-lactam antibiotics alone because of the risk of a
worse outcome [9].

The combination of antibiotics and antivirulence agents may harness the full potential
of both agents [23]. A combination of the antivirulence agent with antibiotic was evaluated
with various in vitro molecular, biochemical, and cellular assays and in vivo mouse models.
Using the bacteremia model, we tested the induction of virulence by sub-inhibitory concen-
trations of ceftazidime (β-lactam antibiotics) and confirmed the worsening of infection by
MRSA in mice. Infected mice treated with these antibiotics alone not only failed to reduce
the bacterial load but also heightened the host immune response by enhancing bacterial
virulence. Some toxins, such as PSMs, enhance the release of cytokines CXCL8, CCL20 IL-6,
and TNF-α [24]; α-toxin stimulate cytokines, such as nuclear factor-kB (NF-kB), IL-6, but
not TNF-α [25]; protein A will induce IL-8, TNF-α, and MIP-1α. In the present study, we
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demonstrated that the antivirulence molecule M21 could profoundly reduce α-toxin and
protein A expression induced by subinhibitory concentrations of antibiotics [26]. Addition-
ally, the antivirulence agent M21, in combination with antibiotics, significantly improved
the survival of mice in the bacteremia model and reduced the S. aureus virulence expression
in vivo. Additionally, by repressing the antibiotic-induced bacterial virulence, this novel
combinatorial therapy reduced the host immune response during the infection. Thus,
findings from the present study not only epitomize the dark side of antibiotics but also
provide us an opportunity to reform our understanding of concealed virulence observed in
S. aureus strains. One of the intriguing approaches to address this challenge is the inclusion
of antivirulence agents in the treatment regimen.

Currently, most of the research focused on the discovery of novel antibiotic adjuvants
to sensitize resistant bacteria. After restoring the susceptibility to antibiotics, such as
β-lactam antibiotics and aminoglycosides, the old drugs can be used again. Antibiotics
adjuvants will show a synergistic effect with certain antibiotics by targeting the resistance
genes or increasing the intake or inhibiting the efflux pumps. It is noteworthy to mention
that the compound M21 did not show any synergistic effects with the tested antibiotics
and reduced the antibiotic-induced virulence independently. This suggests that M21 does
not interfere with antibiotics but works independently by suppressing multiple virulence
factors. Hence, an antivirulence molecule such as M21 differs completely from traditional
antibiotic adjuvants which are known to potentiate the activity of antibiotics. Thus, our
findings using this small molecule, justify a novel perspective of developing antibiotics
adjuvant and the need for antivirulence agents in suppressing antibiotic-induced virulence.

In concordance with these findings, our studies provide explicable evidence that
the exacerbated infections caused by sub-inhibitory concentrations of antibiotics can be
controlled by an antivirulence agent. We found that the compound M21 could overcome
the virulence induction caused by ampicillin and ceftazidime (and presumably some β-
lactam antibiotics as well). Thus, our studies illustrate the necessity for non-antibiotic-based
antivirulence agents in suppressing S. aureus virulence. The application of these compounds
in combination with antibiotics will possess high therapeutic values, and this could be a
better choice to control S. aureus infection globally.

4. Materials and Methods
4.1. Bacterial Strains and Plasmids

The bacterial strains used in this study are listed in Table 2. Brain heart infusion (BHI)
broth and BHI agar plates were used to grow S. aureus. Chloramphenicol was used at
10 µg/mL. Unless otherwise stated, all cultures were grown aerobically at 37 ◦C with
shaking at 250 rpm and growth was monitored at 600 nm with a HITACHI U-2800 (Hitachi,
Japan) spectrophotometer.

4.2. Minimum Inhibitory Concentration (MIC) Tests

In 96-well plates, the MIC was measured by inoculating 5 × 104 S. aureus cells in
100 µL BHI medium with a serial dilution of antibiotics. After 18 h at 37 ◦C, the MIC was
determined as the lowest concentration that resulted in a cell density of less than 0.01 OD
at 620 nm, indicating no observable growth.

4.3. Disk Diffusion and Lux Assays

A single colony of bioluminescent S. aureus strains containing plasmid pGLhla (Table 2)
from BHI agar was resuspended in 200 µL sterile water, diluted to 75 mL 0.7% (w/v) soft
agar, and plated on BHI agar. On the overlay, antibiotic discs (diameter 6 mm; Advantec Co.,
Tokyo, Japan) were placed, and the plates were incubated at 37 ◦C. After 20 h, inhibitory
zones were determined, and luminescence was detected using a PE IVIS Spectrum in vivo
imaging system (PerkinElmer, Hong Kong, China) [6]. When combining antibiotics and
compounds, antibiotics (10 mM, 5 µL) and M21 (50 mM, 5 µL) were placed on the plates
at a distance of 1.5 cm and 2 cm, respectively. When analyzing the interaction between
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cefoxitin and M21, we used a concentration of 4 mM of antibiotic and M21 and the distance
between the discs was 1.5 cm.

Table 2. Strains and plasmids used in this study.

Strain Phenotype Source

Lab strains
USA300 FPR 3757 CA-MRSA, Agr+ ATCC ABB1776

Mu3 MRSA, Agr+ ATCC700698
Clinical isolates

Isolate 14 Clinical isolate from patient blood, MRSA This study
Isolate 22 Clinical isolate from patient blood, MSSA This study
Isolate 24 Clinical isolate from patient blood, MRSA This study
Isolate 25 Clinical isolate from patient blood, MRSA This study
Isolate 34 Clinical isolate from patient blood, MRSA This study
Isolate 42 Clinical isolate from patient blood, MRSA This study
Isolate 43 Clinical isolate from patient blood, MSSA This study
Isolate 44 Clinical isolate from patient blood, MSSA This study
Isolate 45 Clinical isolate from patient blood, MRSA This study
Isolate 46 Clinical isolate from patient blood, MRSA This study
Isolate 63 Clinical isolate from patient blood, MSSA This study
Isolate 64 Clinical isolate from patient blood, MRSA This study
Isolate 65 Clinical isolate from patient blood, MSSA This study
Isolate 72 Clinical isolate from patient blood, MRSA This study
Isolate 73 Clinical isolate from patient blood, MRSA This study
Isolate 83 Clinical isolate from patient blood, MRSA This study
Isolate 84 Clinical isolate from patient blood, MSSA This study
Isolate 85 Clinical isolate from patient blood, MRSA This study
Isolate 86 Clinical isolate from patient blood, MRSA This study
Plasmid

pGL gfp-luxABCDE dual reporter plasmid Lab stock
pGLhla gfp-luxABCDE dual reporter driven by hla promoter Lab stock

4.4. Real-Time PCR to Verify Expression Levels

The preparation of total RNA from S. aureus was performed using an RNA protection
reagent according to the manufacturer’s instructions (Qiagen, Hilden, Germany) [8].

To study the expression of mouse cytokines by q-PCR, we acquired cDNA as described
above. The relative quantification of IL-6 and TNF-α transcripts was determined by the
ratio of expression of target transcripts relative to Hprt gene (housekeeping gene). The
sequences of primers for real-time PCR experiments are provided in Table 3.

Table 3. Primers used in this study.

Gene Primer for Real-Time PCR

rt-hprt-f CTGGTGAAAAGGACCTCTCG
rt-hprt-r TGAAGTACTCATTATAGTCAAGGGCA

rt-Tnf -α-f CTCCAGGCGGTGCCTATGT
rt-Tnf -α-r GAAGAGCGTGGTGGCCC

rt-Il-6-f CCAGAAACCGCTATGAAGTTCC
rt-Il-6-r TCACCAGCATCAGTCCCAAG

4.5. Adherence Assay and Invasion Assay

As previously described [6], before inoculation, overnight bacterial cultures treated
with ampicillin (0.2 g/mL) and/or compound M21 (10 µM or 50 µM) were washed three
times with PBS (pH 7.4) and diluted to 107 CFU/mL with MEM medium (defined as the
original bacterial CFU). A549 cells were seeded at a concentration of 2 × 105/mL in MEM
onto a 24-well tissue culture plate (Greiner) for measuring adherence and invasion ratio.
Briefly, confluent monolayers of A549 cells were cultivated overnight at 37 ◦C in 5% CO2 to
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form. The next morning, the medium was removed and A549 cells were washed twice with
1 mL of PBS before being infected with 1 mL of the prepared bacterial inoculum. For the
invasion experiment, after infecting A549 cells at 37 ◦C for two hours, the well supernatants
were collected for bacterial count (defined as the total bacterial CFU). All wells were then
washed three times with 1 mL PBS after which A549 cells were incubated for one hour at
37 ◦C in MEM containing gentamicin (100 µg/mL; Sigma-Aldrich, St. Louis, MO. USA)
and lysostaphin (10 µg/mL; Sigma-Aldrich, St. Louis, MO. USA). Afterward, the wells
were trypsinized with 150 µL of 0.25% trypsin-EDTA for 5 min, the cells in each well were
carefully collected into tubes, and 400 µL of ice-cold 0.025% Triton X-100 was added to the
tubes, which were then placed on ice.

The number of bacterial CFU released from lysed epithelial cells was evaluated by
plating lysates on BHI agar plates (the invaded bacterial CFU). After infecting A549 cells at
37 ◦C for one hour for the adherence test, the medium was withdrawn, and the cells were
washed three times with 1 mL PBS. The adherent bacterial CFU was then defined as the
total number of attached and invasive bacteria liberated from the lysed epithelial cells.

Relative invasion =
Internalized bacteria CFU of sample/Total CFU of sample
Internalized bacteria CFU of control/Total CFU of control

The bacterial adhesion in each well is given as a percentage of the CFU in the inoculum
that adhered to and penetrated the cells. The control wells had just medium as a pre-
treatment (MEM). Using the formulae, adhesion and invasion were then standardized
versus controls.

Relative adherence
=

Adhered & Internalized bacteria CFU of sample/Original CFU of sample
Adhered & Internalized bacteria CFU of control/Original CFU of control

Each experiment was conducted three times, and all relative adhesion and invasion
data were calculated and statistically evaluated using SigmaPlot software 11.0 (Sigma
Plot Software, Jandel, Chicago, IL, USA) and the Student’s t-test. Based on the p values,
statistical significance was assessed; p < 0.05 was deemed significant.

4.6. Western Blot

S. aureus strains were cultured in BHI broth. This allowed us to collect the supernatants
at different time points. Supernatants of ampicillin or compound M21 treated S. aureus was
isolated after 24 h, adjusted to an OD600 of 6.0, with BHI, and centrifuged. After boiling in
Laemmli sample buffer, 5 µL of culture supernatant was loaded onto a 12% sodium dodecyl
sulfate-polyacrylamide gel. Alpha-hemolysin was detected with rabbit anti-staphylococcal
α-hemolysin antibody (1:20,000) (Sigma-Aldrich, St. Louis, MO. USA) and goat Horseradish
Peroxidase (HRP)-conjugated anti-rabbit IgG (1:5000) (Sigma-Aldrich). Protein A was
visualized with HRP-conjugated Rabbit anti-staphylococcal Spa antibody (1:20,000) (Abcam,
Cambridge, MA, USA). The Western blot protocol was performed as described in the
product guide for Amersham ECL Western blotting detection reagents (GE Healthcare,
Buckinghamshire, UK).

4.7. Mouse Peritonitis Model

As previously described [27], we kept the 6- to 8-week old BALB/c female mice in
biosafety level 2 animal facility. Mice were housed in microisolator cages and received food
and water ad libitum. All experimental protocols (CULATR 3055-13 and 3678-15) followed
the standard operating procedures of the approved biosafety level 2 animal facilities and
were approved by the Animal Ethics Committee.

Mid-exponential phase of S. aureus culture was washed twice with sterile PBS and
resuspended again in PBS to obtain 1 × 108 cfu/100 µL. Mice were i.p. injected with
4 × 108 suspended early stationary phase S. aureus. After six hours post-infection, mice
were randomized into two groups (n = 12). Every day, they were treated with 100 µL PBS
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or 8 mg/mL ampicillin in PBS subcutaneously (s.c.) twice (12-h interval). The third control
group (n = 6), without bacterial infection, was treated only with ampicillin. Animals were
daily monitored for symptoms of disease (body weight drop, inactivity, ruffled fur, and
labored breath) and death.

To assess the antivirulence property of the compound M21, at the beginning of the
experiment, mice were randomized into two groups (n = 10) consisting of vehicle con-
trol group (receiving PBS with 5% DMSO and 2% tween 80) and treatment group (re-
ceiving M21). Each group was treated with designated concentrations of compound
M21 (3.85 mg/kg/dose) or vehicle control. Prior to infection, mice were pretreated with
two doses of M21 one day before infection. On day 0, infection in mice was established
by i.p. injection of 4 × 108 early stationary phase S. aureus. Two doses of compound M21
with an interval of 12 h were administrated. On day 3, 10 animals from each group were
euthanized, kidneys, livers, and spleens were harvested, homogenized in PBS, and plated
on BHI agar for counting the viable bacteria.

For studying the efficacy of combinatorial treatment, before the beginning of the
experiment, mice were randomized into two groups (n = 12 for ampicillin group and n = 14
for combination treatment group). They were either administered with the designated
concentrations of compound M21 or vehicle control. On day 0, mice were i.p. injected with
4 × 108 early stationary phase S. aureus mu3. On day 1, two doses of M21 pretreatment
were given by i.p. injection. Six hours later, mice were treated with 100 µL of 8 mg/mL
ampicillin in PBS subcutaneously. The ampicillin group was treated with the ampicillin
by s.c. and vehicle group received the vehicle control by i.p., whereas, the combinatorial
treatment group received ampicillin by s.c. and M21 by i.p. All these treatments comprised
two dosages per day (12 h interval). The animals were daily monitored for symptoms of
disease (body weight drop, inactivity, ruffled fur, and labored breath) and death.

On day 6, 16 animals were euthanized, kidneys, livers, and spleens were harvested,
homogenized in PBS, and plated on BHIA for determining the bacterial viable count.

4.8. Mouse Bacteraemia Model

As previously described [8], S. aureus strain mu3 was cultured to the early exponential
phase, washed twice with sterile PBS, and resuspended in PBS to attain a cell density
of 1 × 108 CFU/100 µL. This bacterial suspension was used to establish the lethal mice
infection model. The female BALB/c mice, 6–8 weeks, were infected through tail vein
(i.v.) with S. aureus and randomized into 4 groups consisting of 5–12 mice per group.
One hour post-infection, mice were treated with designated concentrations of antibiotics
(s.c.) or compound M21 (3.85 mg/kg/dose) (i.p.) or combination of antibiotics and M21 or
vehicle, serving as control. Antibiotics such as ampicillin (40 mg/kg/dose), and ceftazidime
(16.5 mg/kg/dose) were used for the treatment twice per day. To study the combinatorial
effect of M21 and antibiotics, we used four groups of mice for vehicle, M21, antibiotic, and
combined treatments, respectively. M21 or injection buffer treatments were performed
twice per day at 12 h intervals. The survival was monitored according to the body condition
scoring system.

For q-PCR studies, samples were obtained from mice that had undergone survival
experiments. On day 2, animals from each group were euthanized and kidneys were
collected. The kidney from each mouse was divided into two halves; one half of the kidney
was stored in liquid nitrogen for RNA extraction, and the other half was homogenized in
PBS and plated on BHIA for determining the bacterial viable count.

4.9. Statistics

Statistical analysis was performed using Graph Pad Prism version 7.0. All error bars
depict the standard error of mean (SEM). Horizontal lines depict the mean. All replicates
are biological (from different samples). Non-parametric tests (Mann–Whitney test) were
used for significant analysis. For bacteraemia model, data were analyzed by survival
analysis, and Log-rank (Mantel–Cox) test was used for significance analysis.
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