Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review
Abstract
:1. Introduction
2. Results and Discussion
2.1. Burns
2.2. Surgical Site Infections
2.3. Diabetic Foot
2.4. Daptomycin in Association with Other Molecules
2.4.1. Daptomycin (Dap) Micelles-Stabilized Palladium Nanoflowers (Dap-PdNFs)
2.4.2. Vitamin E and Derivates
2.4.3. IB-367
2.4.4. RNA III-Inhibiting Peptide
2.4.5. Dap@Au/Ag Nanorods
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S.; Saw, S. Daptomycin. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470407/ (accessed on 30 March 2022).
- Iwata, S.; Koyama, H.; Murata, Y. Efficacy and safety of daptomycin in Japanese pediatric participants with complicated skin and soft tissue infections or bacteremia caused by gram-positive cocci. J. Infect. Chemother. 2022, 28, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Osorio, C.; Garzón, L.; Jaimes, D.; Silva, E.; Bustos, R.-H. Impact on Antibiotic Resistance, Therapeutic Success, and Control of Side Effects in Therapeutic Drug Monitoring (TDM) of Daptomycin: A Scoping Review. Antibiotics 2021, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W. DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183395. [Google Scholar] [CrossRef]
- Karas, J.A.; Carter, G.P.; Howden, B.P.; Turner, A.M.; Paulin, O.K.A.; Swarbrick, J.D.; Baker, M.A.; Li, J.; Velkov, T. Structure–Activity Relationships of Daptomycin Lipopeptides. J. Med. Chem. 2020, 63, 13266–13290. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.D.; Palmer, M. The action mechanism of daptomycin. Bioorg. Med. Chem. 2016, 24, 6253–6268. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, A.; Almeida, P.F. The Antibiotic Peptide Daptomycin Functions by Reorganizing the Membrane. J. Membr. Biol. 2021, 254, 97–108. [Google Scholar] [CrossRef]
- Howe, A.; Sofou, S. Daptomycin-Induced Lipid Phases on Model Lipid Bilayers: Effect of Lipid Type and of Lipid Leaflet Order on Membrane Permeability. J. Phys. Chem. B 2021, 125, 5775–5785. [Google Scholar] [CrossRef]
- Grein, F.; Müller, A.; Scherer, K.M.; Liu, X.; Ludwig, K.C.; Klöckner, A.; Strach, M.; Sahl, H.-G.; Kubitscheck, U.; Schneider, T. Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gregoire, N.; Chauzy, A.; Buyck, J.; Rammaert, B.; Couet, W.; Marchand, S. Clinical Pharmacokinetics of Daptomycin. Clin. Pharmacokinet. 2021, 60, 271–281. [Google Scholar] [CrossRef]
- Tsukada, H.; Tsuji, Y.; Yamashina, T.; Tsuruta, M.; Hiraki, Y.; Tsuruyama, M.; Ogami, C.; Kawasuji, H.; Sakamaki, I.; Yamamoto, Y. Pharmacokinetics and pharmacodynamics of daptomycin in a clinical setting. J. Infect. Chemother. 2020, 26, 230–235. [Google Scholar] [CrossRef]
- Sulaiman, J.E.; Lam, H. Novel Daptomycin Tolerance and Resistance Mutations in Methicillin-Resistant Staphylococcus aureus from Adaptive Laboratory Evolution. mSphere 2021, 6, e0069221. [Google Scholar] [CrossRef] [PubMed]
- Atshan, S.; Hamat, R.; Coolen, M.; Dykes, G.; Sekawi, Z.; Mullins, B.; Than, L.; Abduljaleel, S.; Kicic, A. The Role of Subinhibitory Concentrations of Daptomycin and Tigecycline in Modulating Virulence in Staphylococcus aureus. Antibiotics 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Higgs, C.; Turner, A.M.; Nong, Y.; Gorrie, C.L.; Sherry, N.L.; Dyet, K.H.; Seemann, T.; Williamson, D.A.; Stinear, T.P.; et al. Daptomycin Resistance Occurs Predominantly in vanA-Type Vancomycin-Resistant Enterococcus faecium in Australasia and Is Associated with Heterogeneous and Novel Mutations. Front. Microbiol. 2021, 12, 749935. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M.S. Alternative clinical indications for novel antibiotics licensed for skin and soft tissue infection? Curr. Opin. Infect. Dis. 2015, 28, 117–124. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Gould, I.M. Does vancomycin have a future in the treatment of skin infections? Curr. Opin. Infect. Dis. 2014, 27, 146–154. [Google Scholar] [CrossRef]
- Humphries, R.M.; Pollett, S.; Sakoulas, G. A current perspective on daptomycin for the clinical microbiologist. Clin. Microbiol. Rev. 2013, 26, 759–780. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.Y.; Hu, J.T.; Zhang, C.; Zhou, W.; Chen, X.F.; Jiang, L.Y.; Tang, Z.H. The safety and efficacy of daptomycin versus other antibiotics for skin and soft-tissue infections: A meta-analysis of randomised controlled trials. BMJ Open 2014, 4, e004744. [Google Scholar] [CrossRef] [Green Version]
- Bliziotis, L.A.; Plessa, E.; Peppas, G.; E Falagas, M. Daptomycin Versus Other Antimicrobial Agents for the Treatment of Skin and Soft Tissue Infections: A Meta-Analysis. Ann. Pharmacother. 2010, 44, 97–106. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, C.; Mao, Z.; Yang, M.; Kang, H.; Liu, H.; Pan, L.; Hu, J.; Luo, J. Efficacy and safety of daptomycin for skin and soft tissue infections: A systematic review with trial sequential analysis. Ther. Clin. Risk Manag. 2016, 12, 1455–1466. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, M.; Mu, Y.; Lynfield, R.; Bulens, S.N.; Nadle, J.; Aragon, D.; Petit, S.; Ray, S.M.; Harrison, L.H.; Dumyati, G.; et al. Trends in Invasive Methicillin-Resistant Staphylococcus aureus Infections. Pediatrics 2013, 132, e817–e824. Available online: www.pediatrics.org/cgi/content/full/132/4/e817 (accessed on 30 March 2022). [CrossRef] [Green Version]
- Dukic, V.; Lauderdale, D.S.; Wilder, J.; Daum, R.S.; David, M.Z. Epidemics of Community-Associated Methicillin-Resistant Staphylococcus aureus in the United States: A Meta-Analysis. PLoS ONE 2013, 8, e52722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, M.A.; Cruz, A.T.; Kowalkowski, M.A.; Raphael, J.L. Trends in resource utilization for hospitalized children with skin and soft tissue infections. Pediatrics 2013, 131, e718–e725. Available online: www.pediatrics.org/cgi/content/full/131/3/e718 (accessed on 30 March 2022). [CrossRef] [PubMed] [Green Version]
- Sutter, D.E.; Milburn, E.; Chukwuma, U.; Dzialowy, N.; Maranich, A.M.; Hospenthal, D.R. Changing susceptibility of Staphylococcus aureus in a US pediatric population. Pediatrics 2016, 137, e20153099. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; Rybak, M.; et al. Infectious Diseases Society of America. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. [published correction appears in Clin. Infect. Dis. 2015, 60,1448]. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Academy of Pediatrics Committee on Infectious Disease. Red Book: 2015 Report of the Committee on Infectious Disease, 30th ed.; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2015. [Google Scholar]
- Le, J.; Ny, P.; Capparelli, E.; Lane, J.; Ngu, B.; Muus, R.; Romanowski, G.; Vo, T.; Bradley, J. Pharmacodynamic characteristics of nephrotoxicity associated with vancomycin use in children. J. Paediatr. Infect. Dis. Soc. 2015, 4, e109–e116. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, S.L. Treatment of community- associated methicillin-resistant Staphylococcus aureus infections. Pediatr. Infect. Dis. J. 2005, 24, 457–458. [Google Scholar] [CrossRef]
- Garau, J.; Ostermann, H.; Medina, J.; Avila, M.; McBride, K.; Blasi, F. Current management of patients hospitalized with complicated skin and soft tissue infections across Europe (2010–2011): Assessment of clinical practice patterns and real-life effectiveness of antibiotics from the REACH study. Clin. Microbiol. Infect. 2013, 19, E377–E385. [Google Scholar] [CrossRef] [Green Version]
- Douros, A.; Grabowski, K.; Stahlmann, R. Drug-drug interactions and safety of linezolid, tedizolid, and other oxazolidinones. Expert Opin. Drug Metab. Toxicol. 2015, 11, 1849–1859. [Google Scholar] [CrossRef]
- Chiappini, E.; Conti, C.; Galli, L.; de Martino, M. Clinical efficacy and tolerability of linezolid in pediatric patients: A systematic review. Clin. Ther. 2010, 32, 66–88. [Google Scholar] [CrossRef]
- Nambiar, S.; Rellosa, N.; Wassel, R.T.; Borders-Hemphill, V.; Bradley, J.S. Linezolid-associated peripheral and optic neuropathy in children. Pediatrics 2011, 127, e1528–e1532. [Google Scholar] [CrossRef] [Green Version]
- Yue, J.; Dong, B.R.; Yang, M.; Chen, X.; Wu, T.; Liu, G.J. Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst. Rev. 2014, 7, CD008056. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.; Glasser, C.; Patino, H.; Arnold, S.R.; Arrieta, A.; Congeni, B.; Daum, R.S.; Kojaoghlanian, T.; Yoon, M.; Anastasiou, D.; et al. Daptomycin for Complicated Skin Infections: A Randomized Trial. Pediatrics 2017, 139, e20162477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akcaer, M.; Karakas, A.; Tok, D.; Coskun, O.; Sari, S. Eosinophilic pneumonia: Daptomycin-induced lung complication. Med. Mal. Infect. 2016, 46, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Kirker, K.R.; James, G.A.; Fleckman, P.; Olerud, J.E.; Stewart, P.S. Differential effects of planktonic and biofilm MRSA on human fibroblasts. Wound Repair Regen. 2012, 20, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Simonetti, O.; Lucarini, G.; Orlando, F.; Pierpaoli, E.; Ghiselli, R.; Provinciali, M.; Castelli, P.; Guerrieri, M.; Di Primio, R.; Offidani, A.; et al. Role of Daptomycin on Burn Wound Healing in an Animal Methicillin-Resistant Staphylococcus aureus Infection Model. Antimicrob. Agents Chemother. 2017, 24, e00606-17. [Google Scholar] [CrossRef] [Green Version]
- Friedman, B.C.; Mendez-Vigo, L.; Wilson, J.; Yankelev, S. A retrospective review of clinical experience with daptomycin for a variety of wound types in a burn and wound care facility. South. Med. J. 2010, 103, 748–752. [Google Scholar] [CrossRef]
- Popov, A.F.; Schmitto, J.D.; Jebran, A.F.; Bireta, C.; Friedrich, M.; Rajaruthnam, D.; Coskun, K.O.; Braeuer, A.; Hinz, J.; Tirilomis, T.; et al. Treatment of gram-positive deep sternal wound infections in cardiac surgery—experiences with daptomycin. J. Cardiothorac. Surg. 2011, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, C.; Cirioni, O.; Arzeni, D.; Ghiselli, R.; Simonetti, O.; Orlando, F.; Ganzetti, G.; Staffolani, S.; Brescini, L.; Provinciali, M.; et al. In vitro activity and in vivo efficacy of tigecycline alone and in combination with daptomycin and rifampin against Gram-positive cocci isolated from surgical wound infection. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1759–1764. [Google Scholar] [CrossRef]
- Ambrosch, A.; Halevy, D.; Fwity, B.; Brin, T.; Lobmann, R. Effect of Daptomycin on Local Interleukin-6, Matrix Metalloproteinase-9, and Metallopeptidase Inhibitor 1 in Patients With MRSA-Infected Diabetic Foot. Int. J. Low. Extrem. Wounds 2013, 12, 100–105. [Google Scholar] [CrossRef]
- He, J.; Wang, J.; Gao, S.; Cui, Y.; Ji, X.; Zhang, X.; Wang, L. Biomineralized synthesis of palladium nanoflowers for photothermal treatment of cancer and wound healing. Int. J. Pharm. 2022, 615, 121489. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, E.; Orlando, F.; Cirioni, O.; Simonetti, O.; Giacometti, A.; Provinciali, M. Supplementation with tocotrienols from Bixa orellana improves the in vivo efficacy of daptomycin against methicillin-resistant Staphylococcus aureus in a mouse model of infected wound. Phytomedicine 2017, 36, 50–53. [Google Scholar] [CrossRef]
- Provinciali, M.; Cirioni, O.; Orlando, F.; Pierpaoli, E.; Barucca, A.; Silvestri, C.; Ghiselli, R.; Scalise, A.; Brescini, L.; Guerrieri, M.; et al. Vitamin E improves the in vivo efficacy of tigecycline and daptomycin in an animal model of wounds infected with meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2011, 60, 1806–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirioni, O.; Silvestri, C.; Pierpaoli, E.; Barucca, A.; Kamysz, W.; Ghiselli, R.; Scalise, A.; Brescini, L.; Castelli, P.; Orlando, F.; et al. IB-367 pre-treatment improves the in vivo efficacy of teicoplanin and daptomycin in an animal model of wounds infected with meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2013, 62, 1552–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Leban, F.; Kiran, M.D.; Wolcott, R.; Balaban, N. Molecular mechanisms of RIP, an effective inhibitor of chronic infections. Int, J. Artif Organs 2010, 33, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Ye, J.; Chen, Y.; Tanziela, T.; Jiang, H.; Wang, X. Intelligent peptide-nanorods against drug-resistant bacterial infection and promote wound healing by mild-temperature photothermal therapy. Chem. Eng. J. 2022, 432, 134061. [Google Scholar] [CrossRef]
- Ben-David, D.; Mermel, L.A.; Parenteau, S. Methicillin-resistant Staphylococcus aureus transmission: The possible importance of unrecognized health care worker carriage. Am. J. Infect. Control. 2007, 36, 93–97. [Google Scholar] [CrossRef]
- Abbasi-Montazeri, E.; Khosravi, A.D.; Feizabadi, M.M.; Goodarzi, H.; Khoramrooz, S.S.; Mirzaii, M.; Kalantar, E.; Darban-Sarokhalil, D. The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) isolates with high-level mupirocin resistance from patients and personnel in a burn center. Burns 2013, 39, 650–654. [Google Scholar] [CrossRef]
- Wearn, C.M.; Hardwicke, J.; Moiemen, N. Burns in the elderly: Mortality is still a relevant outcome. Burns 2015, 41, 1617–1618. [Google Scholar] [CrossRef]
- Seaton, R.A. Daptomycin: Rationale and role in the management of skin and soft tissue infections. J. Antimicrob. Chemother. 2017, 61, iii15–iii23. [Google Scholar] [CrossRef]
- Huang, Y.; Lv, G.; Hu, L.; Wu, Y.; Guo, N.; Zhu, Y.; Ding, L.; Li, Q.; Liu, S.; Yang, Y.; et al. Efficacy and Safety of High Vs Standard Daptomycin Doses Examined in Chinese Patients with Severe Burn Injuries by Pharmacokinetic Evaluation. J. Burn Care Res. 2020, 2, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Rizzetto, G.; Radi, G.; Molinelli, E.; Cirioni, O.; Giacometti, A.; Offidani, A. New Perspectives on Old and New Therapies of Staphylococcal Skin Infections: The Role of Biofilm Targeting in Wound Healing. Antibiotics 2021, 10, 1377. [Google Scholar] [CrossRef]
- Balaji, S.; Watson, C.L.; Ranjan, R.; King, A.; Bollyky, P.L.; Keswani, S.G. Chemokine involvement in fetal and adult wound healing. Adv. Wound Care 2014, 4, 660–672. [Google Scholar] [CrossRef] [PubMed]
- Werner, S.; Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83, 835–870. [Google Scholar] [CrossRef] [PubMed]
- Nanney, L.B.; Paulsen, S.; Davidson, M.K.; Cardwell, N.L.; Whitsitt, J.S.; Davidson, J.M. Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen. 2000, 8, 117–127. [Google Scholar] [CrossRef]
- Stoll, S.; Benedict, M.; Mitra, R.; Hiniker, A.; Elder, J.T.; Nuñez, G. EGF receptor signaling inhibits keratinocyte apoptosis: Evidence for mediation by Bcl-XL. Oncogene 1998, 16, 1493–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repertinger, S.K.; Campagnaro, E.; Fuhrman, J.; El-Abaseri, T.; Yuspa, S.H.; Hansen, L.A. EGFR enhances early healing after cutaneous incisional wounding. J. Investig. Dermatol. 2004, 123, 982–989. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, E.J.; Chiu, M.L.; Payne, R.E. Stimulation of growth of keratinocytes by basic fibroblast growth factor. J. Investig. Dermatol. 1988, 90, 767–769. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.L.; Bian, H.N.; Qi, S.; De Chen, H.; Li, H.D.; Bin Xu, Y.; Li, T.Z.; Liu, X.S.; Liang, H.Z.; Xin, B.R.; et al. Basic fibroblast growth factor (bFGF) alleviates the scar of the rabbit ear model in wound healing. Wound Repair Regen. 2008, 16, 576–581. [Google Scholar] [CrossRef]
- Sogabe, Y.; Abe, M.; Yokoyama, Y.; Ishikawa, O. 2006. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen 2006, 14, 457–462. [Google Scholar] [CrossRef]
- Nagayasu-Tanaka, T.; Anzai, J.; Takaki, S.; Shiraishi, N.; Terashima, A.; Asano, T.; Nozaki, T.; Kitamura, M.; Murakami, S. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2) in the Promotion of Periodontal Regeneration in Beagle Dogs. PLoS ONE 2015, 10, e0131870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.X.; Lin, C.; Lin, B.B.; Wang, Z.G.; Zhang, H.Y.; Wu, F.Z.; Cheng, Y.; Xiang, L.J.; Guo, D.J.; Luo, X.; et al. The anti-scar effects of basic fibroblast growth factor on the wound repair in vitro and in vivo. PLoS ONE 2013, 8, e59966. [Google Scholar] [CrossRef] [PubMed]
- Eto, H.; Suga, H.; Aoi, N.; Kato, H.; Doi, K.; Kuno, S.; Tabata, Y.; Yoshimura, K. Therapeutic potential of fibroblast growth factor-2 for hypertrophic scars: Upregulation of MMP-1 and HGF expression. Lab. Investig. 2012, 92, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, M.J.; Park, J.H.; Kim, J.W.; Park, K.N.; Lee, J.Y.; Kim, H.K.; Lee, S.W. The efficacy of fibroblast growth factor for the treatment of chronic vocal fold scarring: From animal model to clinical application. Clin. Exp. Otorhinolaryngol. 2017, 10, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, R.S.; Culshaw, D.L.; Donovan, B.J.; Lamp, K.C. Daptomycin for the treatment of surgical site infections. Surgery 2009, 146, 316–324. [Google Scholar] [CrossRef]
- Simonetti, O.; Lucarini, G.; Cirioni, O.; Zizzi, A.; Orlando, F.; Provinciali, M.; Di Primio, R.; Giacometti, A.; Offidani, A. Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression. Burns 2013, 39, 776–787. [Google Scholar] [CrossRef]
- Lobmann, R.; Zemlin, C.; Motzkau, M.; Reschke, K.; Lehnert, H. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with protease absorbent dressing. J. Diabetes Complicat. 2006, 20, 329–335. [Google Scholar] [CrossRef]
- Lobmann, R.; Ambrosch, A.; Schultz, G.; Waldmann, K.; Schieweck, S.; Lehnert, H. Expression of matrix-metallopro-teinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002, 45, 26–37. [Google Scholar] [CrossRef]
- Vaalamo, M.; Weckroth, M.; Puolakkainen, P.; Kere, J.; Saarinen, P.; Lauharanta, J.; Saarialho-Kere, U.K. Patterns of matrix metalloproteinases and TIMP-1 expression in chronic and normally healing human cutaneous wounds. Br. J. Dermatol. 1996, 135, 52–59. [Google Scholar] [CrossRef]
- Liu, Y.; Min, D.; Bolton, T.; Nubé, V.; Twigg, S.M.; Yue, D.K.; McLennan, S.V. Increased Matrix Metalloproteinase-9 Predicts Poor Wound Healing in Diabetic Foot Ulcers. Diabetes Care 2009, 32, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 2005, 366, 1736–1743. [Google Scholar] [CrossRef]
- Trengove, N.J.; Bielefeldt-Ohmann, H.; Stacey, M.C. Mitogenic activity and cytokine levels in non-healing and healing chronic leg ulcers. Wound Repair Regen. 2000, 8, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.J.; Stacey, M.C. Levels of tumor necrosis factor alpha (TNF-α) and soluble TNF receptors in chronic venous leg ulcers—correlations to healing status. J. Investig. Dermatol. 1998, 110, 292–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.M.; Ward, S.I.; Olutoye, O.O.; Diegelmann, R.F.; Kelman, I. Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastases activity and diminished levels of proteinase inhibitors. Wound Repair Regen. 1997, 5, 23–32. [Google Scholar]
- Barro, C.; Romaner, J.P.; Fdili, A.; Guillot, M.; Morel, F. Gelatinase concentration in tears of corneal-grafted patients. Curr. Eye Res. 1998, 17, 174–182. [Google Scholar] [CrossRef]
- Kausar, H.; Bhasin, G.; Zargar, M.A.; Athar, M. Palm oil alleviates 12-O-tetradecanoyl-phorbol-13-acetate-induced tumor promotion response in murine skin. Cancer Lett. 2003, 192, 151–160. [Google Scholar] [CrossRef]
- Makpol, S.; Jam, F.A.; Khor, S.C.; Ismail, Z.; Mohd Yusof, Y.A.; Ngah, W.Z. Comparative Effects of Biodynes, Tocotrienol-Rich Fraction, and Tocopherol in Enhancing Collagen Synthesis and Inhibiting Collagen Degradation in Stress- Induced Premature Senescence Model of Human Diploid Fibroblasts. Oxid. Med. Cell. Longev. 2013, 2013, 298574. [Google Scholar] [CrossRef]
- Pierpaoli, E.; Cirioni, O.; Barucca, A.; Orlando, F.; Silvestri, C.; Giacometti, A.; Provinciali, M. Vitamin E supplementation in old mice induces antimicrobial activity and improves the efficacy of daptomycin in an animal model of wounds infected with methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2011, 66, 2184–2185. [Google Scholar] [CrossRef] [Green Version]
- Tirilomis, T. Daptomycin and Its Immunomodulatory Effect: Consequences for Antibiotic Treatment of Methicillin-Resistant Staphylococcus aureus Wound Infections after Heart Surgery. Front Immunol. 2014, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Simonetti, O.; Silvestri, C.; Arzeni, D.; Cirioni, O.; Kamysz, W.; Conte, I.; Staffolani, S.; Orsetti, E.; Morciano, A.; Castelli, P.; et al. In vitro activity of the protegrin IB-367 alone and in combination compared with conventional antifungal agents against dermatophytes. Mycoses 2014, 57, 233–239. [Google Scholar] [CrossRef]
- Simonetti, O.; Cirioni, O.; Ghiselli, R.; Orlando, F.; Silvestri, C.; Mazzocato, S.; Kamysz, W.; Kamysz, E.; Provinciali, M.; Giacometti, A.; et al. In vitro activity and in vivo animal model efficacy of IB-367 alone and in combination with imipenem and colistin against Gram-negative bacteria. Peptides 2014, 55, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Cirioni, O.; Ghiselli, R.; Goteri, G.; Scalise, A.; Orlando, F.; Silvestri, C.; Riva, A.; Saba, V.; Madanahally, K.D.; et al. RNAIII-Inhibiting Peptide Enhances Healing of Wounds Infected with Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2205–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.-M.; Xu, N.-N.; Yao, Y.-Y.; Guan, Y.-Y.; Li, Q.-Y.; Zheng, F.; Chen, F.-Z.; Wang, G. The Efficacy and Safety of High-dose Daptomycin in the Treatment of Complicated Skin and Soft Tissue Infections in Asians. Int. J. Infect. Dis. 2020, 95, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Blasco, P.; Zhang, C.; Chow, H.Y.; Chen, G.; Wu, Y.; Li, X. An atomic perspective on improving daptomycin’s activity. Biochim. et Biophys. Acta (BBA)-Gen. Subj. 2021, 1865, 129918. [Google Scholar] [CrossRef]
Main Evidence | References | |
---|---|---|
Burns | Higher risk of MRSA infection in burn patients hospitalized MRSA-soluble products impair wound healing by apoptosis and disorganization of fibroblasts | Kirker et al. [37] |
Murine model, MRSA-infected burn wounds. Groups: one control not infected, one not infected + intraperitoneal daptomycin, one infected no treatment, one infected + intraperitoneal daptomycin, one infected + intraperitoneal teicoplanin. Daptomycin with greater antimicrobial effect than teicoplanin. (p < 0.01) Daptomycin groups with better epithelialization and significantly higher collagen scores, higher expression of EGFR and FGF-2 Daptomycin reduced hypertrophic burn scar formation. | Simonetti et al. [38] | |
Infected wounds and SSSIs, including burns (134). Eradication of infection in 98.5% of cases Lack of histological assessment of wound healing | Friedman et al. [39] | |
Surgical Site Infections | 23 patients deep sternal wound infection by S. aureus after cardiac surgery. All patients with complete wound healing after 22 ± 13.4 days. Lack of histological assessment of wound healing | Popov, A.F. et al. [40] |
Murine model, skin wounds infected with S. aureus and Enterococcus spp. Tigecycline + daptomycin with synergic bactericidal action compared to single treatment Lack of histological assessment of wound healing | Silvestri et al. [41] | |
Diabetic Foot | Pilot study, 8 patients with MRSA-infected diabetic feet treated with daptomycin IL-6 decreased in the first 3 days MMP-9 decreased TIMP-1 increased Reduction in wound size and eradication of MRSA after 14-day therapy Lack of histological assessment of wound healing | Ambrosch et al. [42] |
Daptomycin in association with other molecules | ||
Daptomycin(Dap) micelles-stabilized palladium nanoflowers(Dap-PdNFs) | In vitro, S. Aureus Dap-PdNFs + 808 nm laser S. aureus viability reduced after 10 min of laser to 30.93% In vivo, diabetic mice with S. Aureus-infected wounds. Five groups: saline group, saline + laser irradiation, Dap-PdNFs (topical application), Dap-PdNFs + laser irradiation. Dap-PdNFs + laser group showed the best reduction in wound area, 6.5%. Histological examination (heart, liver, spleen, lung, and kidney) with no alterations Dap-PdNFs + 808 nm light were effective against bacteria around the wound, promoted local angiogenesis, epithelial tissue growth, and accelerated wound healing Lack of histological assessment of wound healing | He et al. [43] |
Vitamin E (VE) and derivates | Murine model with MRSA-infected wounds Tocotrienols (T3s) + daptomycin, best antibacterial action vs. single treatment or placebo, better markers of wound healing (fibronectin type III expression and IL-24 mRNAs). Lack of histological assessment of wound healing | Pierpaoli et al. [44] |
Murine model with MRSA-infected wounds VE pre-treatment + daptomycin showed the highest antibacterial efficacy. VE enhancer of the antimicrobial activity of both daptomycin and tigecycline. Lack of histological assessment of wound healing | Provinciali et al. [45] | |
IB-367 | Murine model with MRSA-infected wounds IB-367 + daptomycin the most effective in bactericidal activity vs. single therapies and IB-367 + teicoplanin. Lack of histological assessment of wound healing | Cirioni et al. [46] |
RNA III-inhibiting peptide (RIP) | Patient with a diabetic foot ulcer RIP topical 1 mg/cc in combination with daptomycin 6 mg/kg intravenously Complete closure in 24 weeks, avoiding amputation Example of the potential of combining new topical molecules + daptomycin, increased antibacterial and improved wound healing | Lopez-Leban et al. [47] |
Dap@Au/Ag nanorods (Dap@Au/Ag NRs) | In vitro and in vivo murine models, After exposure to 808 nm, 0.8 W/cm2, 40–60 s laser, Dap@Au/Ag NRs increased its antibacterial activity with a good photothermal effect. Dap@Au/Ag NRs significantly inhibit MRSA, prevent wound ulceration, promoting wound healing. | Dong et al. [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzetto, G.; Molinelli, E.; Radi, G.; Diotallevi, F.; Cirioni, O.; Brescini, L.; Giacometti, A.; Offidani, A.; Simonetti, O. Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics 2022, 11, 944. https://doi.org/10.3390/antibiotics11070944
Rizzetto G, Molinelli E, Radi G, Diotallevi F, Cirioni O, Brescini L, Giacometti A, Offidani A, Simonetti O. Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics. 2022; 11(7):944. https://doi.org/10.3390/antibiotics11070944
Chicago/Turabian StyleRizzetto, Giulio, Elisa Molinelli, Giulia Radi, Federico Diotallevi, Oscar Cirioni, Lucia Brescini, Andrea Giacometti, Annamaria Offidani, and Oriana Simonetti. 2022. "Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review" Antibiotics 11, no. 7: 944. https://doi.org/10.3390/antibiotics11070944
APA StyleRizzetto, G., Molinelli, E., Radi, G., Diotallevi, F., Cirioni, O., Brescini, L., Giacometti, A., Offidani, A., & Simonetti, O. (2022). Role of Daptomycin in Cutaneous Wound Healing: A Narrative Review. Antibiotics, 11(7), 944. https://doi.org/10.3390/antibiotics11070944