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Abstract: Resistance to antibiotic treatment developed by bacteria in humans and animals occurs
when the microorganisms resist treatment with clinically approved antibiotics. Actions must be
implemented to stop the further development of antibiotic resistance and the subsequent emergence
of superbugs. Medication repurposing/repositioning is one strategy that can help find new antibiotics,
as it speeds up drug development phases. Among them, the Zn2+ ion binders, such as sulfonamides
and their bioisosteres, are considered the most promising compounds to obtain novel antibacterials,
thus avoiding antibiotic resistance. Sulfonamides and their bioisosteres have drug-like properties
well-known for decades and are suitable lead compounds for developing new pharmacological
agent families for inhibiting carbonic anhydrases (CAs). CAs are a superfamily of metalloenzymes
catalyzing the reversible reaction of CO2 hydration to HCO3

− and H+, being present in most bacteria
in multiple genetic families (α-, β-, γ- and ι-classes). These enzymes, acting as CO2 transducers,
are promising drug targets because their activity influences microbe proliferation, biosynthetic
pathways, and pathogen persistence in the host. In their natural or slightly modified scaffolds,
sulfonamides/sulfamates/sulamides inhibit CAs in vitro and in vivo, in mouse models infected with
antibiotic-resistant strains, confirming thus their role in contrasting bacterial antibiotic resistance.

Keywords: carbonic anhydrase; sulfonamides; inhibitors; antibiotic resistance; bacteria

1. Introduction

Antibiotic resistance is a worldwide emergency that kills more people than HIV/AIDS
and malaria combined [1]. It kills around 30,000 people in Europe each year, with Italy
accounting for one-third of them [2,3]. In addition, antibiotic-resistant illnesses have
a significant effect on public health services [4]. Antibiotic resistance is the ability of
bacteria to counteract the action of one or more of the commune FDA-approved antibiotics
(Figure 1) [4,5]. The antibiotics reported in Figure 1 act as suppressors of cell wall synthesis,
inhibitors of proteins or nucleic acids synthesis, membrane destroyers, antimetabolites, and
competitive antagonists of substrates used in biosynthetic reactions [6]. It is essential to
understand that humans and other animals do not acquire antibiotic resistance; instead,
this phenomenon is developed by bacteria harbored in humans and animals [3]. When
placed under selective pressure due to antibiotics, bacteria that have acquired a greater
capacity for resistance (by DNA mutation or DNA genetic transfer) will have a greater
chance of surviving and instead will occupy the environment vacated by bacteria that have
been eliminated by therapy [7].

Thus, to treat infections caused by those resistant bacteria, one strategy is to administer
other antibiotics to which they are sensitive. However, they might also acquire resistance
to the new class of antibiotics (multi-resistant organisms), and so switching to a new
type of antibiotic is required until we arrive at bacteria resistant to all antibiotics (pan-
resistant microorganisms) [8]. The antibiotic resistance phenomenon is associated with the
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misuse and overprescribing of these drugs, as well as the inappropriate administration of
antibiotics to companion animals and animals in the agriculture industry [9,10]. In livestock
farms or aquacultures all over the world, antibiotics are routinely used not only to treat
diseases, as is the case in human medicine but also to prevent diseases and as promoters of
animal growth [11]. Furthermore, the rising discharge of antibiotics into waterways and
soils poses a risk to all microorganisms in these habitats [11]. Thus, bacteria can become
resistant and infect people who came in touch with the polluted environment, animals,
or meat. Therefore, policies must be put in place to combat both the spread and future
development of antibiotic resistance, as well as the oncoming wave of superbugs [12].
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How do we intervene to stop antibiotic resistance? There is no shortage of strate-
gies for dealing with the antibiotic resistance [13–16]. Among them, one may consider:
(i) community- and healthcare-based approaches for infection control and prevention;
(ii) vaccine preparation, which may have a good chance of preventing bacterial illnesses (up
to date, only for Streptococcus pneumoniae, one of the six most hazardous antibiotic-resistant
bacteria, exists such a vaccine); (iii) reduction of the use of antibiotics in non-human
infection-treatment contexts, such as livestock farms; (iv) appropriate antibiotic use, as well
as stopping their use for the management of viral infections; (v) maintenance of investments
to make second-line antibiotics available, and the development of novel antibiotics and
especially those with novel modes of action less susceptible to the onset of resistance, which
can save lives [13–16]. This last strategy is fundamental, but new drug development takes
a long time; most candidate compounds were in the research and development pipelines
for over a decade before they made it to market [17]. Moreover, the most critical points
are that the majority of the new antibiotics in development are variants of preexisting
antibiotic classes, do not have a novel mechanism of action, and only a small number of
them are expected to be effective against the ESKAPE pathogens (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa,
and Enterobacter). Finally, the future of antibiotics is shaky because of questions about their
effectiveness and safety [18,19].

In this context, the drug repurposing or drug repositioning strategy offers the potential
to “fast-track” the identification of novel antibiotics, since it speeds up the drug research
process and reduces the time to market [20]. FDA-approved medications are considered the
“existing drugs,” and their repurposing reduces clinical development risk, making them
attractive candidates [20].
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2. A Superfamily of CO2 Transducer Biomolecules: The Carbonic Anhydrase
2.1. Bacterial Carbonic Anhydrase

Carbon dioxide (CO2) is a gas released into the atmosphere due to cellular respiration
and oxidative metabolism, and all living creatures are responsible for its production [21]. In
most cases, the process of transporting this waste gas out of cells is carried out by passive
diffusion [22]. In many cases, the CO2 channels, controlled by CO2 levels inside the cell,
make this transfer easier. However, CO2 is not merely a waste product; it can also trigger
various cellular signaling pathways to increase bacteria virulence and pathogenicity [23].
Bacteria can adapt to their environment by sensing and responding to CO2, enhancing
thus their chances of survival. This may be crucial because bacteria have to adapt to
the relatively low CO2 levels of the outer atmosphere for the higher CO2 levels found
inside most multicellular host organisms [23]. Bacteria, for example, may upregulate
virulence factors at host physiologic CO2 levels rather than ambient CO2 levels to aid
colonization or infection. Several such examples are Vibrio cholerae, which causes cholera,
and produces enterotoxin as carbon dioxide levels rise, whereas bicarbonate produced
by the CO2 hydration is the first positive effector of the primary V. cholerae virulence
gene transcription activator (ToxT), responsible for the cholera virulence cascade [24].
Pseudomonas aeruginosa, which can lead to infections in the blood, lungs (pneumonia), or
other regions of the body following surgery, lives in vastly varying CO2 settings depending
on whether or not it is colonizing a host [25].

Biomolecules in microbes related to CO2-sensitive pathways or acting as a CO2 trans-
ducer have been proposed as appealing targets for medicines, since they control cell devel-
opment and the subsequent synthesis of chemicals, enhancing the pathogen persistence
in the host [26,27]. In this context, a crucial role is played by a superfamily of molecules
known as carbonic anhydrases (CAs, EC 4.2.1.1). CAs can be thought as molecules that,
rather than instantly detecting a change in CO2, serve as CO2 transducers, adjusting its
levels [23,28]. With their activity, the CAs encoded by the bacterial genome of pathogenic
and non-pathogenic bacteria provide the indispensable CO2 and HCO3

−/protons to micro-
bial biosynthetic pathways, catalyzing the reversible reaction of CO2 hydration to HCO3

−

and H+ (CO2 + H2O � HCO3
−+ H+) [28]. Here, we stress the fact that the non-catalytic

CO2 hydration/dehydration reaction is too slow at physiological pH values to fulfill the
organism’s metabolic demands (kcat (hydration) = 0.15 s−1; kcat (dehydration) = 50.0 s−1) [29].

The classification system for CAs uses the Greek letters to represent the eight distinct
families (or classes): α, β, γ, δ, ζ, η, θ, and ι [29–33]. The eight distinct CA-classes descend
from the same ancestor, yet exhibit significant evolutionary diversity. The representative
amino acid sequences of each CA-class show low sequence similarity, characteristic folds,
and structures compared to the polypeptide chain of other CAs belonging to a different
class [34–38]. In contrast, the mechanism involved in the reversible hydration of CO2
is strictly conserved across all CA-classes, illustrating the CA superfamily’s convergent
evolution [34–38]. CAs are generally metalloenzymes with catalytic sites that contain a
metal ion cofactor required for catalysis (Figure 2). The ion cofactor in many CAs is Zn2+,
which is coordinated by three amino acid residues from the protein backbone [29,30,39].
The fourth metal ion ligand is a water molecule/hydroxide ion that acts as the nucleophile
in the enzyme’s catalytic cycle. Metal ions other than Zn2+, such as Co2+, Cd2+, Fe2+, and
Mn2+, can be coordinated by several CA-classes [40–47]. Recently, it has been demonstrated
that the newly discovered CA-class, the ι-CA, shows catalytic activity without the need for
metal ions, as shown from the X-ray crystal structure of Anabaena sp. [48]. The CA-classes
differ in the amino acid residues involved in metal coordination [49–52]. For example, the
ion metal is coordinated by three His residues in the α, β, and γ-CAs and presumably
θ-classes [42,45,53,54]; one His and two Cys residues in the β- and ζ-CAs [41]; and two His
and one Gln residue in the η-class. α-CAs usually act as monomers or dimers; β-CAs only
behave as dimers, tetramers, or octamers. To perform their catalytic activity, the γ-CAs
must be trimers [55]. A tandemly repeated hexapeptide characterizes γ-CA monomers and
is required for the left-hand fold of trimeric-helix structures. The X-ray structure of the
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θ-CAs was remarkably similar to that of some β-CAs [42,45,53,54]. The crystal structure of
ζ-CA showed three slightly different active sites on the same polypeptide chain. Regarding
the structural organization of δ- and η-CAs, no data are currently available, and a homology
modelling of the η-CA was built [56]. Interestingly, only the α, η, θ, and ι -CAs have been
shown to catalyze the esters/thioesters hydrolysis, while the other CA families lacked
any detectable esterase activity [29,30,39,57–59]. Presently, four CA-classes (α, β, γ, and ι)
have been demonstrated to exist in bacteria, and their distribution is noteworthy [34–38].
In many cases, the bacterial genome encodes for the three CA-classes (α, β, and γ) and
rarely for the ι- class. However, it is common to find bacteria whose genomes encodes just
one or two CAs, and very rarely none [27,29,33,49]. Moreover, the structural variations
between bacterial and human α-CAs allow for the synthesis of inhibitors that target the
bacterial enzyme but not the mammalian ones. Again, in some cases, the pathogenic
bacterial genome encodes for CA-classes, which are absent in mammals, whose genome
encodes only for α-CA, increasing the likelihood of success in treating the bacterial illness
with compounds that act only on the bacterial CAs. Interestingly, for each CA-class has
been obtained the X-ray crystallographic structures (Figure 3). It has been observed that
α-CAs reside in the periplasmic region of bacteria cells and prevent CO2 loss from bacteria
by converting CO2 into bicarbonate, which is then transported inside the cytoplasm by
bicarbonate transporters [29–31,33]. On the other hand, cytoplasmic β- and γ -CA classes
are responsible for carrying out intracellular functions such as maintaining CO2 and HCO3

−

equilibrium and regulating pH. Recently, β, γ, and ι-CAs with signal peptide at N-terminus
have been found, attributing them a putative periplasmic localization and a physiological
role similar to those mentioned above for the α-CAs [31,32,39,57–59].
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2.2. CAs Help Bacteria to Survive

In the literature, many shreds of evidence support the opinion that the activity of CAs
is connected to the survival of microbes because these enzymes are essential for supporting
numerous physiological functions involving dissolved inorganic carbon, such as trans-
port and supply of CO2 or HCO3

−, pH homeostasis, secretion of electrolytes/toxins, and
biosynthetic processes [29,33,60]. For example, it has been proven in vivo that bacterial
growth at ambient CO2 concentrations is dependent on CA activity in bacteria such as
Ralstonia eutropha (Gram-negative bacterium found in soil and water) and Escherichia coli
(Gram-negative bacterium) [61–63]. In E. coli, the two β-CAs (CynT and CynT2) generate
HCO3

− to prevent bicarbonate depletion from cyanate breakdown and bacterial expansion
at atmospheric CO2 concentrations, respectively [62,63]. More intriguing is the in vivo
evidence that CAs have a role in the proliferation of harmful bacteria such as Mycobac-
terium tuberculosis [64–68], Helicobacter pylori [69–71], Vibrio cholerae [72], Brucella suis [65–68],
Salmonella enterica [73–75], and Pseudomonas aeruginosa [76]. CAs encoded by the genome
of H. pylori, a Gram-negative, microaerophilic bacteria that colonizes the human stomach,
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are essential for the pathogen’s acid acclimation and, consequently, survival in the severe
environment typical of this organ, with pH values as low as 1.5–2.0 [69–71]. In addition to
CAs, urease is the other enzymatic system used by the microbe for growing in this extreme
environment. Under acidic conditions, urea goes into the cytoplasm through the urea
channel. In the bacterial cytoplasm, 2NH3 and CO2 are produced by the hydrolysis of
urea [69–71]. The resulting CO2 is then hydrated by β-CA, while the periplasmic α-CA
hydrates the CO2 diffused in the periplasm. The produced ions (H+) by the CA-catalyzed
reaction are used to form NH4

+ by reacting with NH3
+ in the periplasm and cytoplasm,

which neutralizes the entering acid in the above environments [69–71]. In the case of
the pathogenic bacterium Vibrio cholerae, a Gram-negative bacterium already mentioned
above, CAs are involved in the production of sodium bicarbonate, which stimulates the
development of cholera toxin [24]. It has been proposed that V. cholerae employs CAs to
colonize the host [72]. Again, the brucellosis causal agent, Brucella suis, a non-motile Gram-
negative coccobacillus, and Mycobacterium tuberculosis, a pathogenic bacterium that causes
tuberculosis, were demonstrated to require functional CAs to proliferate [64–68]. Further-
more, through in vivo gene expression investigations on the bacterium Salmonella enterica,
the MIG5 gene, which encodes for a CA that is significantly expressed during bacterial
infection, has been found [73–75]. The deletion of the gene encoding this CA (psCA1) in the
Pseudomonas aeruginosa reduced pathogenicity by decreasing calcium salt depositions [77].
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2.3. Carbonic Anhydrase Sulfonamide Inhibitors

Because the many biochemical processes mentioned above involve the activity of bac-
terial CAs, their inhibition may reduce the pathogen’s survival and fitness. The good news
is that CA inhibition suppresses bacterial growth differently from those demonstrated by
traditional antibiotics, toward which the bacteria have developed or are developing antibi-
otic resistance. As reported in the scientific literature, many unique chemical classes of CA
inhibitors (CAIs) exist [60]. The CAIs are classified into four distinct types based on how the
inhibitors bind and inhibit the CA metalloenzymes. Four types of inhibitor-enzyme binding
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are currently known, based on whether the binding involves the catalytic metal ion or the
metal coordinated-water molecule or how the active site is obstructed [78]. Therefore, there
are metal ion binders (anion, sulfonamides and their bioisosteres, dithiocarbamates, xan-
thates, and so on); chemicals that bind to the zinc-coordinated water molecule/hydroxide
ion (phenols, polyamines, thioxocoumarins, sulfocumarins); compounds that obstruct the
active site entrance (coumarins and related isosteres); and compounds that bind out of the
active site (carboxylate) [78].

Among these types, the Zn2+ ion binders, in particular, the sulfonamides and their
bioisosteres, are considered the most promising compounds for the realization of novel
antibacterials, avoiding antibiotic resistance [78–81]. Here, we emphasize that the sul-
fonamides/sulfamates/sulfamides able to inhibit the CA specifically are nonantibiotic
inhibitors characterized by a primary sulfonamide moiety, having the following chemical
formula: R-X-SO2-NH2, where R can be an aromatic, heterocyclic, aliphatic, or sugar scaf-
fold, X = nothing, O or NH. Thus, sulfanilamide led to the discovery of the sulfa drugs and
benzenesulfonamide CAIs of the type. They constitute an important class of drugs since
they have drug-like properties well-known for decades and are suitable lead compounds
for developing new pharmacological agent families for inhibiting CAs. Among them are the
commercial derivatives 1–24 (Figure 4) and the clinically used agent AAZ-EPA (Figure 5).
The series AAZ-EPA include acetazolamide (AAZ), methazolamide (MZA), ethoxzolamide
(EZA), and dichlorophenamide (DCP) are classical, systemically working antiglaucoma
CAIs. Dorzolamide (DZA) and brinzolamide (BRZ) are topically acting antiglaucoma
agents. Benzolamide (BZA) is an orphan drug belonging to this class of pharmacological
agents. Zonisamide (ZNS), sulthiame (SLT), and sulfamic acid ester topiramate (TPM) are
widely used antiepileptic drugs. Sulpiride (SLP) and indisulam (IND) were also shown
by our group to belong to this class of pharmacological agents, together with the COX2
selective inhibitors celecoxib (CLX) and valdecoxib (VLX). Saccharin (SAC) and the di-
uretic hydrochlorothiazide (HCT) are also known to act as CAIs. Famotidine (FAM) and
epacadostat (EPA) are CAI sulfamide drugs clinically used respectively as a histamine
H2 receptor antagonist and a selective indoleamine-2,3-dioxygenase 1 inhibitor. These
inhibitors bind Zn (II) in a tetrahedral geometry, forming an extended network of hydrogen
bonds with the enzyme amino acid residues, whereas the aromatic/heterocyclic portions of
the inhibitor interact with the hydrophilic and hydrophobic residues found in the enzyme
catalytic cavity, according to enzyme-inhibitor X-ray crystallographic data (Figure 6) [60].
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3. Where Are We NOW with the Inhibition of the Bacterial CAs

In the last decade, several in vitro experiments were conducted employing the
CAIs outlined in the preceding paragraph to inhibit the four bacterial CA classes (α,
β, γ, and ι). Many of these studies were focused on bacterial CAs derived from
pathogenic bacteria, such as Mycobacterium tuberculosis, Vibrio cholerae, Francisella
tularensis, Burkholderia pseudomallei, Porphyromonas gingivalis, Legionella pneumophila,
Clostridium perfringens, Mammaliccosu sciuri, etc. [36,82–85]. Most sulfonamide CAIs
exert potent inhibition on most recombinant CAs belonging to the bacteria mentioned
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above [34,86–90]. The most interesting aspect was that, some of these CAIs, including aceta-
zolamide and methazolamide, significantly limit the growth of bacteria in cell cultures [91].
In this context, some experimental shreds of evidence prove that the inhibition of bacteria
CAs can be potentially used to combat the resistance of many pathogens to the existing
antimicrobial drugs.

For example, ethoxzolamide (EZA), an authorized diuretic and carbonic anhydrase
inhibitor, kills Helicobacter pylori in vitro, suggesting it could be turned into an anti-H. pylori
medication [92].

The influence of the selective CA inhibitor AAZ on the bacterial lifecycle was tested
by analyzing the growth of E. coli and its consumption of glucose, added as the only carbon
source to the bacterial culture media [93]. Carbon sources are required for biosynthetic
activities and metabolism is directly correlated with the rate at which carbon sources are
used. The FDA-approved carbonic anhydrase AAZ was able to interfere with E. coli growth
and glucose uptake at 31.2 µg/mL. Intriguingly, AAZ resulted in a good inhibitor of the
two recombinant E. coli CAs, β-CA (CynT2) and γ-CA (EcoCAγ), with a KI of 227 and
248 nM, respectively [94,95]. AAZ prevents sugar consumption due to its inhibitory action
on bacterial CAs, which are directly engaged in providing CO2/HCO3

− required for the
bacterial metabolic need [93].

It has been reproposed the FDA-approved carbonic anhydrase drug AAZ could be
used to design potent antienterococcal agents. The authors, modifying the AAZ scaffold,
arrived at two leads possessing improved potency against clinical vancomycin-resistant
enterococci (VRE) strains [96]. The classical AAZ showed a MIC of 2 µg/mL, while the
two leads had a MIC = 0.007 µg/mL and 1 µg/mL, respectively. DZA, another classical
CAIs, resulted in MIC values of 1–8 µg/mL against a panel of clinical VRE isolates [97].
Based on the results of homology modeling and molecular dynamics simulations, the
authors demonstrated that the α and γ CAs encoded by the Vancomycin-Resistant Entero-
coccus are the intracellular targets of the compounds [96,98]. In addition, AAZ fared better
than linezolid (a standard drug for VRE infections) when tested in two in vivo VRE mouse
models –murine colonization–reduction and VRE septicemia [99].

Finally, AAZ inhibited the growth of the Gram-negative bacterium Neisseria gonorrhoeae
both in the in vitro as well as in vivo mouse model of a gonococcal genital tract infec-
tion [100,101]. Recently, Portela et al. [102] demonstrated that sulfonamide pretreatment
has a positive outcome on the strength of dentin and the prevention of Streptococcus mutans
colonization in teeth treated with two potent bacterial CA sulfonamide inhibitors [102].

It is also interesting to note that over the last few years, there has been a significant
focus on developing non-classical CAIs for treating multiple diseases due to the prevalence
of sulfonamide allergies among the general population as well as their use as potential new
antibacterials [103]. The classes of non-classical inhibitors that show strong potential as
lead compounds for isoform-specific drug design include phenols, polyamines, carboxylic
acids, and coumarins and their derivatives. These compounds can anchor to the zinc-bound
water/hydroxide ion or bind outside the active site to block substrate entry, exhibiting
atypical binding mechanisms of the classical sulfonamide CAIs [103].

4. Conclusions

The well-known zinc-binding groups (ZBGs), such as the primary sulfonamide (-SO2NH2),
primary sulfamate (-OSO2NH2), and sulfamide (-NHSO2NH2), which are present in the
structure of several clinically-approved drugs and an increasing number of investigational
medicines, have been proven to affect the inhibition of the CAs encoded by pathogenic
bacteria [78–81]. Intriguingly, various types of these nonantibiotic sulfonamides, many of
which offer pharmacologic applications as antiglaucoma, antiobesity, antitumor, or diuretic,
resulted in potent inhibitors (kI in the nanomolar range) of such CAs. These findings
prompt scientists to consider the CAIs as a new approach to fight antibiotic resistance
developed by bacteria versus the common FDA-approved antibiotics. Unlike common
antibiotics, the CAIs impair the growth of pathogenic bacteria through a novel mechanism
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of action: perturbating/depleting the intracellular levels of CO2 and HCO3
−, which are

necessary to microbial biosynthetic pathways. In addition, the antibacterial growth due
to the CA inhibition is strongly supported by the fact that the slow non-catalytic CO2
hydration/dehydration reaction is unable to restore these levels. These attractive facts
led to the writing of fascinating manuscripts that discuss the repurposing of drugs such
as ethoxzolamide (EZA), acetazolamide (AZA), and dorzolamide (DZA) as treatments
for interfering with the life cycle of E. coli, Helicobacter pylori, Neisseria gonorrhoeae, and
vancomycin-resistant enterococci.

In conclusion, the licensed sulfonamides/sulfamates/sulfamides acting as CAIs ex-
hibit antibacterial properties in their native or slightly modified scaffolds [97], hypoth-
esizing that the CAIs can be potentially employed either by themselves or in conjunc-
tion with an antibiotic or even as “antibiotic adjuvants” to increase the effectiveness of
certain antibiotics.
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