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Abstract: Chemically modified carbon nanotubes are recognized as effective materials for tackling
bacterial infections. In this study, pristine multi-walled carbon nanotubes (p-MWCNTs) were function-
alized with nitric acid (f-MWCNTs), followed by thermal treatment at 600 ◦C, and incorporated into
a poly(dimethylsiloxane) (PDMS) matrix. The materials’ textural properties were evaluated, and the
roughness and morphology of MWCNT/PDMS composites were assessed using optical profilometry
and scanning electron microscopy, respectively. The antibiofilm activity of MWCNT/PDMS surfaces
was determined by quantifying culturable Escherichia coli and Staphylococcus aureus after 24 h of
biofilm formation. Additionally, the antibacterial mechanisms of MWCNT materials were identified
by flow cytometry, and the cytotoxicity of MWCNT/PDMS composites was tested against human
kidney (HK-2) cells. The results revealed that the antimicrobial activity of MWCNTs incorporated
into a PDMS matrix can be efficiently tailored through nitric acid functionalization, and it can be
increased by up to 49% in the absence of surface carboxylic groups in f-MWCNT samples heated
at 600 ◦C and the presence of redox activity of carbonyl groups. MWCNT materials changed the
membrane permeability of both Gram-negative and Gram-positive bacteria, while they only induced
the production of ROS in Gram-positive bacteria. Furthermore, the synthesized composites did not
impact HK-2 cell viability, confirming the biocompatibility of MWCNT composites.

Keywords: modified carbon nanotubes; poly(dimethylsiloxane) composites; Escherichia coli;
Staphylococcus aureus; antimicrobial activity; medical devices

1. Introduction

The insertion or implantation of medical devices into the human body has become a
recurrent strategy to replace or even repair damaged organs [1,2]. In fact, it is estimated that
over 5 million medical devices, including cardiac implantable devices, urinary or central
venous catheters, orthodontic and orthopedic implants, ocular prostheses and contact
lenses, hemodialyzers, and intrauterine contraceptive devices, are used each year in the
United States alone [3]. Although these devices have revolutionized the medical field,
being essential for the prevention, diagnosis, treatment, and rehabilitation of many illnesses
and diseases, they are also strongly associated with an increased risk of opportunistic
infection [4,5]. Medical device-associated infections (DAIs), whose incidence depends
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on the type and physicochemical properties of the prosthetic device or implant, the local
hydrodynamic conditions, the microorganisms involved, and indwelling time [6,7], are
recognized as a significant public health challenge [8]. According to the Centers for Disease
Control, DAIs represent approximately 50 to 70% of the nearly two million healthcare-
related infections reported annually [9,10]. The associated mortality rates, which can range
from <5% for devices such as bladder catheters, fracture fixation devices, joint prostheses,
and dental implants, to >25% for mechanical heart valves and heart assist devices [11], as
well as the imposed financial burden (more than USD 3 billion spent annually in the United
States and GBP 7 million in the United Kingdom [12,13]), reinforce the seriousness of
the problem.

The biofilm mode of growth adopted by the infectious agents and the increased re-
sistance to conventional antimicrobial strategies are the main factors that interfere with
the extent and severity of DAIs [14]. When a well-organized and structured biofilm is
formed, its exopolysaccharide matrix acts as a barrier, protecting the cells from host de-
fense mechanisms and antimicrobial agents and contributing to the chronic nature of such
infections [15–17]. Consequently, implant removal or replacement, along with long-term
antibiotic therapy, is often the only possible option to overcome the infection [18]. These
limitations have, therefore, motivated the search for new engineered implant surfaces
that could hamper microbial colonization and biofilm formation. Some of the proposed
strategies for manufacturing medical devices include bacteria-repelling and anti-adhesive
surfaces, antibacterial drug-release coatings, nanostructured coatings, and coatings contain-
ing bioactive molecules capable of destroying pre-established biofilms [18–21]. Although
most of these approaches are still far from being used in clinical practice, an increasing
number of studies exploring the use of carbon nanotubes (CNTs) as alternative materials
can be found.

CNTs consist of hollow and concentric cylindrical tubes formed by rolled graphene
sheets, and their functionalization with drugs, antimicrobial peptides, enzymes, metals,
polymers, or photosensitizers has been extensively studied and implemented to produce
effective antimicrobial surfaces for application in biomedical devices and prosthetic im-
plants [22,23]. Although the CNT mode of action is not fully characterized, in general,
CNTs can induce antimicrobial effects by (i) destroying the microorganisms’ cell mem-
branes through direct piercing; (ii) attaching to the microbial cell surface to promote trans-
membrane electron transfer, consequently causing cell wall and membrane destruction;
(iii) inducing protein dysfunction and DNA damage; and (iv) generating secondary prod-
ucts, such as reactive oxygen species (ROS). The overall antimicrobial and antiadhesive
performance of CNT derivatives depends on multiple factors, including CNT type, single-
(SWCNT) or multi-walled (MWCNTs), length, purity, and electronic structure [23–26]. The
functionalization of CNTs with acid/carboxylic moieties has also been shown to inter-
fere with their antimicrobial activity. Over the last years, a growing number of studies
has reported the greater efficacy of carboxylated MWCNTs against common infectious
agents [25–33]. However, to the best of our knowledge, the application of these acid-
functionalized CNTs as coatings for medical devices is still poorly documented, with data
from only two studies [31,32]. Furthermore, there is a lack of research on the effectiveness
of oxidized MWCNTs with different acidic levels in inhibiting microbial growth [34,35].

This study aimed to investigate the antibiofilm activity of nitric acid-functionalized
MWCNT-based surfaces against two common colonizers of medical devices—Escherichia
coli and Staphylococcus aureus. MWCNTs with different acidic levels were obtained via oxi-
dation treatment with nitric acid, followed by a temperature-selective reduction of surface
oxygen functional groups. Additionally, the main mechanisms behind the antimicrobial
activity of the functionalized MWCNTs were assessed, thereby contributing to a deeper
understanding of the interactions that occur at the interface between bacterial cells and
MWCNT nanocomposites. Furthermore, the cytotoxicity of produced composites was
assessed on a human cell line.
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2. Results and Discussion

Considering the potential of CNT surface modification in enhancing its antimicro-
bial activity, polydimethylsiloxane (PDMS) surfaces containing nitric acid-functionalized
MWCNT materials were produced and characterized by optical profilometry and scanning
electron microscopy (SEM). Subsequently, their antibiofilm performance was evaluated
against pure cultures of E. coli and S. aureus, and their effect on the viability of human
kidney cells was tested.

2.1. Characterization of MWCNTs

To evaluate the textural modifications introduced during the chemical and thermal
treatments of MWCNTs, the N2 adsorption–desorption isotherms of pristine MWCNTs
(p-MWCNT), nitric acid-functionalized MWCNTs (f-MWCNT_N), and f-MWCNT_N sam-
ples heated at 600 ◦C (f-MWCNT_N600) were determined (Figure 1).
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Figure 1. N2 adsorption–desorption isotherms at −196 ◦C for pristine multi-walled carbon nan-
otubes (p-MWCNT), nitric acid-functionalized multi-walled carbon nanotubes (f-MWCNT_N), and
f-MWCNT_N heated at 600 ◦C (f-MWCNT_N600).

According to IUPAC classification, the isotherms of both the original and modified
MWCNTs fit the Type IV isotherm profile, since they are characterized by the presence of a
hysteresis loop, which is associated with capillary condensation occurring in mesopores,
and the limiting uptake over a range of high p/p0 [36]. Although some authors have
shown that N2 adsorption isotherms of nitric acid-functionalized MWCNT samples can
be classified as type II (typical of non-porous materials, according to IUPAC) [37–40], the
physisorption isotherms obtained in the present work are in agreement with previous
results on pristine and nitric acid-functionalized MWCNT samples with similar synthesis
procedures, average diameter and length, and purity [41,42]. Despite the similar shapes
of the isotherms, it is possible to observe some differences regarding the amount of N2
adsorbed at high relative pressure (as demonstrated by the Vp at p/p0 = 0.95) and the SBET
values shown in Table 1.
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Table 1. Textural properties of pristine and modified MWCNTs.

Sample SBET (m2 g−1) Vp P/P0=0.95 (cm3 g−1)

p-MWCNT 196 0.419
f-MWCNT_N 210 0.408

f-MWCNT_N600 223 0.432

Although no relevant changes were observed in the SBET values, an increase in the sur-
face area of oxidized MWCNT samples compared to p-MWCNTs was obtained. According
to previous studies, this increase can be explained by the opening of MWCNT end caps and
the creation of sidewall openings, which are structural defects that increase the available
area for N2 adsorption [37,40,43,44]. With the thermal treatment at 600 ◦C, part of the chem-
ical groups introduced during oxidation treatment with HNO3 were removed, leading to a
slight increase in the specific surface area [37]. Contrary to that observed for SBET, chemical
functionalization with nitric acid resulted in a decrease in the Vp from 0.419 to 0.408 cm3

g−1 for p-MWCNT and f-MWCNT_N samples, respectively. This decrease in the Vp is in
accordance with the literature on nitric acid-treated MWCNT samples [38,39,41,44] and
may be related to the different extent of CNT agglomeration, which is typical of samples
with different surface chemistries [40,45]. In turn, the heat treatment at 600 ◦C resulted in
an increase in Vp (from 0.408 to 0.432 cm3 g−1, when f-MWCNT_N and f-MWCNT_N600
are compared), which is in agreement with previously published results [40]. Taken to-
gether, these results suggest that the chemical modification of MWCNTs’ surface was
successfully accomplished. In general, considering that higher surface areas potentiate the
interaction between MWCNTs and bacterial cells and, consequently, cell death [46], nitric
acid-functionalized MWCNTs are expected to be promising materials for the development
of new antimicrobial coatings.

2.2. Characterization of MWCNT/PDMS Surfaces

Surface topography is known to influence the extent of cell attachment and, conse-
quently, the formation of biofilms [47,48]. In the present work, optical profilometry was
used to characterize the roughness of PDMS, p-MWCNT/PDMS, f-MWCNT_N/PDMS,
and f-MWCNT_N600/PDMS composites. As shown in the profilometry images (Figure 2),
the PDMS coatings resulted in a surface without discernible topographies and irregulari-
ties distinguishable on the micrometric scale (Figure 2a). With the addition of MWCNTs,
an increase in surface roughness, characterized by the presence of irregular peaks and
features, was observed (Figure 2b–d). This propensity for CNTs to form aggregates and
accumulate in the peaks, increasing the overall surface roughness, has been described in
previous studies [49,50]. By comparing the topographic images of p-MWCNT/PDMS and
f-MWCNT_N/PDMS (Figures 2b and 2c, respectively), it was observed that a more homo-
geneous dispersion and distribution of f-MWCNT_N into the PDMS matrix was obtained.
This observation was confirmed by determining the arithmetical mean height (Sa) of the
assessed surface profiles (Figure 3). The surfaces containing p-MWCNT, f-MWCNT_N, or
f-MWCNT_N600 exhibited significantly increased Sa values when compared with PDMS
(p < 0.05). Additionally, when comparing p-MWCNT/PDMS with f-MWCNT_N/PDMS
surfaces, a significant reduction in the mean roughness from 2.9 to 1.3 µm was observed
(p < 0.01, Figure 3). These results are supported by previous studies that showed that by
promoting a stronger interfacial bonding between CNTs and the polymer matrix, acid func-
tionalization can reduce the tendency of CNTs to form aggregates and consequently reduce
the overall surface roughness [51–53]. Moreover, the introduction of oxygen-containing
groups is recognized for reducing the entanglement degree of the CNTs, enhancing their
dispersion within the polymeric matrix [54]. The surface roughness of the composites
containing f-MWCNT_N tended to increase again after heat treatment (Figure 2d). In-
deed, when comparing f-MWCNT_N/PDMS with f-MWCNT_N600/PDMS composites, a
significant increase in the average roughness from 1.3 to 2.4 µm was observed (p < 0.01,
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Figure 3). This result might be explained by the heating process eroding the surface of
the f-MWCNT_N600/PDMS surface, thus making it more topographically similar to the
p-MWCNT/PDMS surface, but further investigation is required.
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The roughness characterization of MWCNT/PDMS composites was complemented by
SEM analysis (Figures 4 and S1 in Supplementary Material). SEM images of the composites
revealed the presence of several MWCNT agglomerates on their surfaces (Figure 4b–d) com-
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pared to bare PDMS (Figure 4a). Representative micrographs of
p-MWCNT/PDMS and f-MWCNT_N/PDMS cross-sections also confirmed the disper-
sion of nanotube agglomerates through the surfaces (Figure S2 in Supplementary Material).
The f-MWCNT_N/PDMS surface (Figure 4c) had less visually protruding clusters than
p-MWCNT/PDMS (Figure 4b). However, the number of clusters on the p-MWCNT/PDMS
and f-MWCNT_N600/PDMS composites was visually similar (Figures 4b and 4d, respec-
tively). With thermal treatment, f-MWCNT_N tends to decrease the number of oxygen-
containing groups on the surface, and this may lead to a decrease in its dispersion into the
polymeric matrix. These results correlate with the optical profilometry data.
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2.3. Antibiofilm Analysis

Several surface properties, such as surface charge and composition, are known to
affect protein adsorption, and consequently, bacterial attachment and proliferation [55].
In the present study, the influence of MWCNT surface chemistry on the antibiofilm ac-
tivity of MWCNT-based surfaces against E. coli and S. aureus was evaluated. Figure 5
presents the percentage of biofilm cell culturability after 24 h of growth on bare PDMS,
p-MWCNT/PDMS, f-MWCNT_N/PDMS, and f-MWCNT_N600/PDMS surfaces. Con-
sidering that no MWCNT leaching was observed (UV-Vis spectra as Figure S3 in Sup-
plementary Material), it is reasonable to assume that the achieved data are a result of
the action of the MWCNTs embedded into the PDMS matrix. Regarding E. coli biofilm
growth, the p-MWCNT/PDMS surfaces had no significant effect on biofilm cell cultura-
bility (p > 0.05, Figure 5a). This result is in accordance with a previous study in which no
significant differences were observed in the number of culturable cells following E. coli
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biofilm growth on composite surfaces with the same MWCNT loading [50]. As for the
f-MWCNT_N/PDMS surface, characterized by the strongest acidic character, a significant
reduction in the number of E. coli culturable cells compared to bare PDMS was determined
(~37%, p < 0.01). Previous studies have indicated that the introduction of functional oxygen-
containing groups on the surface of MWCNTs increased their hydrophilicity and ability
to interact with microbial cells, thus promoting cell death [33,56,57]. Additionally, the
thermally treated f-MWCNT_N600/PDMS composite promoted a significant reduction in
the number of E. coli biofilm culturable cells (~30% compared with bare PDMS; p < 0.05).
However, there were no significant differences in the cell culturability of biofilms growing
on f-MWCNT_N/PDMS and f-MWCNT_N600/PDMS (p > 0.05).
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When considering the biofilm growth of S. aureus, the p-MWCNT/PDMS surfaces
significantly reduced the number of culturable cells by ~45%, compared with bare PDMS
(p < 0.05, Figure 5b). The f-MWCNT_N/PDMS surfaces had no effect on S. aureus biofilm
cell culturability, which is in contrast to the findings demonstrated for E. coli. However,
several authors have demonstrated the antimicrobial potential of oxidized MWCNTs
against S. aureus [27–30]. In addition, the discrepancy in biofilm formation by E. coli (Gram-
negative and rod-shaped bacteria) and S. aureus (Gram-positive and spherical-shaped
bacteria) on p-MWCNT/PDMS and f-MWCNT_N/PDMS surfaces can be explained by the
differences in bacteria cell wall composition. Gram-positive bacteria feature a cytoplasmic
membrane enclosed by a peptidoglycan layer, while Gram-negative bacteria have a more
intricate cell envelope comprising a plasma membrane, a peptidoglycan cell wall, and an
outer membrane mainly composed of lipopolysaccharide [33].

The thermally treated f-MWCNT_N600/PDMS surface significantly reduced the per-
centage of S. aureus biofilm culturable cells by 49% compared to the bare PDMS (p < 0.01;
Figure 5b). This result has been corroborated by studies which suggest that heat treatment
at 600 ◦C has a direct impact on the antimicrobial performance of oxidized MWCNTs.
The absence of carboxylic groups on f-MWCNT_N600 samples and the redox activity of
carbonyl groups has been demonstrated to potentiate CNT antimicrobial activity [34,35].

In general, it can be assumed that the antimicrobial activity of p-MWCNT/PDMS,
f-MWCNT_N/PDMS, and f-MWCNT_N600/PDMS is a result of the combination of dif-
ferent intrinsic and extrinsic factors, including surface chemistry, roughness, and bacte-
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rial properties (cell size and shape), which are known to ultimately influence E. coli and
S. aureus colonization patterns [33,58,59].

2.4. MWCNT Antibacterial Mechanisms

Several studies have demonstrated the antibacterial activity of MWCNT materials
against Gram-negative and Gram-positive bacteria [22,50]. However, their mechanisms of
action need further clarification. To assess the antibacterial mechanisms of p-MWCNT, f-
MWCNT_N, and f-MWCNT_N600, E. coli and S. aureus were exposed to 5% (w/v) MWCNT
for 24 h and stained with bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3),
a membrane depolarization marker) and 2′,7′-dichlorofluorescein diacetate (DCFH-DA,
an ROS production indicator). The samples were then analyzed using flow cytometry
(Figures 6 and 7).
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Flow cytometric data suggested that under the tested conditions, p-MWCNT, f-
MWCNT_N, and f-MWCNT_N600 induced changes in the cell membrane permeability
of E. coli (Figure 6a) and S. aureus (Figure 7a), as evidenced by the increase in the mean
intensity of fluorescence (MIF) in cells treated with MWCNTs compared to untreated cells.

For E. coli, this effect was more pronounced in cells exposed to f-MWCNT_N and
f-MWCNT_N600, which displayed a 9.1- and 11.9-fold higher MIF than the control (non-
treated cells; Figure 6a). For S. aureus, the material which caused greater cell membrane
perturbation was f-MWCNT_N600, with cells exhibiting a 12.9-fold higher MIF compared
to the control (non-treated cells) and a 4.6-fold higher MIF compared to cells treated with
f-MWCNT_N (Figure 7a). These results are consistent with the findings from biofilm
culturability analysis and with literature reports which suggest that the antimicrobial
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effect of MWCNT is associated with bacterial membrane disruption [60] and that MWCNT
oxidation increases its antimicrobial performance [34,35].

Furthermore, the results indicated that ROS production occurred in S. aureus cells
exposed to MWCNTs (Figure 7b). This effect was more obvious upon exposure to p-
MWCNTs and f-MWCNTs_N600, with cells presenting a 2.5- and 2.3-fold higher MIF than
the control, respectively. In addition, there was a 1.4-fold decrease in MIF value when
comparing f-MWCNT_N600 and f-MWCNT_N. In contrast, under the tested conditions,
MWCNT exposure did not seem to induce ROS production in E. coli cells (Figure 6b),
as there were no differences in MIF between treated and non-treated cells. Although
some authors have reported that exposure to MWCNTs triggers ROS production [22,60],
in this study, this effect was only detected in Gram-positive bacteria. This difference
may be attributed to the different morphologies of Gram-positive and Gram-negative
bacteria. In Gram-negative bacteria, the outer membrane acts as a barrier that confers
resistance to external stress [61]. This feature is likely to limit the penetration of MWCNT
materials, which induce ROS production in bacterial cells. This emphasizes that MWCNTs
antimicrobial activity depends not only on their chemical and structural properties but also
on the characteristics of the bacteria with which they interact.

2.5. Effect of MWCNT/PDMS on Human Cell Viability

The cytotoxicity of MWCNT/PDMS composites towards HK-2 cells was investi-
gated to evaluate the potential adverse effects of carbon materials on renal/urinary cells
(Figure S4 in Supplementary Material). HK-2 cells were cultured on MWCNT/PDMS sur-
faces for 24 and 48 h, followed by an assessment of cell viability. After 24 h of incubation,
there was a 38% increase in cell viability on MWCNT/PDMS surfaces compared to the
PDMS control. After 48 h of incubation, a slight decrease in cellular viability (approxi-
mately 13%) was observed. These results demonstrate the short-term biocompatibility
of MWCNT/PDMS composites with HK-2 cells, thereby supporting their application in
biomedical devices intended for short-term use. However, additional research is needed
to comprehensively assess the long-term effect of carbon nanotube composites on human
cell behavior.

3. Materials and Methods
3.1. Functionalization of Pristine MWCNTs

Pristine MWCNTs (p-MWCNTs, Nanocyl™ NC3100, Sambreville, Belgium) produced
by catalytic chemical vapor decomposition (1.5 µm average length, 9.5 nm average di-
ameter, and more than 95% carbon purity) were used. To understand the influence of
different surface modifications on the antibiofilm performance of carbon-based composites,
MWCNTs were subjected to an oxidation treatment with nitric acid (HNO3, Merck KGaA,
Darmstadt, Germany), followed by the selective removal of oxygen-containing functional
groups through heat treatment at 600 ◦C (Figure 8) [37,40]. Briefly, functionalized MWCNTs
with the strongest acid character and the highest amount of O-containing surface groups
(f-MWCNT_N) were obtained by oxidizing 4 g of p-MWCNTs with 300 mL HNO3 7 M
in liquid phase at boiling temperature for 3 h (in a round-bottom flask connected to a
condenser). Subsequently, the oxidized MWCNTs were washed with distilled water until
they reached a neutral pH and then dried overnight at 110 ◦C. In order to produce MWCNT
samples with reduced acid character by selectively removing O-containing groups, the
resulting f-MWCNT_N sample was heated under an N2 inert atmosphere (100 cm3 min−1)
at 10 ◦C min−1 heating rate, until 600 ◦C, where it was kept for 1 h [45]. This sample was
designated as f-MWCNT_N600.
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groups based on [62].

In a previous study [62], p-MWCNTs, f-MWCNT_N, and f-MWCNT_N600 samples
were characterized by temperature-programmed desorption mass spectrometry. This
analysis demonstrated that HNO3 oxidation results in the incorporation of a large amount
of O-containing groups onto the MWCNT surface, while the thermal treatment at 600 ◦C
removes carboxylic acids, anhydrides, and lactones (Figure 8).

3.2. Synthesis of MWCNT/PDMS Surfaces

MWCNT-based composites were produced through a bulk mixing process, as pre-
viously described [26]. Firstly, p-MWCNT, f-MWCNT_N, and f-MWCNT_N600 were
incorporated into a PDMS matrix (Sylgard 184 Part A, Dow Corning, Midland, MI, USA)
at a loading of 5 wt.% MWCNT. PDMS was selected as the polymeric matrix due to its
widespread use in the fabrication of medical devices and implants [63]. After stirring for
30 min at 500 rpm, the mixture was submitted to an ultrasonic treatment using a Hielscher
UP400S device (at 200 W and 12 kHz) for 60 min. Subsequently, it was placed in an ul-
trasonic bath (Ultrasons 3000514, JP Selecta, Barcelona, Spain) for an additional 30 min to
remove any entrapped air bubbles and facilitate the spreading of MWCNT. The curing
agent (Sylgard 184 Part B, Dow Corning, Midland, MI, USA) was added in an A:B ratio of
10:1, and the resulting mixture was properly homogenized. Thin films of PDMS (control
surface) and each nanocomposite material (p-MWCNT/PDMS, f-MWCNT_N/PDMS, and
f-MWCNT_N600/PDMS) were formed on top of small glass coupons using the spin coating
technique (Spin150-v3.2, APT GmbH, Bienenbüttel, Germany) under predefined conditions
(6000 rpm for 1 min). The coated coupons were heated at 80 ◦C overnight to facilitate the
curing process [50].

3.3. Textural Characterization of MWCNTs

The textural characterization of p-MWCNT, f-MWCNT_N, and f-MWCNT_N600
samples was based on the N2 adsorption isotherms, obtained at−196 ◦C in a Quantachrome
NOVA 4200e multi-station apparatus (Quantachrome Instruments, Boynton Beach, FL,
USA). Prior to the analysis, the samples were degassed at 150 ◦C for 3 h under vacuum. The
Brunauer–Emmett–Teller specific surface area (SBET) was calculated from the N2 adsorption
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curve in the relative pressure range of 0.05–0.3, while the total pore volume (Vp) was
determined from the amount adsorbed at p/p0 = 0.95 [40].

3.4. Characterization of MWCNT/PDMS Surfaces
3.4.1. MWCNT/PDMS Surface Topography

Optical profilometry was used to assess the surface topography of PDMS,
p-MWCNT/PDMS, f-MWCNT_N/PDMS, and f-MWCNT_N600/PDMS composites. The
analysis was performed using a MicroXAM surface mapping microscope (ADE Corpora-
tion, XYZ model 4400 mL system, Tucson, AZ, USA) coupled to an AD phase-shift controller
(Omniscan, Wrexham, UK). Three different areas of three coupons of each surface type
were imaged (n = 9), and the MAPVIEW AE 2.17 (Omniscan, Wrexham, UK) image analysis
system was used to obtain the mean roughness parameter (Sa). Two-dimensional (2D)
profilometry images were extracted using MountainsMap® Imaging Topography software
(version 10.0.10433; Digital Surf, Besançon, France).

3.4.2. MWCNT/PDMS Surface Morphology

The surface morphology of the produced nanocomposites was assessed by scanning
electron microscopy (SEM) using a Zeiss Supra 40VP field emission gun scanning elec-
tron microscope (Carl Zeiss Ltd., Cambridge, UK). The surfaces were initially fixed to
SEM stubs using a conductive double-sided adhesive pad (Agar Scientific, Stansted, UK)
and sputtered with gold for 30 s using an SEM coating system (Polaron, London, UK).
A secondary electron detector was used to obtain surface and cross-section images of
the composites.

3.5. Evaluation of MWCNT Leaching from PDMS Surfaces

Ultraviolet–Visible (UV-Vis) spectroscopy was used to evaluate the release of MWCNTs
from the PDMS matrix. The coated coupons were immersed in 3 mL of sterile distilled
water, and the samples were incubated at 37 ◦C for 24 h with agitation [64]. The liquid
was removed, filtered with 0.2 µm sterile syringe filters (Starstead, Nümbrecht, Germany),
and analyzed via UV-Vis spectroscopy (UV-2600, Shimadzu, Kyoto, Japan) using the
1.12 LabSolutions UV-Vis software.

3.6. Antibiofilm Activity of MWCNT/PDMS Surfaces
3.6.1. Bacterial Strains and Culture Conditions

E. coli CECT 434 and S. aureus ATCC 25923 were used as model bacteria to study
the antibacterial activity of f-MWCNT_N/PDMS and f-MWCNT_N600/PDMS surfaces
against Gram-negative and Gram-positive bacteria, respectively. Before each experiment,
bacterial strains were collected from cryo-preserved aliquots of Luria–Bertani Broth (LB,
Thermo Fisher Scientific, Waltham, MA, USA) containing 30% (v/v) glycerol and spread on
Plate Count Agar (PCA, Merck KGaA, Darmstadt, Germany) plates, which were incubated
overnight at 37 ◦C. Single colonies were inoculated in LB broth and incubated for 16 ± 2 h
at 37 ◦C, 120 rpm. Subsequently, bacterial suspensions were centrifuged at 3772× g,
18 ◦C for 10 min (Eppendorf Centrifuge 5810R, Eppendorf, Hamburg, Germany) and
pellets were resuspended in fresh LB medium to obtain final suspensions with an op-
tical density at 610 nm of 0.15 for E. coli and 0.1 for S. aureus, which correspond to
~5.0 × 108 colony-forming units per mL.

3.6.2. Biofilm Formation Assay

To perform the antibiofilm assays, the control and nanocomposite surfaces were first
sterilized by UV radiation for 30 min. The coupons were then placed on microplate wells
(12-well microtiter plates, VWR International, Carnaxide, Portugal) and inoculated with
3 mL of bacterial suspension. Negative controls with 3 mL of LB medium were also
prepared to evaluate the surface sterility throughout the experiments. Microtiter plates
were incubated at 37 ◦C for 24 h under static conditions.
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The antibiofilm performance of MWCNT/PDMS surfaces was assessed by determin-
ing the number of culturable cells. After 24 h of biofilm formation, coupons were removed
from the microplate wells, submerged in 3 mL of sterile NaCl solution (8.5 g L−1), and vig-
orously vortexed for 3 min to obtain biofilm cell suspensions. These bacterial suspensions
were then properly diluted in NaCl solution, spread on PCA, and incubated overnight at
37 ◦C for colony-forming units enumeration. At least three independent experiments were
performed, each one with two technical replicates.

3.7. Characterization of MWCNT Antibacterial Mechanisms

The antibacterial effects of p-MWCNT, f-MWCNT_N, and f-MWCNT_N600 on E. coli
and S. aureus cells were investigated using flow cytometry. Briefly, bacterial suspensions
containing 5.0 × 108 cells per milliliter were exposed to 5% (w/v) MWCNT for 24 h at
37 ◦C; non-treated cells were used as control. Bacteria were then harvested by centrifugation
and the supernatant was collected for analysis [65].

Cell membrane potential and endogenous ROS production were evaluated by staining
the cells with bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3); Sigma–Aldrich,
Taufkirchen, Germany) and 2′,7′-dichlorofluorescein diacetate (DCFH-DA, Sigma–Aldrich,
Taufkirchen, Germany), as previously described by Teixeira-Santos et al. [66]. After staining,
bacteria were analyzed in a CytoFLEX flow cytometer model V0-B3-R1 (Beckman Coulter,
Brea, CA, USA), using the CytExpert software (version 2.4.0.28). Samples were acquired at
a flow rate of 10 µL min−1. The results were presented as the mean intensity of fluorescence
(MIF) at FL1 (530 nm).

3.8. Cytotoxicity Assessment of MWCNT/PDMS Composites

To investigate the impact of MWCNT/PDMS composites on mammalian cell viability,
PDMS and MWCNT/PDMS surfaces were tested using an immortalized human kidney
proximal tubule (HK-2) cell line (ATCC, UK). Cells were first cultured in Dulbecco’s
modified Eagle medium (DMEM; Invitrogen, Horsham, UK), supplemented with 10% fetal
bovine serum (FBS; Lonza Bioscience, Cambridge, UK), and 50 µg mL−1 of penicillin and
streptomycin (Life Technologies, Warrington, UK), at 37 ◦C in 5% CO2.

Surfaces were fixed to the bottom of 24-well plates using double-sided adhesive tape
and sterilized for 1 h by ultraviolet radiation. Cells were seeded into the wells at a density
of 25,000 cells per well and incubated for 24 and 48 h at 37 ◦C in 5% CO2. Following
incubation, the culture medium was removed from the wells, and the viability of HK-2
cells was determined using the cell counting kit-8 (CCK-8; Sigma-Aldrich, Gillingham, UK).
Briefly, 50 µL of the CCK-8 reagent along with 950 µL of DMEM were added to each well
and incubated for 2 h at 37 ◦C in 5% CO2. The absorbance of each well was measured at
450 nm using a microplate reader (Thermo-Scientific Multiskan 60; Thermo-Fisher Scientific,
Horsham, UK).

3.9. Statistical Analysis

Descriptive statistics were used to calculate the mean and standard deviation or error
for surface roughness, the number of E. coli and S. aureus biofilm culturable cells, and the
intensity of florescence of cells analyzed through flow cytometry. Data normality was
assessed using the Kolmogorov–Smirnov and Shapiro–Wilk tests. Since the data were not
normally distributed, the nonparametric Mann–Whitney test was applied to evaluate the
differences in surface roughness and the number of E. coli and S. aureus biofilm culturable
cells obtained for each surface. Significant differences were denoted as follows: * for
p < 0.05, ** for p < 0.01, and *** for p < 0.001.

IBM SPSS Statistics version 26.0 for Windows (IBM SPSS, Inc., Chicago, IL, USA) was
used to perform all of the statistical analyses.
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4. Conclusions

This study provided new insights into the antibiofilm activity of MWCNTs with selec-
tive surface oxygen content against Gram-negative and Gram-positive bacteria. Among the
tested samples, f-MWCNT/PDMS surfaces containing nitric acid-functionalized MWCNTs
heated at 600 ◦C demonstrated the best performance in reducing the culturability of E. coli
and S. aureus biofilms. The reduction in surface carboxyl groups and the redox activity
of carbonyl groups has therefore been proven to play a preponderant role in MWCNT
antimicrobial activity. Furthermore, these carbon materials seemed to exert their antimi-
crobial effect at the level of the cell membrane, inducing the production of ROS only in
Gram-positive bacteria. Concerning biocompatibility, MWCNT-based surfaces did not
have adverse effects on human cells, making them suitable for medical applications.

Altogether, these results indicate that f-MWCNT_N-based surfaces have the potential
to be applied in the construction of medical devices and implants, although further studies
are required to assess their long-term activity and stability.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/antibiotics12111620/s1, Figure S1: SEM images of (a) PDMS,
(b) p-MWCNT/PDMS, (c) f-MWCNT_N/PDMS, and (d) f-MWCNT_N600/PDMS composites (mag-
nification of 100×); Figure S2: SEM images of (a) p-MWCNT/PDMS and (b) f-MWCNT_N/PDMS
cross-sections (magnification of 2000×); Figure S3: UV-Vis spectra of water after contact with
PDMS, p-MWCNT/PDMS, f-MWCNT_N/PDMS, and f-MWCNT_N600/PDMS; Figure S4: Effect of
MWCNT/PDMS composites on the viability of human kidney proximal tubule (HK-2) cells after 24
and 48 h of exposure. Significant differences between the viability of HK-2 cells exposed to PDMS
and MWCNT/PDMS composites are denoted as *** (p < 0.001).
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