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Abstract: This study aimed to analyse and compare the vancomycin elution kinetics of four biodegrad-
able, osteoconductive antibiotic carriers used in clinical practice within a 42-day in vitro setting.
Carriers A and D already contained vancomycin (1.1 g and 0.247 g), whereas carriers B and C were
mixed with vancomycin according to the manufacturer’s recommendations (B: 0.83 g and C: 0.305 g).
At nine time points, 50% (4.5 mL) of the elution sample was removed and substituted with the same
amount of PBS. Probes were analysed with a kinetic microparticle immunoassay. Time-dependent
changes in vancomycin concentrations for each carrier and differences between carriers were anal-
ysed. Mean initial antibiotic levels were highest for carrier A (37.5 mg/mL) and lowest for carrier
B (5.4 mg/mL). We observed time-dependent, strongly negative linear elution kinetics for carriers
A (−0.835; p < 0.001), C (−0.793; p < 0.001), and D (−0.853; p < 0.001). Vancomycin concentrations
increased from 48 h to 7 d and dropped thereafter in carriers C and D whilst constantly decreasing at
any time point for carrier A. Carrier B showed a shallower decrease. Mean antibiotics levels at 42 d
were 1.5 mg/mL, 2.6 mg/mL, 0.1 mg/mL, and 0.1 mg/mL for carriers A, B, C, and D. Differences in
mean initial and final vancomycin concentrations for carrier A were significantly larger in comparison
to C (p = 0.040). A carrier consisting of allogenic bone chips showed the highest vancomycin-to-carrier
ratio and the largest elution over the study period. Whilst vancomycin concentrations were still
measurable at 42 days for all carriers, carrier A provided a higher drug-to-carrier ratio and a more
consistent antibiotic-releasing profile.

Keywords: biodegradable antibiotic carrier; elution kinetics; vancomycin

1. Introduction

Large bone defects resulting from chronic osteomyelitis, implant-associated infections,
or extensive trauma and tumour resections pose a significant problem in orthopaedic and
trauma surgery. To enhance mechanical stability, reduce dead space, and create novel bone
stock, these defects may be filled with autografts, allografts, or synthetic devices [1–4].

Despite their favourable biological properties, associated donor-site morbidity and
limited availability have to be seen as major disadvantages of bony autografts over allo-
grafts [1,5]. However, allografts may be rejected by the recipient or lose their osteogenic
properties during processing [1,6]. Notably, the risk of disease transmission from allografts
has been minimised with the introduction of thorough screening and novel processing
methods [7–9].
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Currently, resorbable synthetic devices, such as calcium sulphate-, hydroxyapatite-
, and tricalcium phosphate-based materials, and non-resorbable synthetic devices like
polymethylmethacrylate (PMMA), are also frequently used in clinical practice [10–13].
Biodegradable synthetic bone fillers have been refined to act as antibiotic carriers and not
only serve as a local scaffold [13–17]. On the other hand, the high primary mechanical
stability and low costs of non-resorbable synthetic bone fillers can be seen as advantageous
over resorbable ones [18]. Furthermore, whilst non-resorbable devices will lose their ability
to release antibiotics at some point in time [17,19,20] and thereafter may be colonised with
remaining bacteria again, forming an antibiotic-resistant biofilm [21,22], resorbable bone
fillers are ultimately replaced by host bone.

An essential property of an antibiotic carrier is the release of its drug over a prolonged
period, whilst antibiotic concentrations at subinhibitory levels have to be avoided, as they
may promote resistant pathogens [23,24]. Currently, there are only a few studies comparing
more than one biodegradable antibiotic carrier within the same setting regarding antibiotic-
releasing properties and/or efficacy [15,24,25]. This study aimed primarily at comparing the
vancomycin elution kinetics of four biodegradable, osteoconductive antibiotic carriers used
in routine clinical practice. Secondarily, elution was analysed throughout 42 consecutive
days within the same in vitro setting to determine the longevity of release.

2. Results
2.1. Mean Concentration Differences between Antibiotic Carriers

Mean initial vancomycin concentrations (4 h) were highest in carrier A (37.5 mg/mL),
whilst the lowest values were found for carrier B (5.4 mg/mL). In between were the
mean initial vancomycin concentrations of carrier C (6.4 mg/mL) and D (7.3 mg/mL).
Vancomycin concentrations of carriers A and B did not fall below 1.5 mg/mL during the
42 days, but concentrations of carriers C and D reduced to <1.5 mg/mL at day 21 (Figure 1).
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Figure 1. Elution kinetics of mean vancomycin concentration (in mg/mL) for the four antibiotic
carriers over time (depicted on a logarithmic scale for better visualisation).

At the last measurement, 42 days after study setup, mean vancomycin concentrations
were 1.5 mg/mL, 2.6 mg/mL, 0.1 mg/mL, and 0.1 mg/mL for carriers A, B, C, and D,
respectively (Table 1). When considering the mean difference in antibiotic levels from the
first to the last measurement, a significantly larger difference was present for carrier A in
comparison to C (p = 0.040). However, mean vancomycin concentration differences from
the first to last measurement were nonsignificant between carriers A and B (p = 0.261), A
and D (p = 0.152), B and C (p = 0.134), B and D (p = 0.350), and C and D (p = 0.236).
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Table 1. Mean vancomycin concentration (in mg/mL) for the four antibiotic carriers at specific time
points (also see Figure 1). One-way repeated measures analysis of variance (ANOVA) was performed
for each carrier.

Time 4 h 8 h 24 h 48 h 7 d 14 d 21 d 35 d 42 d
Overall
Difference
(ANOVA)

Carrier A
(OSmycin V®) 37.5 ± 8.5 29.5 ± 4.3 28.8 ± 7.3 23.8 ± 8.1 16.4 ± 7.5 10.6 ± 5.7 4.5 ± 1.6 2.5 ± 0.6 1.5 ± 0.4 F(8, 24) = 54.0

p < 0.001
Carrier B
(OSpure™) 5.5 ± 6.1 5.5 ± 6.8 5.8 ± 4.8 4.5 ± 2.1 4.4 ± 0.7 3.7 ± 0.2 3.7 ± 0.7 3.3 ± 0.8 2.6 ± 0.8 F(8, 24) = 0.55

p = 0.921
Carrier C
(STIMULAN) 6.4 ± 0.3 5.1 ± 0.2 7.1 ± 4.0 10.0 ± 0.5 10.0 ± 0.5 4.1 ± 0.2 1.6 ± 0.1 0.5 ± 0.1 0.1 ± 0.05 F(8, 24) = 29.8

p < 0.001
Carrier D
(CERA-
MENT™V)

7.3 ± 0.3 5.8 ± 0.4 11.5 ± 0.8 9.3 ± 0.6 5.4 ± 0.4 2.4 ± 0.2 1.1 ± 0.1 0.4 ± 0.05 0.1 ± 0.01 F(8, 24) = 521.8
p < 0.001

2.2. Time-Dependent Change in Individual Antibiotic Carriers

The overall results showed that Pearson’s correlation coefficient was −0.835 for carrier
A (p < 0.001), −0.290 for carrier B (p = 0.087), −0.793 for carrier C (p < 0.001), and −0.853
for D (p < 0.001). Both carriers A and B exhibited their highest mean concentrations at the
start of the study, whilst carriers C and D showed a small rise in antibiotic concentration
from 48 h to day 7 and thereafter consistently decreased. The individual carrier results are
described below:

(a) Carrier A: A statistically significant difference in mean antibiotic concentrations over
time was present (p < 0.001; Table 1). Although an overall steady decrease in antibiotic
concentration was observed during the study period, there was no difference between
any nearest time points (all p > 0.05).

(b) Carrier B: Neither a significant difference in mean vancomycin concentration over
time (p = 0.921) nor between nearest time points was observed (all p > 0.5; Table 1).
Notably, a very shallow decrease in vancomycin concentration over time was present,
starting from 4.5 mg/mL at 48 h and reaching 2.6 mg/mL at 42 days.

(c) Carrier C: There was a significant mean difference in antibiotic concentration over
the study period (p < 0.001; Table 1). However, apart from a significant drop in
vancomycin concentration from day 7 to day 14 by 5.9 mg/mL (p < 0.001), no difference
between the nearest time points was observed (p > 0.05).

(d) Carrier D: Significant mean differences in vancomycin concentrations over time were
observed (p < 0.001; Table 1). Assessing nearest time points, a significant decrease in
vancomycin concentration between 8 and 24 h (−1.5 mg/mL; p = 0.001); a significant
increase between 8 and 24 h (+5.6 mg/mL; p < 0.001); and subsequently significant
decreases between 24 and 48 h (−2.1 mg/mL; p < 0.001), 48 h and 7 days (−3.9 mg/mL;
p < 0.001), 7 and 14 days (−3.0; p < 0.001), as well as 14 and 21 days (−1.3; p = 0.003)
were observed (Table 1).

3. Discussion

In the current experimental study, the highest initial concentrations of vancomycin
were measured for carrier A, which is composed of human bone chips. Concentrations
decreased steadily and were more pronounced in human bone allograft carrier A than
in biodegradable carriers C and D. Furthermore, at the last measurement after 42 days,
vancomycin levels were highest in the elution assay of carrier A. Notably, for carrier
B, composed of human bone chips manually mixed with vancomycin, the decrease in
vancomycin concentrations was not statistically significant, with initially moderate, and
thereafter constantly low levels.

In the clinical setting of bone defects and infection, the delivery of local antibiotics
at high concentrations is warranted to effectively target pathogens while minimising
systemic side effects [24]. Moreover, rather than a single peak in antibiotic concentrations,
a constantly high concentration over a prolonged period is necessary to attack bacteria
and avoid the development of antibiotic resistance [26]. This can be achieved through
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antibiotic carriers based on autologous or allogenic bone, biodegradable bone substitutes,
or non-degradable synthetic devices. Notably, antibiotic elution kinetics significantly vary
depending on the type of carrier, its preparation, as well as on the ratio of carrier to the
drug [24]. All these factors bear the potential to eventually affect the carriers’ efficacy in
clinical practice.

The current study observed high initial vancomycin concentrations for carrier A
(allograft bone chips) that constantly decreased thereafter. Vancomycin elution kinetics
for carrier B, consisting of pre-infused human allograft bone chips, were lowest at the
beginning and showed an overall shallow decrease. An explanation for the inconsistent
vancomycin release in carrier B could be the differing vancomycin concentration per carrier,
being higher in carrier A (1.1 g vancomycin per sample) than in carrier B (0.83 g per sample).
On the other hand, it may also be related to varying impregnation techniques, with carrier
B being manually impregnated with a vancomycin solution, whilst carrier A was ready for
use as provided by the manufacturer. Even so, both biodegradable synthetic bone carriers
had even lower vancomycin concentrations (carrier C: 0.305 g per sample; carrier D: 0.247 g
per sample) than carriers A and B.

Differences in the chemical composition of the four antibiotic carriers tested may
likewise have influenced the elution kinetics; other than calcium sulphate-based bone
void fillers (as carrier C), those composed of tricalcium phosphate and hydroxyapatite
only require degradation by osteoclasts and macrophages as they are stable at physio-
logic pH [1,27]. This results in dissolution times between 6 and 24 months and from 24
to 60 months from the implantation for tricalcium phosphate- and hydroxyapatite-based
bone void fillers, respectively [28–31]. On the other hand, calcium sulphate-based carriers
are resorbed between 6 and 12 weeks from implantation in the human body [32,33]. By
combining calcium sulphate with tricalcium phosphate or hydroxyapatite (as carrier D
in the present study), porosity and decomposition can be improved, as the resorbed cal-
cium sulphate upon implantation creates channels in the carrier, allowing for later bony
ingrowth [1]. In comparison, the specifically prepared allograft bone void fillers herein
investigated, carriers A and B, are composed of decellularized bone matrix containing
collagen, osteoinductive proteins (to some extent), and minerals that promote osteocon-
duction [34]. This results in a faster and more complete bony integration [34,35]. However,
allografts are usually not completely resorbed by host osteoclasts, with remnants of the
allograft still present years after implantation [36]. Given these chemical composition
differences between allograft and synthetic bone void fillers, the variations in vancomycin
elution kinetics observed herein are unsurprising.

They are in accordance with those reported by Kucera et al. [24], who assessed allo-
genic cancellous human bones and tricalcium phosphate, amongst others, as carriers for
vancomycin and gentamycin [24]. Higher initial vancomycin concentrations were mea-
sured for one allogenic bone carrier in comparison to the tricalcium phosphate synthetic
carriers [24]. However, Kucera et al. were unable to measure any antibiotic concentrations
from 17 days onward in their elution assays, whilst we detected antibiotics in the sample
up to day 42 [24]. A possible explanation for the differences is in line with other investi-
gators [24,37] who also used allograft bone as antibiotic carriers but exchanged the entire
elution medium at different sampling time points, thus eventually leading to unquantifi-
able vancomycin levels after several rounds [24,37]. This hypothesis is supported by the
findings from Bormann et al., reporting on Staphylococcus aureus growth inhibition upon
treatment with elution media deriving from assays of vancomycin-carrying demineralised
bone matrix up to day 56. Their experimental setup exchanged only 50% of the elution
media at each time point [38]. We believe that the approach to substitute the removed
elution media with the same amount of PBS may more accurately depict and mimic in vivo
situations where (except for iatrogenic interventions) moderate but constant fluid exchange
can be expected.

High vancomycin concentrations observed in the elution assay for carrier A may have
a negative effect on local osteoblasts required for the revitalisation of the “dead space” filled
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with either allogenic bone or biodegradable synthetic devices [24]. However, it has been
shown that vancomycin concentrations up to 20 mg/mL cause only a minor decrease in
DNA content and alkaline phosphatase activity of osteoblasts [39] and do not significantly
impair mesenchymal stem cell proliferation rate [24]. Our observed values are lower than
this rate.

The maximum antibiotic concentrations reached with PMMA upon surgery, even
during the first few days, are generally lower (median: 0.5 mg/mL vancomycin in drainage
fluid) than those observed for the current biodegradable antibiotic carriers in vitro [40].
This is mainly caused by the fact that specific drug-to-PMMA ratios should be adhered to in
order to maintain mechanical stability [41]. For example, per 40 g of PMMA, no more than
0.5 mg of vancomycin should be added [41], equivalent to a vancomycin concentration
of 0.013 g per 1 g bone cement. On the other hand, the herein-used antibiotic carriers
contained—as suggested by the manufacturers—vancomycin concentrations from 0.045 g
to 0.55 g per 1 g of carrier.

Some limitations have to be taken into consideration when interpreting the results.
First, the exclusive focus on vancomycin elution kinetics rather than additionally perform-
ing experiments such as the zone of inhibition testing, monitoring of cytotoxicity, and
efficacy analysis that may have provided further insights into the behaviour of the four
carriers poses a potential limitation. Second, by not substituting the entire elution medium
at every point in time but rather substituting 50% of it, the “wash-out” of antibiotics may
have proceeded at a different rate than in in vivo. On the other hand, the current setup
may mimic in vivo processes more accurately through partial substitution of surrounding
fluids with time than in experiments in which the entire elution medium is constantly
exchanged [24,37]. Third, variations in chemical composition and drug-loading abilities of
the four carriers tested may have potentially influenced antibiotic release with time. Further,
vancomycin carrier concentrations, as recommended by the manufacturer, were used for
the preparation of samples, naturally leading to differing amounts of vancomycin in each
carrier. Yet, it could be ensured that the experimental setup followed the clinical protocol,
given that the aim of this study was to allow a direct comparison of vancomycin-releasing
properties of antibiotic carriers routinely used in clinical practice within a similar repro-
ducible environment. Further studies are required to assess any effect on bone cells and
assess if these results can be replicated in clinical endpoints of interest, such as re-infection,
in in vitro studies.

4. Materials and Methods

In this in vitro study, four different antibiotic carriers used in orthopaedic and trauma
surgery were tested for their releasing properties of vancomycin, namely (A) OSmycin
V® (European Cell and Tissue Bank, Wels, Austria), (B) Ospure™ (European Cell and
Tissue Bank, Wels, Austria), (C) STIMULAN® (Biocomposites, Keele, UK), and (D) CERA-
MENT™V (Bone Support, Lund, Sweden). To simulate an in vivo situation, the respective
carriers were prepared as recommended by the manufacturers. Notably, as volume is
the limiting factor upon in vivo application, we used volume rather than weight as a
quantitative measure for each carrier, which was more akin to the clinical setting.

4.1. Description of Antibiotic Carriers

(a) Carrier A (OSmycin V® (European Cell and Tissue Bank, Wels, Austria)) consists of
decellularized and delipidated human allograft bone chips, sized 1.5–10 mm, that
have been impregnated with 0.56 g vancomycin per 1 g of bone chips.

(b) Carrier B (Ospure™ (European Cell and Tissue Bank, Wels, Austria)) likewise contains
delipidated and decellularized human allograft bone chips without any additional sub-
stances.

(c) Carrier C (STIMULAN® (Biocomposites, Keele, UK)) is a calcium-sulphate matrix that
can be mixed with tobramycin, gentamycin, and vancomycin. Prior to implantation
into bone, the carrier is shaped into small beads, which promptly solidify. For the
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current study, 10 mL of carrier C was mixed with 1 g of vancomycin, as suggested by
the manufacturer.

(d) Carrier D (CERAMENT™V (Bone Support, Lund, Sweden)) constitutes a vancomycin-
loaded hydroxyapatite/calcium-sulphate composite that can either be injected directly
into the bone or formed into beads prior to implantation [26]. It contains 0.66 g
vancomycin per 10 mL of carrier.

4.2. Preparation of Antibiotic Carriers

Carriers A and D were ready for use as they already contained vancomycin, whereas
carriers B and C had to be impregnated with vancomycin (as recommended by the manu-
facturers’ guidelines). Due to differences in the densities among the individual carriers, a
volume of 5 mL, rather than a specific weight, was determined for each sample. Therefore,
a typical clinical use situation could be prepared for comparison purposes. To achieve
the aforementioned volume, 2.0 g of carrier A, 1.5 g of carrier B, 5.0 g of carrier C, and
5.5 g of carrier D (Table 2) were used. All preparations were performed in a laminar flow
workbench to minimise contamination risk. Four samples from each carrier were set up.

Table 2. Details about carriers, weight per sample, and vancomycin concentration.

Carrier A Carrier B Carrier C Carrier D

Product OSmycin V® OSpure™ STIMULAN® CERAMENT™V
Volume per sample 5 mL 5 mL 5 mL 5 mL
Weight per sample 2.0 g 1.5 g 5.0 g 5.5 g
Vancomycin per sample 1.1 g 0.83 g 0.305 g 0.247 g
Vancomycin per 1 g carrier 0.55 g 0.55 g 0.06 g 0.045 g

(a) For the preparation of carrier A, four wells of a six-well plate were each filled with
5 mL of the carrier as provided by the manufacturer (equivalent to 2 g, containing
1.1 g of vancomycin each) and pressed with a 35 lb-calibrated indenter (Figure 2).
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(b) Firstly, 4 wells of a 6-well plate (Figure 2) were filled with 5 mL of carrier B and
subsequently impregnated with a physiological saline solution-dissolved vancomycin
(Vancomycin Hikma, Hikma Pharmaceuticals, Sintra, Portugal) for 15 min at room
temperature. This allowed the bone chips to absorb the vancomycin solution. The
resulting samples were equivalent to 1.5 g containing 0.83 g of vancomycin each and
were ultimately pressed with a 35 lb-calibrated indenter.
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(c) For carrier C, 1 g of vancomycin powder was first mixed with 10 mL of the solid phase
of the carrier. Thereafter, 6 mL of the mixing solution provided by the manufacturer
was added and thoroughly mixed for 30 s. Within 1–2 min of combining the liquid
and solid phases, the mixture was transferred to the bead mat provided by the
manufacturer, with a bead size of 6 mm. The mat was gently tapped on the table to
remove any potential air bubbles. After another 8 min of setting time, the beads were
released from the bead mat by bending it back and forth. Again, four wells of a 6-well
plate were each filled with 5 mL of beads (containing 0.305 g of vancomycin) and
pressed with the indenter calibrated to 35 lbs (Figure 2).

(d) Carrier D was prepared according to the package insert. First, 1 g of vancomycin
powder was dissolved in an iodine-based liquid phase (iohexol, provided by the
manufacturer in a syringe). The mixture was subsequently transferred to the mixing
device containing hydroxyapatite and calcium sulphate hemihydrate powders. The
liquid and solid phase were subsequently combined for 30s using the manufacturer’s
mixing device, equivalent to one complete turn per second. Thereafter, 5 mL of the
prepared carrier was inserted into 4 wells of a 6-well plate each (containing 0.247 g of
vancomycin) and allowed to settle for 3 min. Afterwards, probes were pressed with a
35 lb-calibrated indenter (Figure 2).

4.3. In Vitro Elution Assay

Releasing profiles of the four vancomycin carriers were determined using an in vitro
elution method. Phosphate-buffered saline (PBS, pH 7.4) was used as a dissolution medium.
Each sample containing 5 mL of the antibiotic carrier was mixed with 9 mL of PBS and
incubated at 37 ◦C.

Once per week, and after the transfer of the 6-well plates to the laminar workbench,
the incubator and water bath were cleaned with Bacillol® tissues under sterile conditions.
Additionally, the water bath was exchanged using 500 mL of distilled water mixed with
2.5 mL of AquaClean (antimicrobial additive consisting of ammonium compounds) [42].
Thereafter, the new water bath and 6-well plates were retransferred to the incubator.

Antibiotic release was assessed over 42 consecutive days, with samples collected at
9 distinct points in time (4 h, 8 h, 24 h, 48 h, 7 days, 14 days, 21 days, 35 days, and 42 days).
At every time point, 50% of the elution medium (i.e., 4.5 mL) was removed from each
sample and substituted with 4.5 mL of PBS [38]. Prior to sampling, the medium of each
well was mixed with a 1000 µL single-channel micropipette to avoid falsified fluctuations in
the concentration of the antibiotic. Thereafter, 1.5 mL of the elution medium was removed
using a 100–1000 µL single-channel micropipette (procedure: 3 × 500 µL) and transferred
to Eppendorf tubes. Further, 3.0 mL of the elution medium was removed (procedure:
3 × 1000 µL) and discarded. The “forward pipetting” technique (i.e., the pipette’s control
knob is pushed down to the first pressure point before the pipette’s tip is dipped into
the elution medium, and the control knob is released for elution medium uptake) was
employed. A total of 4.5 mL of removed elution media was substituted with the same
amount (4.5 mL) of PBS (procedure: 4 × 1000 µL + 1 × 500 µL).

Samples were stored in Eppendorf tubes at −20◦ until laboratory analysis.

4.4. Kinetic Microparticle Immunoassay

Vancomycin levels in the samples were determined using a kinetic microparticle
immunoassay (ONLINE TDM Vancomycin Gen.3, Roche Diagnostics, Vienna, Austria)
applied on a cobas® 8000 c502 analyzer (Roche Diagnostics, Rotkreuz, Switzerland). This
method is routinely used for vancomycin measurements in blood serum and has been
standardised against USP reference standards.

To assess the efficacy of the test and provide robust control, as incomparable sample
materials were used in this study and the vancomycin concentrations were expected to
be much higher in the study samples than in serum, the method had to be validated
for its use in this extraordinary sample matrix. Several standard additional assays were
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performed with different concentrations of pure vancomycin (Vancomycin Hikma, Pfizer
Corporation Austria Gesellschaft m.b.H., Vienna, Austria) and the buffer solution, and
results were measured in repeated runs with several dilution media (distilled water, isotonic
saline solution, and serum albumin). The results from the pre-study validation revealed
a recovery of nearly 100% when the samples were diluted with serum albumin (Alburex
5%, CSL Behring, King of Prussia, PA, USA). A 1000-fold dilution was necessary to achieve
linear results. The within-run precision was 6% for a vancomycin concentration of roughly
46 mg/mL. Based on the results from the method validation study, each sample from the
elution assay was diluted at least 1000-fold with serum albumin prior to measurement with
the kinetic microparticle immunoassay.

4.5. Statistical Methods

Mean values and standard deviations of the antibiotic levels were calculated at each
respective time point from the start of the assessment to day 42. Pearson’s correlation
coefficient was used to test for a linear relationship of elution kinetics for each carrier over
time, with an absolute value of R > ±0.7 considered a strong correlation. One-way repeated
measures analysis of variance (ANOVA) was applied to assess overall changes in mean
antibiotic concentrations over time. Subsequent pairwise comparison of means, adjusting
for multiple comparisons with the Tukey method, was performed to assess differences in
antibiotic concentrations between consecutive time points for each carrier. Kruskal–Wallis
test with post hoc Dunn test was applied to assess significant differences between carriers’
antibiotic concentrations from the first (4 h) to the last measurement (42 days).

A two-sided p-value of <0.05 was considered statistically significant.

5. Conclusions

Using an in vitro model to assess elution characteristics of four commonly prescribed
antibiotic carriers, pre-prepared allogenic bone chips exhibited the highest drug-to-carrier
ratio, highest initial antibiotic release, and a constant favourable releasing profile, which
remained higher than that of all non-allogenic biodegradable carriers tested for up to
42 days.
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