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Abstract: Appropriate surgical antimicrobial prophylaxis (SAP) is an important measure in preventing
surgical site infections (SSIs). Although antimicrobial pharmacokinetics–pharmacodynamics (PKPD)
is integral to optimizing antibiotic dosing for the treatment of infections, there is less research
on preventing infections postsurgery. Whereas clinical studies of SAP dose, preincision timing,
and redosing are informative, it is difficult to isolate their effect on SSI outcomes. Antimicrobial
PKPD aims to explain the complex relationship between antibiotic exposure during surgery and
the subsequent development of SSI. It accounts for the many factors that influence the PKs and
antibiotic concentrations in patients and considers the susceptibilities of bacteria most likely to
contaminate the surgical site. This narrative review examines the relevance and role of PKPD in
providing effective SAP. The dose–response relationship i.e., association between lower dose and
SSI in cefazolin prophylaxis is discussed. A comprehensive review of the evidence for an antibiotic
concentration–response (SSI) relationship in SAP is also presented. Finally, PKPD considerations
for improving SAP are explored with a focus on cefazolin prophylaxis in adults and outstanding
questions regarding its dose, preincision timing, and redosing during surgery.

Keywords: antibiotic prophylaxis; surgical prophylaxis; cefazolin; pharmacokinetics; pharmacody-
namics; surgical site infection

1. Introduction

Surgical site infections (SSIs) are significant complications that increase patient mor-
bidity, mortality, and healthcare costs [1,2]. In a meta-analysis of nearly half a million
patients worldwide, the pooled cumulative incidence of SSI in general surgery was 11% [3].
Although the risk is variable among patients, types of surgery, and surgical settings, it is
estimated that over half of infections can be prevented by measures including appropriate
surgical antimicrobial prophylaxis (SAP) [4,5]. SAP involves the use of systemic antibi-
otics during surgery to eradicate bacteria from the surgical wound, thereby preventing
contamination and reducing the risk of infection [6]. The most suitable antibiotics are
bactericidal, cover the most likely SSI pathogens, have minimal impact on antimicrobial
resistance [7], have a favorable safety profile, and are cost effective [8]. First or second
generation cephalosporins, particularly cefazolin, are the most used and studied antibiotics
for surgical prophylaxis.

Antibiotic dosing for the treatment of infections is based on antimicrobial
pharmacokinetics–pharmacodynamics (PKPD). Whereas PKs characterize the antibiotic
concentrations achieved in the patient through the processes of absorption, distribution,
metabolism, and excretion, PDs describe the antimicrobial effects on the pathogen. Com-
bined, PKPD explains the complex relationship between antibiotic exposure, microbiologi-
cal response, and clinical outcomes [9,10]. PKPD modelling is used to determine dosing
for new agents [11–13] and revise dosing to conserve the effectiveness of older antibi-
otics [14–16]. It is particularly important in the study of dosing for special populations with
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altered PKs, e.g., neonates, obese, renal replacement, critically ill [17]. PKPD is also used
to translate in vitro antimicrobial susceptibility testing to clinical practice by identifying
meaningful MIC (minimum inhibitory concentration) breakpoints that categorize isolates
as susceptible or resistant to specific antibiotic therapies [18,19].

Although there is less PKPD research on preventing infections, there is broad con-
sensus that SAP should provide adequate coverage throughout surgery, from incision to
closure [8,20–22]. The PKs of antibiotics are variable in surgical patients due to heterogene-
ity in age, body weight, renal function, and comorbidities. Furthermore, the PDs apply to
bacteria most likely to contaminate the surgical site as opposed to an infecting pathogen.
PKPD investigations relating antibiotic exposure during surgery to the subsequent devel-
opment of SSI remain limited. Even so, Monte Carlo simulations are used to evaluate SAP
regimens by incorporating PKPD principles and predicting target attainment in simulated
surgical populations.

This narrative review examines the relevance and role of PKPD in providing effective
SAP. The dose–response relationship i.e., association between lower dose and SSI in cefa-
zolin prophylaxis is discussed. A comprehensive review of the evidence for an antibiotic
concentration–response (SSI) relationship in SAP is also presented. Finally, PKPD consider-
ations for improving SAP are explored with a focus on cefazolin prophylaxis in adults and
outstanding questions regarding its dose, preincision timing, and redosing during surgery.

2. Dose–Response Relationship in Cefazolin Prophylaxis

Examples of clinical studies that characterize the association between lower cefazolin
dose and an increased risk of SSI are detailed in Table 1. Such investigations are usually
retrospective or observational studies that find higher rates of infection when cefazolin is
underdosed according to practice guidelines, e.g., 2 g for patients <120 kg or 3 g for those
≥120 kg, administered within 1 h prior to incision [8]. Given the use of standard cefazolin
doses over a wide range of body weight, an association between SSI and lower calculated
mg/kg doses received by patients may also be observed.

Although clinical studies relating the SAP dose to SSI are informative, there are
significant limitations that can impede the detection of a dose–SSI relationship. First,
without the PKs, dose is a poor predictor of the antibiotic concentrations achieved in
patients and antimicrobial activity in vivo. Furthermore, dose is only one component of
the SAP regimen which also relies on appropriate preincision timing and redosing during
surgery. Finally, SSI outcomes are affected by many other patient- and surgery-related
factors such as obesity, diabetes, immune status, type of surgery, wound classification, and
surgical duration. Heavier body weight (i.e., obesity) is a significant risk factor [23,24]
which often complicates the study of cefazolin dosing for surgical prophylaxis. With the
use of standard doses, there is a negative correlation between body weight and the mg/kg
dose received by patients. For example, the mg/kg dose delivered by 2 g of cefazolin
decreases as body weight increases to the cut-off of 120 kg, thereby confounding the effects
of heavier body weight and lower dose as risk factors for SSI.

In a retrospective, case–control study, Cies et al. investigated whether body mass
index (BMI) affected infection rates in pediatric orthopedic surgery [25]. The mean age of
patients was 12.8 years, ranging from 3 years to 9 years. Overall, the American Society of
Anesthesiologists (ASA) class II or III (p = 0.006) and surgery >2 h (OR = 2.45, p = 0.01) were
independently associated with SSI. The study also included a subgroup analysis of cefazolin
prophylaxis stratified by dosing practice, i.e., standard-dose of 1 g for patients ≥70 kg and
weight-based dose of 20–30 mg/kg to a maximum of 1 g for those <70 kg. The infection
rate was significantly higher in patients who received the standard compared to weight-
based dosing (35.9% versus 20.5%, p = 0.045). The authors noted that the groups were
also stratified by body weight, but observed that overall patients who were underweight,
not overweight, were more likely to develop SSI than those who were a healthy weight
(p = 0.023). They concluded that weight-based dosing of cefazolin was appropriate for their
patient population, but dosing to a maximum of 1 g increased the risk of infection.
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Table 1. Dose–response relationship in cefazolin prophylaxis: Studies of the association between lower cefazolin dose and SSI.

Study Study Design Surgery (Number of Patients,
Years of Enrollment) Key Findings Regarding Cefazolin Dose and SSI

Cies et al.,
2012 [25]

Subgroup analysis of weight-based cefazolin dosing and MSSA SSI in
pediatrics (mean 12.8 years, range 3–19 years), using data from a
retrospective single-center, case–control study (n = 105 and
212 controls) of BMI as a risk factor for SSI within 30 days or 1 year if
instrumentation placed. 1

Pediatric clean orthopedic surgery
(n = 200, 2002–2005)

- SSI rate was higher with a standard dose of 1 g for patients ≥70 kg
compared to a weight-based dose of 20–30 mg/kg to a maximum of 1 g
for those <70 kg [35.9% vs. 20.5%, OR = 2.17 (CI95 1.02–4.65), p = 0.045];

- SSI rate was higher in patients who were underweight compared to
those who were a healthy weight (44.8% vs. 28.8%, p = 0.023);

- In the overall cohort, ASA class II or III (p = 0.006 ) and surgery >2 h
(OR = 2.45, p = 0.01) were independently associated with SSI. 2

Abdel Jalil et al.,
2017 [26]

Prospective observational, single-center study of the frequency of SSI
within 30 days and risk factors for infection including noncompliance with
a new institutional guideline to use 2 g instead of 1 g of cefazolin
preoperatively within 1 h for patients <120 kg.

Caesarean surgery
(n = 861, 2015–2016)

- Calculated mg/kg dose of cefazolin received by patients was lower in
patients with SSI compared to those without infection [18.7 mg/kg
(CI90% 10.6–28.6) vs. 22.2 mg/kg (CI90% 11.1–29.9), p = 0.037];

- Lower mg/kg dose [OR = 0.976 (CI95% 0.94–0.99), p = 0.035], longer
hospital-stay (>3.5 days, p = 0.001), higher BMI (≥36 kg/m2, p = 0.003),
and delivery beyond the 40th week (p = 0.005) were independently
associated with SSI. 2

Rondon et al.,
2018 [27]

Retrospective single-center study of cefazolin underdosing
and the risk of PJI within 1 year, where underdosing was defined as
cefazolin <1 g for any patient, <2 g for those between 60 kg and 120 kg,
or <3 g for those ≥120 kg. 3

Total joint arthroplasty
(n = 17,393, 2005–2017)

- Cefazolin was adequately dosed in 83.6%, underdosed in 16.3%, and
overdosed in 0.1% of cases; 4% of patients >120 kg received 3 g;

- PJI rate was higher in patients who were underdosed (1.51% vs. 0.86%,
p = 0.002) and in those ≥120 kg (3.25% vs. 0.83%, p < 0.001);

- Cefazolin underdosing (OR = 1.665, p = 0.006) and higher CCI
(OR = 1.259, p < 0.001) were independently associated with PJI. 2

Morris et al.,
2020 [28]

Retrospective study of the relationship between body weight, cefazolin
dose, and SSI within 90 days, using data from a national (New Zealand),
prospective surveillance and quality improvement programme, and where
the recommended dose was cefazolin 1 g for patients ≥80 kg or <3 g for
those ≥120 kg. 4

Knee or hip arthroplasty
(n = 38,288, 2013–2017)

- Cefazolin was given at the recommended dose in 94.5% and underdosed
in 5.5% of cases; 27% of patients >120 kg received 3 g;

- SSI was higher in patients >120 kg (OR = 3.1, p < 0.001);
- Cefazolin underdosing [OR = 2.19 (CI95% 1.61–2.99), p < 0.0001], higher

surgical risk score (p < 0.0001), revision (p < 0.0001) or hip (p = 0.028)
surgery, and male gender (p = 0.026) were independently
associated with SSI; 2

- Eighty-three (83) heavier-weight patients needed to be treated with the
recommended dose to prevent one infection.
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Table 1. Cont.

Study Study Design Surgery (Number of Patients,
Years of Enrollment) Key Findings Regarding Cefazolin Dose and SSI

Karamian et al.,
2022 [29]

Retrospective single-center cohort study of risk factors for SSI within
90 days, where adequate cefazolin dosing was defined as cefazolin 1 g for
patients <60 kg, 2 g for those from 60 to 120 kg, and 3 g for those >120 kg. 5

Cervical or lumbar spinal fusion
(n = 2643, 2000–2020)

- Cefazolin was inadequately dosed in 31% of cases; 5% of patients
>120 kg received 3 g;

- Adequate cefazolin dosing was independently associated with a lower
risk of SSI [OR = 0.45 (CI95% 0.30–0.69), p < 0.001], while a higher BMI
(p < 0.001) and higher CCI (p = 0.009) increased the risk of infection;2

- In a subgroup analysis of cefazolin dosing, the 2 g dose was
independently associated with a lower risk of SSI [OR = 0.20 (CI95%
0.12–0.35), p < 0.001], while heavier body weight increased the risk of
infection [OR = 1.03 (CI95% 1.02–1.04), p < 0.001]. 2 For the 1 g dose, body
weight >80.75 kg was a significant threshold for SSI. 6

ASA is American Society of Anesthesiologists, BMI is body mass index, CCI is Charlson comorbidity index, CI95% 95% confidence interval, MSSA is methicillin-susceptible
Staphylococcus aureus, OR is odds ratio, PJI is prosthetic joint infection, SSI is surgical site infection, vs. is versus. 1 Preincision dose within 1 h in 78.9% of cases; redosing during
surgery needed in 6.9% of cases. 2 Multivariable logistic regression analysis. 3 Preincision dose within 1 h in all of cases; information on redosing during surgery and extended courses
postsurgery not provided. 4 Preincision dose within 1 h in 96% of cases; surgery exceeded 4 h in 1% of cases. 5 Redosing during surgery in 31.1% of cases. 6 Receiver operating
characteristic (ROC) curve analysis.
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Abdel Jalil et al. conducted a prospective, observational study of the frequency and
potential risk factors for SSI in caesarean surgery [26]. Compliance with a new institutional
guideline to use 2 g instead of 1 g of cefazolin preoperatively for patients <120 kg was also
evaluated. A dose–response relationship was observed where patients who developed
SSI received a lower calculated mg/kg dose than those without infection (18.7 mg/kg
versus 22.2 mg/kg, p = 0.037). Furthermore, a lower mg/kg dose of cefazolin indepen-
dently associated with SSI (p = 0.035) in multivariable logistic regression analysis, as were
longer hospital stay (p = 0.001), higher BMI (p = 0.003), and delivery beyond the 40th week
(p = 0.005). As expected, the mg/kg dose was negatively correlated with BMI. The investiga-
tors concluded that using 2 g versus 1 g of cefazolin was beneficial, predicting that it would
reduce the risk of infection by 36% in their typical patient undergoing caesarean surgery.

Rondon et al. reviewed 17,393 cases of total joint arthroplasty at a single center over
13 years to determine what proportion of cefazolin prophylaxis was adequately dosed and
whether underdosing was associated with prosthetic joint infection (PJI) [27]. Underdosing
was defined as <1 g for any patient, <2 g for those between 60 kg and 120 kg, or <3 g
for those ≥120 kg. The preoperative dose was given within 1 h in all cases. Cefazolin
was adequately dosed, underdosed, and overdosed in 83.6%, 16.3%, and 0.1% of patients,
respectively. Notably, only 4% of individuals ≥120 kg received 3 g of cefazolin, thereby
confounding the effects of underdosing and heavier body weight. The rate of PJI was higher
in patients who were underdosed (1.51% versus 0.86%, p = 0.002) and in those ≥120 kg
(3.25% versus 0.83%, p < 0.001). After multivariable analysis, only underdosing [odds
ratio (OR) = 1.665, p = 0.006] and a higher Charlson comorbidity index (CCI) (OR = 1.259,
p < 0.001) were independently associated with infection. The authors proposed that
cefazolin underdosing, most evident in patients with obesity, contributed to a higher risk
of PJI.

Morris et al. analyzed the relationship between cefazolin dose, body weight, and
SSI in 38,288 cases of hip or knee arthroplasty, using data from a national (New Zealand)
prospective, surveillance and quality improvement programme [28]. Underdosing was
defined as 1 g for individuals ≥80 kg or <3 g for those ≥120 kg. The preoperative dose
was administered within 1 h in 96% of cases, and surgery exceeded 4 h in only 1% of
cases. The recommended cefazolin dose was given in 94.5% cases, noting that only 27%
of patients ≥120 kg received 3 g. After multivariable analysis, underdosing (OR = 2.19,
p < 0.0001), higher surgical risk score (p < 0.0001), revision (p < 0.0001) or hip surgery
(p = 0.028), and male gender (p = 0.026) were independently associated with SSI. It was
estimated that 83 heavier-weight individuals needed to be treated with the recommended
dose to prevent one infection. The investigators suggested that 2 g and at least 3 g
of cefazolin were appropriate for patients ≥80 kg and ≥120 kg, respectively, but were
unable to address the potential need for higher doses in patients with morbid obesity
undergoing arthroplasty.

Finally, in a retrospective, cohort study, Karamian et al. investigated whether inad-
equate cefazolin dosing affected infection rates in 2643 cases of spine surgery at a single
center spanning 20 years [29]. An adequate dose was defined as 1 g for patients <60 kg,
2 g for those from 60 kg to 120 kg, and 3 g for those >120 kg. Again, only 5% of individuals
>120 kg received 3 g of cefazolin. Whereas adequate dosing was independently associated
with a lower risk of SSI (OR = 0.45, p < 0.001), higher BMI (p < 0.001), and higher CCI
(p = 0.009) increased the risk of infection. In a subgroup analysis of cefazolin dosing, the
2 g dose was independently associated with a lower risk of SSI [OR = 0.20, p < 0.001], while
heavier body weight increased the risk of infection [OR = 1.03, p < 0.001]. The relationship
between body weight and SSI was studied further in a subset analysis using receiver oper-
ating characteristic (ROC) curves. Strong associations were observed between body weight
and infection for both the 1 g and 2 g doses of cefazolin [area under the curve (AUC) = 0.85
(CI95% 0.777 to 0.924) and AUC = 0.575 (CI95% 0.493 to 0.657), respectively]. Body weight
>80.75 kg was a significant threshold for cefazolin dosing, where using 1 g would increase
the risk of infection by 85%. The authors proposed that 2 g of cefazolin was beneficial
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regardless of body weight but given the association between obesity and SSI, they were
unable to confirm the need for 3 g in those >120 kg.

In conclusion, the findings of several large retrospective or observational studies
support the importance of cefazolin dose for effective SAP. However, the correlation
between heavier body weight and less mg/kg of cefazolin delivered by standard doses
confounds the analysis of body weight and dose as risk factors for SSI. Such studies are also
limited by relatively poor adherence to the recommended 3 g dose for patients ≥120 kg.
Hence, high proportions of that group are concurrently labelled as underdosed in risk
factor analyses. Even so, the SAP dose is a significant and modifiable risk factor that
should be considered in situations like obesity, where altered PKs may reduce the antibiotic
concentrations achieved in patients during surgery.

3. Antibiotic Concentration–Response (SSI) Relationship in SAP

In 1977, Goldmann et al. may have been the first to note an association between
SSI and antibiotic concentrations in patients undergoing surgery [30]. They conducted a
prospective, double-blinded trial of extended courses of cephalothin prophylaxis following
prosthetic valve replacement. Although there was no benefit to prolonging the course
of antibiotics, the investigators observed that patients without detectable cephalothin in
their serum at the close of surgery were more likely to develop staphylococcal SSI [27.3%
(3/11) versus 1.1% (2/175), p = 0.002]. A comprehensive literature search for the current
review identified seven studies of antibiotic concentrations in serum/plasma or tissue
collected during surgery and SSI in patients. As detailed in Table 2, there were two studies
of cefazolin, two studies of ceftriaxone, and one study each of cefmetazole, cefuroxime,
and gentamicin. Three of the studies measured antibiotic concentrations in serum/plasma,
whereas four measured the amount of antibiotic in tissue (± serum/plasma concentrations).

The PKPD of gentamicin prophylaxis in colorectal surgery was studied as part of a
prospective, double-blinded trial that compared a single-dose versus multiple-dose reg-
imen of gentamicin and metronidazole (n = 134) [31,32]. In the PKPD analysis, several
patient- and surgery-related variables were investigated as potential risk factors for SSI.
Gentamicin preincision timing, serum concentrations at incision and closure, and AUC
from incision to closure were also considered. After multivariable analysis, a lower gentam-
icin concentration at closure (p = 0.02), diabetes (p = 0.02), stoma (p = 0.04), and older age
(p = 0.05) were independently associated with infection. Furthermore, a closure con-
centration <1.6 mg/L was a significant threshold for infection (ROC curve, p = 0.002,
sensitivity = 70.8%, specificity = 65.9%). Other risk factors for SSI including earlier preinci-
sion timing and longer surgery were associated with lower closure concentration and not
significant in multivariable analysis. Of note, the mg/kg dosing of gentamicin mitigated
the association between heavier body weight and lower dose that confounded the study of
cefazolin as previously discussed.

The PKPD of cefazolin prophylaxis was investigated as part of a prospective, non-
interventional PK study of total and unbound cefazolin in patients undergoing cardiac
surgery (n = 40) [33,34]. After multivariable analysis, a lower total plasma concentra-
tion at closure (OR = 1.3 per 10% decrease in concentration, p = 0.038) and longer surgery
(OR = 2.9 per additional 1 h, p = 0.027,) were independently associated with SSI. In classifica-
tion and regression tree (CART) analysis, a total cefazolin closure concentration <104 mg/L
(~29 mg/L unbound) and surgery >346 min were significant thresholds for infection. Given
the small sample size, the thresholds were more descriptive of the PKPD relationship than
definitive targets. The stronger association with total as opposed to unbound cefazolin
may have been due to significant variability in plasma albumin and protein binding during
cardiac surgery.

Albacker et al. studied cefuroxime plasma concentrations and SSI in patients undergo-
ing coronary artery bypass grafting (CABG) (n = 78) [35]. Concentrations before incision,
before or 1 h after starting cardiopulmonary bypass (CPB), and before skin closure were
not significantly different between patients with or without infection. Durations from the
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preoperative dose to starting CPB (p = 0.01) and to skin closure (p = 0.03) were longer
in those who developed SSI. However, there was a notable infection rate of 18% during
the study. The authors also reported that SAP was inappropriate in 78.2% of all cases
including 42.3% with improper preincision timing and 44.9% with inadequate redosing. It
is difficult to know how surgical prophylaxis practices at the time may have influenced the
study findings.

Takayama et al. examined cefmetazole in serum and whole (fat) tissue during lower
gastrointestinal surgery (n = 105) [36]. Subcutaneous tissue samples were collected at
the time of incision and before skin closure. The tissue was pulverized in liquid nitrogen,
homogenized in a phosphate buffer, and centrifuged to obtain supernatant for the analytical
assay. In univariate analysis, a lower tissue concentration at closure (1.0 mg/g versus
2.2 mg/g, p = 0.09), not redosing during surgery (p = 0.09), lower creatinine clearance
(p = 0.09), and older age (p = 0.02) were associated with SSI (α = 0.1). Although the
amount of antibiotic in surgical tissue is important, the methodology and interpretation
of such data must be carefully considered [37,38]. Antibiotic tissue concentrations in
the extracellular space, where bacteria contaminate the wound, are most relevant. Since
only free antibiotic diffuses between the plasma and interstitial fluid, unbound plasma
concentrations are more indicative of the pharmacologically active antibiotic in extracellular
tissue. Microdialysis studies can be used to measure antibiotic in interstitial fluid that
is collected from semipermeable catheters inserted or surgically placed in the tissue of
interest. The probes are flushed with perfusion fluid, thereby allowing interstitial fluid to
be continuously sampled during surgery. In contrast, whole tissue studies collect samples
at specific times and measure the overall average amount of antibiotic per volume/weight
of tissue. Since the methods lack standardization and procedures for quality control, the
results are difficult to interpret [37,38]. Most techniques involve homogenizing whole
tissue into a suspension of its cellular, extracellular, and vascular components, and then
processing the sample to obtain supernatant. Noting that interstitial fluid accounts for only
10% to 30% of tissue volume, whole tissue concentrations do not reflect the antibiotic’s
distribution or pharmacological activity in vivo. Since β-lactams like cefmetazole distribute
into interstitial fluid, the concentrations in pulverized adipose tissue are diluted, thereby
underestimating those in extracellular tissue [39]. Despite the limitations, however, the
findings of Takamaya et al. support an antibiotic concentration–response relationship
for cefmetazole prophylaxis [36]. The tissue concentrations at closure, using consistent
sampling and analytical methods, were significantly lower in patients who developed SSI.
Although it signals the importance of maintaining antibiotic in tissue during surgery, the
specific concentrations are not clinically applicable and can not be compared to MICs or
otherwise used to predict antibacterial activity at the surgical site.

Sheikh et al. investigated ceftriaxone in serum and whole (fat) tissue during pediatric
clean or clean-contaminated surgery (n = 50) [40]. The mean age of patients was 6.1 years,
ranging from 2 years to 12 years. The samples were collected at the time of incision, midway,
and at wound closure. The tissue was crushed, homogenized by sonification, reconstituted
with normal saline, and centrifuged to obtain supernatant. Only longer surgery (p = 0.02),
higher wound classification (p = 0.035), urinary catheter (p = 0.029), and implantation were
associated with SSI (p = 0.002). The investigators also noted that ceftriaxone serum con-
centrations during surgery were always at least 20 times their threshold of 4 mg/L. Given
the pediatric dosing (i.e., 75 mg/kg to a maximum of 1 g), it is possible that ceftriaxone
concentrations exceeded the PKPD window where the relationship with SSI would be
observed. Sheikh et al. also published a similar study of ceftriaxone in serum and whole
(fat) tissue during adult spinal surgery (n = 50) [41]. Patients received a standard 1 g dose
of ceftriaxone preoperatively. The same sampling, processing, and analytical methods were
used. In this case, lower serum (p = 0.003) and tissue (p = 0.008) concentrations at closure,
longer surgery (p = 0.003), and implantation (p = 0.049) were significantly associated with
SSI in adults undergoing spinal surgery.



Antibiotics 2023, 12, 1738 8 of 20

Table 2. Studies of an antibiotic concentration–response (SSI) relationship in SAP.

Study Study Design Antibiotic 1 Surgery Measured Antibiotic Concs
(Analytical Assay)

Number of SSI Cases and
Comparators or Controls 2

Key Findings Regarding Antibiotic
Concentration and SSI

Zelenitsky
et al., 2002 [31]

PKPD subgroup analysis in a
prospective double-blinded trial of a
single-dose vs. multiple-dose regimen of
gentamicin and metronidazole
prophylaxis (n = 146) [32]. 3

Gentamicin Colorectal surgery

Total serum concs at least
30 min after the preoperative
dose and postsurgery in
recovery (fluorescence
immunoassay)

33 superficial SSIs and
10 deep SSI within 30 days
vs. 91 without infection

- Lower serum conc at closure (p = 0.02),
diabetes (p = 0.02), stoma (p = 0.04), and
older age (p = 0.05) were independently
associated with SSI; 4

- Serum conc at closure <1.6 mg/L was a
significant threshold for SSI (p = 0.002,
sensitivity = 70.8%, specificity = 65.9%). 5

Zelenitsky
et al., 2018 [33]

PKPD subgroup analysis in a
prospective non-interventional PK study
of cefazolin prophylaxis (n = 55) [34]. 6

Cefazolin
CABG, cardiac
valve repair or
replacement 7

Total and unbound plasma
concs 30 min after the
preoperative dose, prior to
redosing, and within 15 min
of wound closure
(HPLC-tandem mass
spectrometry)

8 superficial SSIs within
30 days vs. 32 without
infection

- Lower total plasma conc at closure
(OR = 1.3 per 10% decrease, p = 0.038) and
longer surgery (OR = 2.9 per 1 h increase,
p = 0.027) were independently associated
with SSI; 4

- Total plasma conc at closure <104 mg/L
and surgery >346 min were significant
thresholds for SSI. 8

Albacker et al.,
2022 [35]

Prospective PK study of cefuroxime
prophylaxis. 9 Cefuroxime CABG 7

Total serum concs
immediately before incision,
before and 1 h after starting
CPB, and before skin closure
(analytical assay not
described)

14 SSIs (superficial within
30 days and deep/organ
space within 90 days) vs. 64
without infection

- Serum concs were not different in
patients with SSI compared to those
without infection;

- Longer durations from the preoperative
dose to starting CPB (p = 0.01) and to skin
closure (p = 0.03) were associated
with SSI. 10

Takayama et al.,
2022 [36]

Prospective PK study of cefmetazole
prophylaxis. 11 Cefmetazole

Colectomy
(laparoscopic),
proctectomy

Total serum concs at the time
of incision, intestinal resection,
redosing, and skin closure,
and whole adipose tissue
concs at the time of incision
and skin closure (HPLC)

7 superficial SSIs, 2 deep
SSIs, and 4 organ space SSIs
within 30 days vs. 92
without infection

- Lower tissue conc at closure (1.0 vs.
2.2 mg/g, p = 0.09), not redosing during
surgery (p = 0.09), lower creatinine
clearance (p = 0.09), and older age (p = 0.02)
were associated with SSI (α = 0.1). 10
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Table 2. Cont.

Study Study Design Antibiotic 1 Surgery Measured Antibiotic Concs
(Analytical Assay)

Number of SSI Cases and
Comparators or Controls 2

Key Findings Regarding Antibiotic
Concentration and SSI

Sheikh et al.,
2022 [40]

Prospective PK study of ceftriaxone
prophylaxis in pediatrics (mean
6.1 years, range 2–12 years). 12

Ceftriaxone
Pediatric clean or
clean-contaminated
surgery (multiple)

Total serum and whole
adipose tissue concs
simultaneously at the time of
incision, mid surgery, and
wound closure (HPLC)

3 SSIs vs. 47 without
infection (surveillance
period not described)

- Lower tissue concs at closure (p = 0.04) but
higher tissue concs at incision (p = 0.02)
were correlated with SSI;

- Longer surgery (p = 0.02), higher wound
classification (p = 0.035), urinary catheter
(p = 0.029), and implantation were
associated with SSI (p = 0.002). 13

Sheikh et al.,
2023 [41]

Prospective PK study of
ceftriaxone prophylaxis. 14 Ceftriaxone Spinal surgery

Total serum and whole
adipose tissue concs
simultaneously at the time of
incision, mid surgery, and
wound closure (HPLC)

4 SSIs vs. 46 without SSI
(surveillance period not
described)

- Lower serum conc at closure (64.25 vs.
84.46 mg/L, p = 0.003) and lower tissue
conc at closure (6.90 vs. 8.82 mg/L,
p = 0.008) were correlated with SSI;

- Lower serum (p = 0.003) and tissue
(p = 0.008) concs at closure, longer surgery
(p = 0.003), and implantation (p = 0.049)
were associated with SSI. 13

Byers et al.,
2022 [42]

PK subgroup analysis in a retrospective
study of extended courses of
antimicrobial prophylaxis postsurgery
(n = 184). 15

Cefazolin Megaprosthetic
reconstruction

Whole tissue concs in cortical
bone and adjacent skeletal
muscle from punch biopsies
collected during surgery
(HPLC-tandem mass
spectrometry)

5 PJIs within 1 year
vs. 5 procedure-matched
controls without infection

- Tissue concs during surgery in cortical
bone (0.065 vs. 0.42 ng/mL, p < 0.01)
and adjacent skeletal muscle
(0.20 vs. 1.95 ng/mL, p = 0.03) were lower
in patients with PJI compared to controls.

CABG is coronary artery bypass grafting, Conc is concentration, CPB is cardiopulmonary bypass, HPLC is high-performance liquid chromatography, OR is odds ratio, PJI is prosthetic
joint infection, PK is pharmacokinetic, PD is pharmacodynamic, SAP is surgical antimicrobial prophylaxis, SSI is surgical site infection, vs. is versus. 1 Intravenous administration.
2 Number of cases included in the analysis of a concentration–response relationship. 3 Serum creatinine <150 umol/L for inclusion. Single-dose regimen of gentamicin 4.5 mg/kg
and metronidazole 500 mg preoperatively compared to multiple-dose regimen of gentamicin 1.5 mg/kg and metronidazole 500 mg preoperatively and at 8, 16, and 24 h postsurgery.
4 Multivariable logistic regression analysis. 5 Receiver operating characteristic (ROC) curve. 6 Creatinine clearance ≥50 mL/min for inclusion. Cefazolin by protocol, i.e., 1–2 g
preoperatively within 1 h, repeated every 4 h during surgery, and every 8 h for 2 days postsurgery. 7 Surgery involving cardiopulmonary bypass. 8 Classification and regression tree
(CART) analysis. 9 Cefuroxime dosing described as “according to the Society of Thoracic Surgeons Practice Guideline Series”. 10 Univariate analysis,. 11 Cefmetazole by protocol, i.e.,
1–2 g preoperatively within 1 h, repeated every 3 h during surgery. 12 Ceftriaxone by protocol, i.e., 75 mg/kg preoperatively to a maximum of 1 g after induction. 13 Correlation test with
ceftriaxone serum and tissue concentration and patient characteristics as independent variables, and SSI as the dependent variable. Binary logistic regression analysis of associations
between SSI with each individual predictable variable and various concentrations. 14 Ceftriaxone by protocol, i.e., 1 g preoperatively after induction. 15 Cefazolin by protocol, i.e., 1–3 g
preoperatively within 1 h, repeated every 4 h during surgery, and for a median of 3 days postsurgery.
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Finally, Byers et al. conducted a retrospective study of SAP in megaprosthetic recon-
struction to determine whether extended courses of prophylaxis reduced the risk of PJI [42].
The study also included a PK subgroup analysis of cefazolin concentrations in surgical
tissues of five patients who developed infection and five procedure-matched controls.
Samples were obtained from punch biopsies of cortical bone and adjacent skeletal muscle
collected during surgery. Muscle tissue was selected because of its high vascularization
compared to other soft tissue, e.g., subcutaneous adipose. After the sample was cryo-
crushed under liquid nitrogen, a novel multiple-step process was used to extract cefazolin
from the paraffin-embedded tissue. For the primary aim of the study, the investigators
found no benefit to prolonging antibiotics following surgery. In the PK analysis, however,
cefazolin concentrations during surgery in bone (0.065 ng/mL versus 0.42 ng/mL, p < 0.01)
and skeletal muscle (0.2 ng/mL versus 1.95 ng/mL, p = 0.03) were significantly lower in
patients who developed PJI compared to controls. The authors suggested that, as opposed
to extending the duration, opportunities to improve SAP in megaprosthetic reconstruction
may reside in selecting the best antibiotic and ensuring adequate tissue concentrations
during surgery.

In summary, available evidence supports an association between lower antibiotic
concentrations in patients undergoing surgery, particularly at wound closure, and an
increased risk of infection. However, the number of studies is relatively small. More
research is needed to fully understand the principles of antimicrobial PKPD in surgical
prophylaxis and realize its potential to improve SSI outcomes. Further study of antibiotic
concentrations in serum/plasma and interstitial fluid during surgery can also help identify
clinically meaningful targets for effective SAP.

4. Relevance and Role of PKPD in SAP
4.1. Antimicrobial PKPD and Monte Carlo Simulations

Antimicrobial PKPD is founded on decades of research in in vitro models, animal
models, and patients [10,12,43,44]. Unlike medications with a direct therapeutic effect
in patients, antibiotics work through their activity against an infecting pathogen. There-
fore, antimicrobial PKPD incorporates the susceptibility of the isolate, represented by the
MIC or lowest antibiotic concentration required to inhibit visible growth of the isolate
during in vitro incubation [45]. Three PKPD indices of clinical outcome have been estab-
lished for the treatment of infections. They include the maximum unbound [i.e., free (ƒ)]
concentration divided by the MIC (ƒCmax/MIC), the percentage of the dosing interval
that unbound concentrations exceed the MIC (ƒ%T>MIC), and the unbound AUC over
24 h divided by the MIC (ƒAUC/MIC). ƒCmax/MIC is most relevant for antibiotics with
concentration-dependent activity, e.g., aminoglycosides while ƒ%T>MIC applies to those
with time-dependent effects, e.g., β-lactams. ƒAUC/MIC is a blended index of overall
exposure for antibiotics like the fluoroquinolones and vancomycin. Although minimum
therapeutic targets have been established such as a ƒCmax/MIC > 8–10 for aminoglycosides,
%ƒT>MIC > 50% for cephalosporins, and AUC/MIC of 400 to 600 for vancomycin, higher
thresholds may be warranted, e.g., serious infections, critical illness [12,46,47].

Monto Carlo simulation studies are important in antimicrobial PKPD research and
knowledge translation [12,48]. They can integrate the complexity of numerous and often
interdependent variables related to the patient, antibiotic, and infection. And they can
incorporate real-world variability into patient characteristics (e.g., age, body weight, renal
function) and PK parameters (e.g., Vd, t½, protein binding). Instead of interpolating
based on an average or typical case, simulations can predict the probability of outcomes
for an infinite number of “what-if-scenarios”. Monte Carlo simulations are increasingly
used to evaluate and compare SAP regimens. First, the surgical population is generated
according to the desired patient characteristics. The SAP is replicated in each subject, and
antibiotic concentration curves are generated based on PK models. The use of relevant, high-
quality PK data is essential to produce reliable and translatable simulation results. Ideally,
population PK models that describe covariate relationships between parameters, such as
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body weight and Vd, or renal function and t½, are used [49]. Unbound concentrations may
be simulated using the percentage of protein binding or population PK data for unbound
drug if available. The concentration curves of each subject are considered against the
most likely SSI pathogens, and the probability of achieving the desired PKPD target is
predicted for the population. Since the goal of SAP is to maintain adequate antibiotic
concentrations throughout surgery, the relevant PKPD target is to achieve 100%ƒT>MIC,
from incision to closure. Unlike the treatment of infections, however, the MIC is speculative,
and the concentration threshold used to evaluate SAP is selected by the investigator. As
such, Monte Carlo simulations are typically designed to determine the probability of target
attainment (PTA) for 100%ƒT>MIC using a specific MIC believed to be the lowest acceptable
concentration for surgical prophylaxis or the fractional target attainment (FTA) using the
distribution of MICs for a population of bacteria. In all cases, simulation studies must be
considered carefully with regards to their methods, input data, analysis, and interpretation
of results.

4.2. PKPD Considerations for Improving Cefazolin Prophylaxis

SAP is supported by several well-established practice guidelines and recommenda-
tions for the prevention of SSI [8,20–22]. Although there is consensus that SAP should
provide adequate coverage throughout surgery, there are questions regarding the best ap-
proaches. A recent review by an international panel of experts identified “six long-standing
questions about antibiotic prophylaxis in surgery” including: How should the dose be cho-
sen, when should it be administered, and when should it be redosed intraoperatively [50]?
Those questions are explored from a PKPD perspective, with a focus on optimizing the
dose, preincision timing, and redosing of cefazolin prophylaxis in adults. Although the
concepts may apply to other antibiotics, the applications and discussions that follow are
specific to cefazolin.

4.2.1. Pharmacokinetics of Cefazolin Prophylaxis

Cefazolin is a small hydrophilic compound with PKs characterized by an average
protein binding of 80%, apparent Vd of 0.15 L/kg, and terminal t½ with normal renal
function of 2 h [51]. The PKs of cefazolin are variable in patients depending on factors
such as age, sex, body weight and composition, renal function, and comorbidities. The
concentration curve for a bolus dose of cefazolin can be described by a two-compartment
model, where the central compartment represents intravascular space (i.e., serum/plasma),
and the peripheral compartment signifies extracellular tissue (i.e., interstitial fluid). The
Cmax in plasma is determined by the dose, infusion, and central Vd. The transiently high
plasma concentrations following a bolus dose are less clinically relevant since free cefazolin
rapidly diffuses across the concentration gradient into tissue. The post-distributional
concentrations decline during the elimination phase primarily due to renal clearance.
The tissue penetration of antibiotics is an important consideration in the treatment and
prevention of infections [38]. The diffusion of an antibiotic into tissue depends on its
physiochemical properties, favoring those with smaller size, higher lipophilicity, and lower
protein binding. The tissue characteristics are also relevant where well vascularized sites
without additional barriers are more accessible. Hence, there is lower cefazolin penetration
into less perfused surgical sites like bone [52,53] and, in particular, excess adipose tissue.
Finally, the rate and extent of tissue penetration is variable, as demonstrated by the study
of cefazolin concentrations in the adipose tissue of patients undergoing surgery [54–58].

Standardized protocols are often used to facilitate SAP in clinical setting, e.g., 2 g of
cefazolin for patients <120 kg or 3 g for those ≥120 kg administered within 1 h prior to
incision and repeated every 2 t½’s during surgery [8]. As expected, cefazolin prophylaxis
produces a wide range of concentration curves where, for example, 2 g may be given to
patients who weigh up to 120 kg and have any degree of renal function. Given the limited
number of SAP doses, there is less concern about cefazolin overdosing and accumulation.
Other the other hand, it is important to identify when altered PKs may lower antibiotic
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concentrations during surgery, thereby increasing the risk of SSI, e.g., neonates, obesity,
pregnancy, cardiac surgery.

4.2.2. Cefazolin Prophylaxis Dose and Obesity

Although there is broad support for the 2 g dose of cefazolin for patients <120 kg [27,29],
the 3 g dose for those ≥120 kg is controversial. In 2022, Coates et al. published a systematic
review of cefazolin prophylaxis and dosing in patients with obesity [59]. Three SSI outcome
studies were identified including one in caesarean surgery where patients ≥131.5 kg
received either 2 g or 3 g of cefazolin preoperatively [60]. Two studies were conducted
in elective surgery where one compared 2 g to 3 g in patients ≥100 kg [61], and the other
examined 2 g in those <120 kg and ≥120 kg [62]. None of the outcome studies supported
the higher dose of cefazolin for patients with obesity. Fifteen PK studies that evaluated
serum/plasma or tissue concentrations against an MIC-based target of 100%ƒT>MIC were
also reviewed. Nine studies concluded that 2 g of cefazolin was sufficient for patients with
obesity, whereas six found that it was insufficient. As noted in the review, the PK studies
were difficult to interpret given the variability in patients, surgeries, sampling sites, and PK
modelling and simulation methods. Most notably, the MIC threshold used to determine
%ƒT>MIC and evaluate cefazolin doses ranged from 1 mg/L to 8 mg, limiting the ability to
compare study results. Without evidence to the contrary, Coates et al. proposed that 2 g of
cefazolin was sufficient for patients with obesity undergoing surgery lasting up to 4 h.

Subsequently, Ryan et al. published a population PK study of unbound cefazolin in
the plasma and interstitial fluid of subcutaneous abdominal tissue (microdialysis) during
elective bariatric surgery [58]. Patients with body weights ranging from 99 kg to 198 kg
(median 154 kg) received 2 g of cefazolin preoperatively. The PKs of unbound cefazolin were
described by a four-compartment model with nonlinear protein binding and a covariate
relationship between BMI and Vd. In Monte Carlo simulations, at least 95% of simulated
subjects achieved a concentration threshold of >2 mg/L in interstitial fluid throughout
surgery. The authors concluded that 2 g of cefazolin given 30 min to 60 min preincision was
adequate for patients with obesity or morbid obesity undergoing bariatric surgery lasting
up to 4 h (FTA 97.8% to 98.5%).

Figure 1 exemplifies a two-compartment model of unbound plasma concentrations
following 2 g of cefazolin preoperatively for different body weights. It was created based on
a population PK study of total and unbound cefazolin in major surgery by Naik et al. [63].
Their PK model was characterized by a median clearance of 4.65 L/h, central volume (Vc)
of 5.63 L, distribution rate constant from the central to peripheral compartment of 4.88 h−1,
distribution rate constant from the peripheral to centration compartment of 3.98 h−1, and a
covariate relationship between body weight and volume where Vc = Vc (typical) × (body
weight/80) 0.75. Figure 1 uses data from Naik et al. to estimate Vd. However, since cefazolin
penetrates poorly into adipose tissue, the Vd for body weights ≥ 120 kg incorporates an
adjusted dosing weight (adjDW) where adjDW = ideal body weight + [0.4 × (total body
weight − ideal body weight)] [64]. Figure 1 also uses an average protein binding of 21% [63]
and terminal t½ of 2 h, representing normal renal function and an elimination unaffected
by obesity [56,65,66].

PK studies can show relatively small differences in cefazolin concentrations with the
same dose for heavier body weights extending into obesity and morbid obesity. This is
explained by the distribution of cefazolin, and most β-lactams, into extracellular tissue
which lessens the effects of obesity on Vd. As shown in Figure 1, the differences with
2 g of cefazolin for body weights ranging from 60 kg to 180 kg are relatively modest and
narrow over time. Most relevant to surgical prophylaxis, the cefazolin concentrations are
similar at a redosing time of 3 h to 4 h. However, cefazolin concentrations in interstitial
fluid, represented by unbound plasma concentrations as in Figure 1 or measured using
microdialysis, must be considered in context. Given the excess adipose tissue, there is
significantly less interstitial fluid in the tissue of patients with obesity. Since adipose
tissue is also poorly vascularized, the amount of antibiotic available at the surgical site
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is further reduced. Therefore, a cefazolin dose (e.g., 2 g) that produces similar cefazolin
concentrations in the interstitial fluid of nonobese and obese patients does not necessarily
provide comparable surgical prophylaxis. Given the lower amounts of interstitial fluid
and blood flow in adipose tissue, it is possible that higher interstitial fluid concentrations
and PKPD targets would be beneficial in obesity. It is an important consideration that
supports using a higher cefazolin dose for heavier body weights. Although strong evidence
for the 3 g dose in patients ≥120 kg is lacking, as previously discussed, clinical studies of
cefazolin dose and SSI have limitations that make it difficult to detect differences that may
exist between doses. Furthermore, PK-simulation studies may not consider the potential
need for higher concentrations in obesity. Although the weight-based cut-offs of 120 kg
and 35 kg/m2 have been shown to poorly predict those who required more than 2 g
of cefazolin [66], better approaches are not available at this time. Finally, whereas the
additional risks of using a 3 g versus 2 g dose are minimal, the benefits include increasing
cefazolin concentrations in interstitial fluid, extending the duration of prophylaxis coverage,
and potentially preventing SSIs in a high-risk patient population.
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4.2.3. Preincision Timing of Cefazolin Prophylaxis

SAP must be administered prior to incision to be effective [67–69]. Although there
is general agreement to give the first dose within 60 min of incision, a 120 min window
may be acceptable when considering antibiotics with long t½’s or prolonged infusions,
e.g., vancomycin [21]. There are also suggestions of added benefit for specific times within
the 60 min window. While some studies reported lower infection rates when SAP was
administered closer to incision [68,70–72], others found no difference [73–75] or a higher
rate of SSI [76]. In 2017, de Jong et al. published a meta-analysis of different SAP timing
intervals for 54,552 patients from 14 studies [69]. Although the risk of SSI was significantly
higher when SAP was given more than 120 min before incision (OR = 5.26, CI95% 3.29–8.39)
or after incision (OR = 1.89, CI95% 1.05–3.40), differences were not observed for specific
times within the 120 min window. The authors also noted considerable heterogeneity in
the antibiotics and dosing regimens, and the evidence overall was low to moderate.

Figure 2 exemplifies the potential effects of preincision timing on a 2 g bolus dose of
cefazolin for a body weight of 80 kg. It is based on the same population-PK model and
data described for Figure 1 [63]. In addition to unbound plasma concentrations, Figure 2
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displays cefazolin concentrations in interstitial fluid. The tissue concentrations increase
more gradually as free cefazolin diffuses into the peripheral compartment. The rate of
tissue penetration can also be characterized by the time to achieve maximum cefazolin
concentrations (Tmax) following a preoperative dose. One study in abdominal aortic
aneurysm repair surgery observed rapid diffusion into subcutaneous tissue (microdialysis)
with a median Tmax of 2.0 min [54]. Separate investigations of cefazolin penetration into the
skeletal muscle (microdialysis) of pediatric patients reported a median Tmax of 37.6 min in
cardiac surgery, and values from 30 min to 38.5 min in spinal surgery [77,78]. The findings
of such studies are variable and significantly influenced by the methods for sampling and
data analysis. As depicted by the concentration curves in Figure 2, adjusting the preincision
timing to ensure maximum tissue concentrations at the time of incision is unlikely to be
beneficial or necessary.
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4.2.4. Redosing Cefazolin Prophylaxis during Surgery

Redosing during surgery may be required to ensure adequate cefazolin concentrations
at closure [79]. In 2022, Wolfhagen et al. published a meta-analysis of SAP redosing for
9470 patients from 10 studies [80]. Redosing was associated with a significant reduction in
SSI in the observational cohort studies only (OR = 0.55, CI95% 0.38–0.79). Again, there was
notable heterogeneity in the antibiotics and redosing protocols, leading to an overall low
certainty of the evidence. Based on the longstanding recommendation of redosing every
2 t½’s, cefazolin is typically given every 3 h or 4 h assuming normal renal function. As
kidney function declines, the duration of cefazolin prophylaxis coverage is extended and
redosing may not be required [81]. On the other hand, more aggressive redosing may be
used in situations where standard SAP regimens are inadequate. For example, cefazolin
redosing after 2 h was suggested for patients >35 kg/m2 undergoing cesarean surgery [82].
In cardiac surgery with CPB, cefazolin redosing every 3 h was recommended for patients
with normal renal function [34], whereas some described redosing every 2 h [83]. Other
strategies to augment cefazolin prophylaxis in cardiac surgery include additional doses
after starting CPB [84] or at skin closure [85]. Cefazolin prophylaxis given as a bolus dose
preoperatively followed by continuous infusion during surgery eliminates the need for
redosing and may also lower the risk of SSI in cardiac surgery [83,86].
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4.2.5. Conclusions

Optimal antibiotic dosing is based on the principles of antimicrobial PKPD. For SAP,
PKPD relates antibiotic exposure during surgery to the subsequent development of SSI. It
can incorporate the complexity of numerous and often interdependent variables related
to the patient, antibiotic regimen, concentrations achieved in patients, and susceptibilities
of the most likely SSI pathogens. It also shows the inextricable connection between SAP
dose, preincision timing, and redosing, and why it is so difficult to isolate their effect on
SSI outcomes in clinical studies.

5. Materials and Methods

A comprehensive literature search was conducted on the antibiotic concentration–
response (SSI) relationship in SAP. The search aimed to identify articles with (1) measured
antibiotic concentrations in serum/plasma or tissue samples collected during surgery and
(2) surveillance for SSI. Since a relatively small number of eligible studies was expected,
a broad search strategy was employed. Keyword and subject heading searches were con-
ducted from inception to September 2023 in Ovid MEDLINE and Embase on the concepts
of antibiotic (antimicrobial) prophylaxis, surgical site (wound) infection, pharmacokinetics,
and pharmacodynamics. Citation chaining in Google Scholar and Scopus was carried
out to find additional articles. Studies in animals and languages other than English were
excluded, as were studies with simulated antibiotic concentrations only or SSIs that were
<5% of cases analyzed for a concentration–response relationship. The titles and abstracts of
all articles were screened and, if needed, full texts were reviewed to determine relevance.
Finally, the reference lists of eligible studies were examined to identify articles that may
have been missed.
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adjDW Adjusted dosing weight
ASA American Society of Anesthesiologists score
AUC Area under the curve
AUC/MIC AUC over 24 h divided by the minimum inhibitory concentration
BMI Body mass index
CABG Coronary artery bypass grafting
CART Classification and regression tree (analysis)
CCI Charlson comorbidity index
CI Confidence interval
Cmax Maximum concentration
Cmax/MIC Maximum concentration divided by the minimum inhibitory concentration
CPB Cardiopulmonary bypass
CTA Cumulative target attainment
ƒ Free or unbound (i.e., not bound to protein)
FTA Fractional target attainment
HPLC High-performance liquid chromatography
MIC Minimum inhibitory concentration
MSSA Methicillin-susceptible Staphylococcus aureus
OR Odds ratio
PD Pharmacodynamic
PJI Prosthetic joint infection
PK Pharmacokinetic
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PKPD Pharmacokinetic-pharmacodynamic
ROC Receiver operating characteristic (curve)
SAP Surgical antimicrobial prophylaxis

%T>MIC
Percentage of the dosing interval that concentrations exceed the minimum
inhibitory concentration

Tmax Time to maximum concentration
t½ Half-life
Vd Volume of distribution
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