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Abstract: The antibiotic management of catheter-related infections (CRIs) often fails owing to the
emergence of antimicrobial-resistant strains and/or biofilm/persister apparitions. Thus, we inves-
tigated the efficacy of two novel antimicrobial agents, i.e., the synthetic peptide SAAP-148 and the
novel antibiotic halicin, against Gram-negative bacteria (GNB) colonizing catheters. The antibacterial,
anti-biofilm, and anti-persister activities of both agents were evaluated against Acinetobacter baumannii,
Escherichia coli, and Klebsiella pneumoniae strains. The enrolled strains were isolated from catheters and
selected based on their resistance to at least three antibiotic classes and biofilm formation potential.
Furthermore, the hemolysis and endotoxin neutralization abilities of these agents were explored. The
bactericidal activity of both agents was reduced in urine and plasma as compared to buffered saline.
In a dose-dependent manner, SAAP-148 and halicin reduced bacterial counts in 24 h preformed
biofilms on silicone elastomer discs and eliminated persisters originating from antibiotic-exposed
mature 7-day biofilms, with halicin being less effective than SAAP-148. Importantly, SAAP-148 and
halicin acted synergistically on E. coli and K. pneumoniae biofilms but not on A. baumannii biofilms. The
peptide, but not halicin, decreased the production of IL-12p40 upon exposure to UV-killed bacteria.
This preliminary study showed that SAAP-148 and halicin alone/in combination are promising
candidates to fight GNB colonizing catheters.

Keywords: catheter; antibiotic resistance; biofilm; persisters; halicin; SAAP-148

1. Introduction

Catheters are essential in the management of a range of clinical scenarios, such as the
delivery of chemotherapy, antibiotics, and parenteral nutrition, as well as (hemo)dialysis [1,2].
Unfortunately, their use is complicated by their propensity to become colonized by bacteria,
which may lead to serious infections [3,4], such as bloodstream and recurrent urinary tract
infections, that affect significantly the length of hospital stays, mortality rates, and costs [5].
Catheter-related bloodstream infections (CRIs) are some of the most frequent, lethal, and
costly complications of central venous catheterization [6], with incidences ranging from 1.8
to 5.2 per 1000 catheters [7]. In addition, urinary catheterization accounts for 40% of all the
hospital-acquired infections in the United States [8] and possibly worldwide [9]. For many
years, Gram-positive staphylococci were reported as the most common causative agents of
CRIs, followed by Gram-negative bacteria (GNBs) [4,10–12]. However, in recent years, the
epidemiology and microbiology of CRIs have changed, and a shift in the predominance of
CRI pathogens from Gram-positive to GNBs, such as Escherichia coli, Klebsiella pneumoniae,
and Acinetobacter spp., is widely reported [13–17]. These bacteria may originate from the
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endogenous flora of the patients (e.g., from mucosa) or from exogenous sources, such as
other patients, healthcare workers, (hospital) environmental surfaces, or contaminated
objects [18]. The treatment of patients with an infected catheter often involves the removal
of the infected device, followed by intensive antibiotic therapy [19]. The failure of this
treatment is caused by the emergence of antimicrobial-resistant strains [20,21] and/or
the formation of biofilms [11,22] and persisters [23]. Upon the elimination of the stress,
persisters revive and can start a new infection, which explains the persistence of these CRIs.
Moreover, biofilms are considered as major contributors to persistent infections, constituting
a global health problem [24]. Because of these considerations, novel antibacterial and anti-
biofilm/persister agents for the treatment of CRIs are urgently required. Antimicrobial
peptides (AMPs), which are molecules of the first line of defense against infections [25],
are considered as promising candidates as they combine broad-spectrum antimicrobial
activities with immune-modulating capabilities [26–30]. Interestingly, these peptides kill
bacteria by mechanisms different from those of current antibiotics, such as interacting with
and subsequently disrupting the microbial plasma membrane. Moreover, some AMPs can
interact with the extracellular polysaccharides of the matrix, leading to the disintegration of
biofilms [31,32]. One of the best-studied AMPs is human cathelicidin LL-37 [32–35], from
which the LL-37-based synthetic antimicrobial and anti-biofilm peptide (SAAP)-148 was
developed using random amino acid substitutions in the C-terminal part of LL-37 [28]. In a
study by de Breij et al. [28], the peptide SAAP-148 was highly efficient in killing a panel
of planktonic multidrug-resistant (MDR) bacteria, including colistin-resistant E. coli, K.
pneumoniae, and A. baumannii. Further studies have also shown the efficacy of this peptide
against biofilms [28,36] and persister cells [28,37,38]. de Breij et al. [28] investigated the
mode of action of SAAP-148 and showed that the formation of pores in cell walls led
to the permeabilization of the membrane, followed by the destruction of the bacterial
cells. Recently, using computer-assisted deep learning discovery approaches (at the Drug
Repurposing Hub) [39], halicin was identified as the first-in-class novel small molecule
based on the probability of being able to inhibit E. coli growth. Importantly, additional
assays demonstrated that halicin exhibits broad-spectrum antibacterial activities against
clinical strains, such as carbapenem-resistant Enterobacteriaceae, MDR A. baumannii and
Pseudomonas aeruginosa, Mycobacterium tuberculosis, and Clostridium difficile, in vitro and in
a murine infection model [39]. Likewise, this agent was demonstrated as being effective
against MDR A. baumannii 3086 [40] and 24 h immature and 7-day-mature biofilms formed
on a polypropylene plate [36]. Moreover, it was suggested that the compound kills bacteria
by dissipating the transmembrane electrochemical gradient, ∆pH, after binding with
iron [39,41]. The effect of either SAAP148 or halicin on Gram-positive bacteria, especially
S. aureus, has been extensively studied [28,36–38,40,42–50]. However, few reports on
their effects on GNBs are available [28,36,39,40,46–49,51], and none of the studies tested
strains isolated directly from medical devices and using both agents against GNBs. In this
preliminary study, we investigated the antibacterial efficiencies of SAAP-148 and halicin
as potential candidates for the development of a novel treatment for CRIs associated with
GNBs. This study is the first one exploring in the same work the anti-biofilm and anti-
persister activities of SAAP-148 and halicin alone and in combination against GNB strains
isolated from catheters.

2. Results
2.1. Identification of the Bacterial Strains Colonizing Catheters

A total of 40 GNB strains isolated from 10 intravenous catheters (IVCs) and 4 uri-
nary catheters (URCs) were identified using 16S rDNA sequencing. Enterobacteriaceae,
predominantly E. coli, were the most abundant (81%) in the IVCs; the remainder (19%) was
Acinetobacter spp., predominantly A. baumannii (Table 1). Similarly, all the bacterial strains
isolated from the URCs were Enterobacteriaceae, e.g., K. pneumoniae (56%) and E. coli (44%)
(Table 1).
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Table 1. Characteristics of Gram-negative bacterial strains isolated from intravenous and
urinary catheters.

Identity Origin * Resistance Profile ** Biofilm Mass
(OD Values) *** Classification [52] **** Virulence Profile

Klebsiella pneumoniae KP1 URC AMCR; FEPR; TETR; GENR 0.292 ± 0.041
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent mrkD+; fimH+; ycfM+;
ecpA+

Klebsiella pneumoniae KP2 URC AMCR; CTXR; CAZR; FEPR;
TETR; GENI 0.254 ± 0.022
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent mrkD+ fimH+; ycfM+;
ecpA+

Klebsiella pneumoniae KP3 URC AMCR; CTXR; CAZR; FEPR;
TETR; GENR 0.121 ± 0.031
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent mrkD+; fimH+; ycfM+;
ecpA+

Klebsiella pneumoniae KP4 URC AMCR; CTXR; CAZR; FEPR;
TETR 0.187 ± 0.011
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent mrkD+; fimH+; ycfM+;
ecpA+

Klebsiella pneumoniae KP5 URC AMCR; CTXR; CAZR; FEPR;
TETR; CIPI; GENI 0.074 ± 0.031
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent mrkD+; fimH+; ycfM+;
ecpA+

Acinetobacter baumannii AB1 IVC CTXR; CAZR; FEPR; IPMR;
TETR; CIPR; CO-TRIR 0.242 ± 0.020
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent csuE+; ompA+; bap+

Acinetobacter baumannii AB2 IVC CTXR; CAZR; FEPR; IPMR;
TETR; CIPR; CO-TRIR 0.088 ± 0.013
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent csuE+; ompA+; bap+

Acinetobacter baumannii AB3 IVC CTXR; CAZR; FEPR; IPMR;
TETR; CIPR; CO-TRIR 0.057 ± 0.025
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Weakly adherent csuE+; ompA+; bap+

Acinetobacter lwoffii AL1 IVC FEPR; IPMR; TETR; CIPR;
CO-TRIR 0.349 ± 0.048
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent csuE−; ompA+; bap−

Acinetobacter baumannii AB4 IVC CTXR; CAZR; FEPR; IPMR;
TETR; CIPR; CO-TRIR 0.059 ± 0.159
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Weakly adherent csuE+; ompA+; bap−

Acinetobacter baumannii AB5 IVC CTXR; CAZR; FEPR; IPMR;
TETR; CIPR; CO-TRIR 0.021 ± 0.013 Non-adherent csuE+; ompA+; bap+

Escherichia coli EC1 IVC TETR; NAR 0.03 ± 0.013 Non-adherent fimH+; hlyF+; csgA+
Escherichia coli EC2 URC TETR; GENI; NAR 0.376 ± 0.022
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF−; csgA+
Escherichia coli EC3 IVC Sensitive to all antibiotics 0.028 ± 0.01 Non-adherent fimH+; hlyF−; csgA+
Escherichia coli EC4 URC NAR 0.101 ± 0.019

Antibiotics 2023, 12, x FOR PEER REVIEW 6 of 26 

0 D M S O 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4 2 0 4 .8

0

1

2

3

4

5

6

7

8

*

0 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4

0

1

2

3

4

5

6

7

8
*

0 D M S O 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4 2 0 4 .8

0

1

2

3

4

5

6

7

8 ** n s

0 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4

0

1

2

3

4

5

6

7

8 * *
n s

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

*

*

* ***
*

*
*

n s n sn s

0 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4

0

1

2

3

4

5

6

7

8

**
n s

0 D M S O 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4 2 0 4 .8

0

1

2

3

4

5

6

7

8 * *n s

0 6 .4 1 2 .8 2 5 .6 5 1 .2 1 0 2 .4

0

1

2

3

4

5

6

7

8

*

K
. 

p
n

e
u

m
o

n
ia

e
 K

P
1

  
lo

g
 (

C
F

U
/D

is
c

)
K

. 
p

n
e

u
m

o
n

ia
e

 K
P

2
  

lo
g

 (
C

F
U

/D
is

c
)

A
.b

a
u

m
a

n
n

ii
 A

B
1

  
lo

g
 (

C
F

U
/D

is
c

)
E

.c
o

li
E

C
2

  
lo

g
 (

C
F

U
/D

is
c

)

 0   6 .4   1 2 .8   2 5 .6   5 1 .2   1 0 2 .4   0   0   6 .4   1 2 .8   2 5 .6   5 1 .2   1 0 2 .4   2 0 4 .8S A A P -1 4 8  ( M ) H a l ic in  ( M )

A B

⸸   ⸸     ⸸⸸

Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent fimH+; hlyF−; csgA+
Escherichia coli EC5 URC CIPI; NAR 0.259 ± 0.007
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF+; csgA+
Escherichia coli EC6 IVC NAR 0.261 ± 0.032
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF+; csgA+
Escherichia coli EC7 IVC NAR 0249 ± 0.032
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF−; csgA+
Escherichia coli EC8 IVC TETI; NAR 0.292 ± 0.024
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF+; csgA+
Escherichia coli EC9 IVC TETR; NAR 0.222 ± 0.012
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF+; csgA+
Escherichia coli EC10 IVC AMCR; NAR 0.284 ± 0.018
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF-; csgA+
Escherichia coli EC11 IVC AMCR; CO-TRIR 0.027 ± 0.011 Non-adherent fimH+; hlyF−; csgA+
Escherichia coli EC12 URC NAR 0.068 ± 0.022
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent fimH+; hlyF−; csgA+
Escherichia coli EC13 IVC CIPI 0.243 ± 0.015
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF−; csgA+
Escherichia coli EC14 IVC AMCR; CO-TRIR 0.051 ± 0.007
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Weakly adherent fimH+; hlyF−; csgA+
Escherichia coli EC15 IVC AMCR; TETR 0.044 ± 0.019 ns Weakly adherent fimH+; hlyF+; csgA+
Escherichia coli EC16 IVC TETR; NAR 0.094 ± 0.008
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent fimH+; hlyF−; csgA+
Escherichia coli EC17 IVC TETR; NAR 0.141 ± 0.017
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF−; csgA+
Escherichia coli EC18 IVC CIPI; NAR 0.096 ± 0.011
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent fimH+; hlyF+; csgA+
Escherichia coli EC19 IVC TETR; NAR 0.047 ± 0.034 ns Weakly adherent fimH+; hlyF−; csgA+
Escherichia coli EC20 IVC CIPI; NAR 0.131 ± 0.032
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF+; csgA+
Escherichia coli EC21 IVC TETR; NAR 0.04 ± 0.023 ns Weakly adherent fimH+; hlyF+; csgA+
Escherichia coli EC22 IVC AMCR; NAR 0.122 ± 0.003
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Strongly adherent fimH+; hlyF+; csgA+
Escherichia coli EC23 IVC CIPI; NAR 0.105 ± 0.007
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent fimH+; hlyF+; csgA+
Escherichia coli EC24 IVC TETR; NAR 0.101 ± 0.029
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Moderately adherent fimH+; hlyF+; csgA+
Escherichia coli EC25 IVC TETR; NAR 0.042 ± 0.015 ns Weakly adherent fimH+; hlyF+; csgA+
Escherichia coli EC26 IVC AMCR; NAR 0.039 ± 0.006 ns Weakly adherent fimH+; hlyF+; csgA+
Escherichia coli EC27 IVC TETR; NAR 0.024 ± 0.003 Non-adherent fimH+; hlyF+; csgA+
Escherichia coli EC28 IVC AMCR; CO-TRIR 0.023 ± 0.011 Non-adherent fimH+; hlyF−; csgA+
Escherichia coli EC29 IVC Sensitive to all antibiotics 0.052 ± 0.008
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

Weakly adherent fimH+; hlyF−; csgA−

IVC: intravenous catheter; URC: urinary catheter; bacteria were coded “EC” for Escherichia coli, “AB” for Acine-
tobacter baumannii, and “KP” for Klebsiella pneumoniae. *Only intermediate (I)/resistance(R) is indicated. Tested
antibiotics: AMC: amoxicillin + clavulanic acid; CTX: cefotaxime; CAZ: ceftazidime; FOX: cefoxitin; ERY: ery-
thromycin; TET: tetracycline; CIP: ciprofloxacin; GEN: gentamycin; IMP: imipenem; FEP: cefepime; NA: nalidixic
acid; CO-TRI: cotrimoxazole. ** Biofilm mass; n = 3 independent experiments each in triplicate. Mann–Whitney
U test:
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

p < 0.05 indicates that ODsample is significantly different from ODcontrol; ns: not significantly different.
ODcontrol = 0.03. *** The strains were classified as follows: non-adherent (ODsample ≤ 0.03); weakly adherent
(0.03 < ODsample ≤ 0.06); moderately adherent (0.06 < ODsample ≤ 0.12); strongly adherent (ODsample > 0.12).
**** Virulence genes; +: gene present; −: gene absent.

2.2. Bacterial Resistance to Antibiotics

Virtually all the E. coli strains were sensitive to almost all the tested antibiotics, ex-
cept for nalidixic acid (76%), tetracycline (34%), amoxicillin/clavulanic acid (24%), and
cotrimoxazole (10%), while the K. pneumoniae isolates were resistant to β-lactams (except
for cefoxitin), and two out of the five strains were resistant to gentamicin. The Acinetobac-
ter isolates exhibited high levels of resistance to all the antibiotics, except for gentamicin
(Table 1).
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2.3. Bacterial Biofilm Formation and Virulence Gene Profiles

To further characterize these catheter-colonizing strains, their ability to form biofilms
and the presence of genes involved in adherence to surfaces and biofilm formation were
assessed. The results revealed that biofilm formation on polystyrene microplates varied
widely among the E. coli (only 11/29 were strong formers) and Acinetobacter (only 2/6
were strong formers) strains, while all the K. pneumoniae strains formed significant biofilms
(Table 1); 4/5 were strong producers. In addition, all 29 E. coli strains harbored the fimH
gene; 28/29 strains, the csgA gene; and 15 out of the 29 strains (≈52%), the hlyF gene. All
six K. pneumoniae strains harbored the mrkD, fimH-1, ycfM, and ecpA genes. In addition, all
five A. baumannii strains exhibited the ompA and csuE genes, whereas four out of the five
strains exhibited the bap gene (Table 1).

2.4. Bactericidal Efficacies of SAAP-148 and Halicin on Selected Strains

Based on the above characterization data, four GNBs (E. coli EC2, A. baumannii AB1,
and K. pneumoniae KP1 and KP2), resistant to at least three antibiotics, were selected for
further studies on the antibacterial properties of SAAP-148 and halicin. The results revealed
that in a dose-dependent manner, SAAP-148 in PBS killed all four bacterial strains, with LC
99.9% values at concentrations ranging from sub-micromolar to low micromolar (Table 2).
In addition, in a dose-dependent manner, the peptide was effective against these bacteria
in 50% (v/v) pooled human urine and 50% (v/v) human plasma, although 4–8× higher
peptide concentrations were required. Similar bactericidal activities were obtained after 4
and 24 h of exposure to the peptide. Also, in a dose-dependent manner, halicin killed all
four bacterial strains in PBS, with LC 99.9% values ranging between 6.4 µM and 51.2 µM
depending on the strain (Table 2). Halicin was more effective after 24 h than after 4 h of
exposure. Of note, halicin was less effective against KP1, KP2, and EC2 in pooled urine
than in PBS and virtually ineffective against AB1 in pooled plasma (Table 2). These results
revealed that the peptide SAAP-148 and halicin are potent candidates as antibacterial drugs
against GNBs.

Table 2. Bactericidal efficacies of SAAP-148 peptide and halicin against antibiotic-resistant Gram-
negative strains isolated from catheters.

Strains

Antibiotic Resistances

LC 99.9% of SAAP-148 (µM) LC 99.9% of Halicin (µM)

4 h 24 h 4 h 24 h

A
M

C

C
T

X

C
A

Z

FE
P

FO
X

IP
M

T
ET C
IP

G
EN N
A

C
O

-T
R

I

PBS
50%

Plasma or
Urine

PBS
50%

Plasma
or Urine

PBS
50%

Plasma
or Urine

PBS
50%

Plasma
or Urine

E. coli EC2 0.8 3.2 0.8 12.8 25.6
(12.8–25.6)

102.4
(51.2–102.4) 6.4 25.6

(12.8–25.6)
A. baumannii AB1 / 0.8 1.6 0.8 3.2 25.6 >102.4 25.6 >102.4

K. pneumoniae KP1 0.8
(0.8–1.6) 6.4 1.6 12.8 51.2

(25.6–51.2) 25.6 51.2 51.2

K. pneumoniae KP2 1.6
(0.8–1.6) 6.4 (3.2–6.4) 1.6 12.8 25.6

(12.8–25.6)
51.2

(25.6–51.2) 25.6 102.4
(51.2–102.4)

An in vitro killing assay was used to determine the bactericidal activities of SAAP-148 and halicin when admin-
istered in PBS; 50% urine (EC2, KP1, and KP2); and 50% human plasma (AB1). Approximately 2% (v/v) of the
bacteria were mixed with increasing concentrations of SAAP-148 or halicin and after 4 h and 24 h, the number of
surviving bacteria was assessed microbiologically. The results are expressed as LC 99.9% values, i.e., the lowest
concentration of the antimicrobial agent that results in a 99.9% reduction in the bacterial count compared to that
of the control. The values are the means (and ranges) of six replicates from three independent experiments. If no
range is mentioned, the LC 99.9% was identical in all the experiments. AMC: amoxicillin + clavulanic acid; CTX:
cefotaxime; CAZ: ceftazidime; FEP: cefepime; FOX: cefoxitin; IMP: imipenem; TET: tetracycline; CIP: ciprofloxacin;
GEN: gentamycin; NA: nalidixic acid; CO-TRI: cotrimoxazole; sensitive: green box; resistant/intermediate: red
box; not tested: white box.

2.5. Reduction in Bacterial Counts in Biofilms by SAAP-148 and Halicin

Because biofilms are central to CRIs, we next determined the abilities of SAAP-148
and halicin to eradicate 24 h biofilms on a silicone elastomer, a surface mimicking a catheter.
After 4 h of exposure, the BBC99.9 values for the peptide against EC2, AB1, KP1, and
KP2 significantly amounted to 51.2 µM, 25.6 µM, 102.4 µM, and 102.4 µM, respectively;
while after 24 h of exposure, they were higher (>102.4 µM) (Figure 1). Identically, halicin
was effective against the four-strain biofilm (BBC99.9 ≈ 102.4 µM). The agent was highly
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effective at a low concentration (~25.6 µM) against the EC2 biofilm compared with the
other strains, which required high concentrations (~204.8 µM). These data indicated that
the compounds could be promising anti-biofilm agents.
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failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 
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the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was highly 

Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In
short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to
increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and
the number of surviving bacteria was assessed microbiologically. The results are expressed as the
mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in
triplicate. The data obtained after 4 h and 24 h exposures are represented by open black and open
grey symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from
control (0
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 
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Because persisters play a pivotal role in chronic infections and antibiotic treatment 
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days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

): control for halicin, i.e., the concentration of DMSO in
the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–Wallis
test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective against all
the strains.
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2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed
Mature Biofilms

Because persisters play a pivotal role in chronic infections and antibiotic treatment
failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day
mature biofilms that had been exposed to high doses of antibiotics for an additional three
days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced
(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did similarly
high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, without
the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was highly
effective in killing persisters derived from antibiotic-exposed mature EC2, AB1, KP1, and
KP2 biofilms (Figure 2), with the complete eradication of the EC2 and AB1 persisters at
1.6 µM. For KP1 and KP2, slightly higher concentrations, i.e., 3.2 µM and 6.4 µM of the
peptide were required, respectively (Figure 2). Interestingly, the EC2 and AB1 persisters
were eliminated by high concentrations of halicin, whereas the KP1 and KP2 persisters
were not eradicated by this agent (Figure 2).
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antibiotics, washed, and then exposed for 4 h to increasing concentrations of the peptide or halicin.
Thereafter, the biofilms were sonicated to obtain a suspension of persisters, enabling the microbiolog-
ical detection of the bacterial counts. The results are expressed as the mean of the number of viable
bacteria in log10 CFU/mL. Three independent experiments in duplicate were undertaken. To enrich
for persisters, E. coli EC2 and K. pneumoniae KP1 and KP2 were exposed to 50 × MBC ciprofloxacin;
A. baumannii AB1, 50 × MBC gentamicin. The Kruskal–Wallis test indicated that SAAP-148 and
halicin were significantly effective against all the persisters at 4 h. 0
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 
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Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

: number of bacteria after 3 days of exposure to the antibiotic. ** p < 0.01
(Mann–Whitney U test) indicated significant differences from controls exposed to the antibiotic (0
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

)
but not SAAP-148/halicin.

2.7. SAAP-148 and Halicin Neutralize GNB-Induced IL-12p40 Production by Human
Blood Leukocytes

We compared the abilities of SAAP-148 and halicin to reduce the capacities of EC2,
AB1, KP1, and KP2 to stimulate the production of the pro-inflammatory cytokine IL-
12p40 by human blood leukocytes. The results revealed that in a concentration-dependent
manner, the pre-incubation of UV-inactivated bacteria with SAAP-148, but not halicin,
reduced the ability of the strains to stimulate IL-12p40 production by blood leukocytes
(Figure 3).The concentrations of SAAP-148 that significantly (p < 0.05) reduced the abili-
ties of UV-inactivated EC2, AB1, KP1, and KP2 to induce cytokine production amounted
to ≥1 nM, ≥10 nM, ≥10 nM, and ≥10 nM, respectively (Figure 3). These preliminary data re-
vealed that the synthetic peptide exhibited promising activity as an anti-inflammatory agent.

2.8. Hemolytic Activities of SAAP-148 and Halicin

To obtain some insight into the in vitro toxicities of SAAP-148 and halicin, we assessed
the hemolytic activities of these compounds using human erythrocytes suspended in
50% (v/v) human plasma and in PBS. The highest concentrations of SAAP-148 that lysed
≤5% of the erythrocytes in the PBS and 50% plasma amounted to <12.8 µM and 51.2 µM
(Figure 4A,B), respectively. The hemolytic activity of the halicin amounted to ≥204.8 µM in
the PBS and 50% plasma (Figure 4C,D, respectively), indicating that halicin is less hemolytic
than the peptide.

2.9. Interactions between SAAP-148 and Halicin

As the modes of action underlying the antibacterial activities of SAAP-148 and halicin
differ [28,39], the possibility of synergistic and/or additive interactions between these novel
agents in eradicating bacteria in biofilms was investigated using checkerboard assays. The
results revealed that several combinations of SAAP-148 and halicin were more effective
than each agent alone in reducing bacterial counts in EC2, KP1, and KP2 biofilms but not
in AB1 biofilms (Table 3). Based on the fractional biofilm eradication concentration index
(ΣFBEC), some combinations of SAAP-148 and halicin acted synergistically on bacteria in
EC2, KP1, and KP2 but not AB1 biofilms, whereas other combinations exerted additive
effects (Table 3). Importantly, the concentrations of SAAP-148 needed to eliminate the
bacteria in biofilms in the presence of halicin were considerably lower than that required
for the peptide alone.
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Figure 3. Pre-incubation for 2 h of UV-inactivated GNB strains with SAAP-148, but not halicin,
reduced the ability of GNBs to induce IL-12-p40 production by whole human blood leukocytes. In
short, UV-killed bacteria were pre-incubated with increasing concentrations of SAAP-148 or halicin
(from 1 to 1000 nM) for 2 h and then mixed with 5-fold diluted whole blood. After 20 h of incubation
at 37 ◦C, the cells were spun down, and the levels of IL-12p40 in the supernatants were assessed
using ELISA. The results are expressed as the percentage of IL-12p40 compared with that of the
control (0
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 
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Figure 1. Reduction in bacterial counts within biofilms upon exposure to SAAP148 and halicin. In 

short, 24 h Gram-negative biofilms on silicone elastomer discs were exposed for 4 h and 24 h to 

increasing concentrations of SAAP-148 (A) and halicin (B); then, the biofilms were sonicated, and 

the number of surviving bacteria was assessed microbiologically. The results are expressed as the 

mean of the number of viable bacteria in log10 CFU/disc. Four experiments were undertaken in trip-

licate. The data obtained after 4 h and 24 h exposures are represented by open black and open grey 

symbols, respectively. Mann–Whitney U test: * p < 0.05 indicates significantly different from 

control (0  ⸸   ,  no agent). DMSO control (0  ⸸⸸  ): control for halicin, i.e., the concentration of DMSO 

in the highest concentration of halicin that was tested. ns: not significantly different. Kruskal–

Wallis test indicated that SAAP-148 as well as halicin at 4 h and 24 h were significantly effective 

against all the strains. 

2.6. Effects of SAAP-148 and Halicin on Persisters Derived from Antibiotic-Exposed Mature 

Biofilms 

Because persisters play a pivotal role in chronic infections and antibiotic treatment 

failure, we assessed the effects of SAAP-148 and halicin on persisters derived from 7-day 

mature biofilms that had been exposed to high doses of antibiotics for an additional three 

days. As expected, high doses (50 × MBC) of ciprofloxacin significantly (p < 0.01) reduced 

(≥ 100×) the numbers of viable bacteria in the EC2, KP1, and KP2 biofilms, as did 

similarly high doses of gentamycin for the bacterial counts in the AB1 (p < 0.01) biofilms, 

without the complete elimination of all the bacteria (Figure 2). However, SAAP-148 was 

highly 

: UV-inactivated
bacteria exposed to the highest concentration of DMSO instead of the halicin concentration that was
tested. Values are the means of three independent experiments, each performed in duplicate. The
Kruskal–Wallis test indicated that SAAP-148 significantly reduced the abilities of all the bacteria (EC2
and AB1: p < 0.0001; KP1: p = 0.0004 and KP2: p = 0.0005) to induce IL-12p40 production. ** p < 0.01
compared to the control (no peptide) using Mann–Whitney U test.
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Figure 4. Hemolytic activities of SAAP-148 in PBS (A) and 50% plasma (B) and of halicin in PBS
(C) and 50% plasma (D). Values are means of three independent experiments, each performed
in triplicate.

Table 3. Synergistic effects of SAAP-148 and halicin alone/in combination against GNB preformed
biofilms and fractional biofilm eradication concentration indexes (ΣFBEC) for combinations of SAAP-
148 and halicin.

Strain MBEC SAAP-148
(µM) Alone

MBEC SAAP-148
(µM) in

Combination

MBEC Halicin
(µM) Alone

MBEC Halicin
(µM) in

Combination
ΣFBEC

E. coli EC2 102.4

3.2

25.6

6.4 0.28 (Synergistic effect)
3.2 12.8 0.53 (Additive effect)
6.4 12.8 0.56 (Additive effect)

12.8 6.4 0.38 (Synergistic effect)
12.8 12.8 0.63 (Additive effect)
25.6 6.4 0.5 (Synergistic effect)
25.6 12.8 0.75 (Additive effect)

A. baumannii AB1 102.4 No effect 102.4 No effect No effect

K. pneumoniae KP1 51.2
12.8

102.4
12.8 0.38 (Synergistic effect)

12.8 25.6 0.5 (Synergistic effect)
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Table 3. Cont.

Strain MBEC SAAP-148
(µM) Alone

MBEC SAAP-148
(µM) in

Combination

MBEC Halicin
(µM) Alone

MBEC Halicin
(µM) in

Combination
ΣFBEC

K. pneumoniae KP2 51.2

3.2

102.4

102.4 1.06 (Indifferent effect)
12.8 12.8 0.38 (Synergistic effect)
12.8 25.6 0.5 (Synergistic effect)
12.8 51.2 0.75 (Additive effect)
12.8 102.4 1.25 (Indifferent effect)
25.6 51.2 1 (Additive effect)
25.6 102.4 1.5 (Indifferent effect)

In short, 24 h biofilms on sterile silicone elastomer discs were washed twice and then exposed to increasing
concentrations of SAAP-148 and halicin (alone) and to different concentrations of SAAP-148 and halicin (in
combination) for 24 h at 37 ◦C. Thereafter, the discs were washed twice after the gentle removal of the antimicrobial
agents, and the remaining biofilms were sonicated for 10 min at 42 kHz. The number of surviving bacteria was
determined microbiologically. The experiment was assessed four times each in duplicate. MBEC: minimum
biofilm eradication concentration. Synergy is defined by the fractional biofilm eradication concentration index
(ΣFBEC) ≤ 0.5; additive effect as 0.5 < ΣFBEC ≤ 1; indifference as 1 < ΣFBEC ≤ 2; antagonism as ΣFBEC > 2.

3. Discussion

The present study is the first undertaken in Bejaia (in the northeast of Algeria) and,
thus, constitutes a precious source of information for the region and the country. As
recently reported, a predominance of GNBs (40 out of 50 catheter-colonizing strains) was
observed rather than Gram-positive ones, which explains our focus on these bacteria in
this study. Furthermore, according to Buetti et al. [53], most epidemiological studies so
far have neglected to focus on GNBs as causes of catheter infections. E. coli (~81%) and
A. baumannii (16%) were the predominant species in the intravenous catheters, and this
could be explained by the local prevalence of these ubiquitous pathogens in the hospital
environment [54–58]. It is well documented that the hospital environment (e.g., bed
rails, mattresses, medical equipment, colonized or infected patients, and the hands of
healthcare workers) is an ecological niche for A. baumannii and E. coli [59–61]. For urinary
catheters, K. pneumoniae was the most isolated species in this study (~56%), followed by
E. coli (44%), which is consistent with the results found by Barbadoro et al. [62] but not
by others [21,63–65]. In Algeria, the predominance of E. coli in urinary tract infections is
widely reported [66–68], but no epidemiological data are available for catheter-colonizing
uropathogens. It is not surprising to find these two uropathogens because E. coli and
K. pneumoniae are fecal contaminants or residents of patients’ native or transient microflora
that colonize the peri-urethral area [69].

Another observation pertains to the relation between the biofilm formation and pres-
ence of genes related to this process. As all the bacteria were derived from colonized
catheters, we expected 100% of the strains to form a biofilm on polystyrene surfaces. How-
ever, if this was true for K. pneumoniae isolates (100%), only 83% (24/29) of the E. coli
and 83.3% (5/6) of the Acinetobacter isolates were biofilm formers, which is in agreement
with other reports [70–72]. Of course, it cannot be excluded that the characteristics of
the surface play a role in biofilm formation. Therefore, in further experiments, we used
silicone elastomers, which more accurately mimic medical devices, such as venous and
urinary catheters [73]. Biofilm formation is mediated by multiple virulence factors, such as
fimbriae (fimH) and curli (csgA), for E. coli [74]; CsuE, a subunit of the chaperone–usher pili
(Csu), the outer membrane protein (OmpA), and the biofilm-associated protein (Bap), for
A. baumannii [75–77]; and fimbriae type 1 (fimH-1) and type 3 (mrkD), for K. pneumoniae [78].
In the present study, these genes were present in all the strains. However, a comparison
between the biofilm-forming and non-biofilm-forming isolates revealed that the presence
of the virulence factors was not associated with biofilm production.

Surprisingly, the E. coli strains were sensitive to almost all the antibiotics that were
tested. These results are not in agreement with other Algerian studies reporting a prevalence
of high resistance to β-lactams, gentamicin, and ciprofloxacin, except for imipenem, which
was active against E. coli strains [67,79–81]. Our results showed that a high rate of biofilm-
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forming E. coli strains (83%) was more sensitive to antibiotics, indicating no clear correlation
between the ability to form a biofilm and sensitivity to antibiotics. This can be explained by
the fact that the strains form biofilms to survive when exposed to antibiotics [82]. Another
explanation could be that the polymeric matrix acts as a barrier and protects the bacteria
from antibiotics, thereby preventing the penetration of the biofilm by the antibiotics. In
addition, the binding of antibiotics to matrix components may reduce the activities of the
antibiotics [83–85]. Alves et al. [86] reported that 73% of positive biofilm-forming E. coli
isolates were sensitive to antibiotics. Poursina et al. [87] also concluded that non-MDR E.
coli strains were able to form strong biofilms. The sensitivity of the strains to imipenem
could be explained by its rare use in Algerian hospitals. We found that the K. pneumoniae
strains harbored high rates of resistance to amoxicillin/clavulanic acid and ß-lactams
(expect for cefoxitin), tetracycline, and gentamycin, while all the strains were sensitive to
imipenem, nalidixic acid, ciprofloxacin (except for the KP5 strain), and cotrimoxazole. The
majority of the Algerian studies used GNB clinical isolates, but a few Algerian studies
enrolled catheter-colonizing strains. High resistance to antibiotics has also been reported
in other countries [78,88–91]. The Acinetobacter spp. strains exhibited high resistances to
ß-lactams (expect for cefoxitin), imipenem, tetracycline, ciprofloxacin, and cotrimoxazole,
but no strain was resistant to gentamycin, which is in agreement with antibiotic resistances
in A. baumannii strains reported by other Algerian researchers [55,80,92,93].

It must be noted that the main objective of this study was the evaluation of the
antibacterial and anti-biofilm effects of SAAP-148 and halicin alone or in combination on
GNB-colonizing catheters. We used single strains of E. coli and A. baumannii and two K.
pneumoniae strains. The results of the killing assay revealed that SAAP-148 and halicin
are highly active against the tested strains. This observation is in agreement with earlier
reports showing the effectiveness of SAAP-148 [28] and halicin [39] against a wide range
of bacteria, including MDR GNBs (E. coli, A. baumannii, P. aeruginosa, and K. pneumoniae).
Contrariwise, the activities of both agents were reduced in human plasma and urine. As
already reported, the antimicrobial activities of peptides and antibiotics could decrease in
the presence of these physiological fluids owing to the presence of components preventing
the interaction of these agents with bacterial membranes [94,95]. In addition, SAAP-148
and halicin significantly reduced the bacterial counts within biofilms, and the required
concentrations were considerably higher than those required for directly killing planktonic
cells. This can be attributed to the biofilm matrix, which acts as a barrier that delays or
prevents the interaction of antimicrobial agents with bacterial cells, thereby reducing the
effectiveness of the agents against the biofilms [96]. The results obtained with SAAP-148 are
consistent with previous studies showing its efficacy against GNB biofilms [28,36]. Notably,
compared with the study by van Gent et al. [36], where a high concentration (68.3 µM) of
halicin was needed, this study revealed that halicin displayed the strongest effect on the E.
coli biofilm at a low concentration (~25 µM). These findings suggest that the compounds
have a promising anti-biofilm activity.

The presence of persister cells, which can survive in up to high doses of antibiotics,
is mainly responsible for chronic infections and their recalcitrance [97]. In the present
work, we exposed mature biofilms to high concentrations (50 × MBC) of ciprofloxacin
(EC2, KP1, and KP2) and gentamycin (AC1) for 3 days. These antibiotics induced a deep
disruption of the matrix, leading to their penetration of the biofilms [98,99] and, thus,
significantly reducing the number of bacteria within them. It has been suggested that the
decrease in the activities of these antibiotics is correlated with persister cells [82]. SAAP-148
and halicin were effective against these persisters derived from the antibiotic-exposed
mature biofilms of the four bacterial strains tested in a dose-dependent manner. This is in
agreement with earlier findings that SAAP-148 effectively reduced bacterial counts within
antibiotic-exposed mature biofilms of MRSA [37,38]. Herein, we provided proof for the first
time that SAAP-148 possesses a potent anti-persister effect against GNB strains. Further, it
should be kept in mind that planktonic, sessile, and persister bacteria all play important
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roles in CRIs, including catheter-related bloodstream infections and recurrent urinary tract
infections [100,101].

The development of molecules able to kill GNBs without releasing their endotoxins
(LPS), which are located in the outer membrane and induce severe pro-inflammatory
responses, is a major challenge [102,103]. Peptides are able to bind to LPS and act as
anti-inflammatory agents against endotoxic shock [104,105]. In our study, we found that
SAAP-148, but not halicin, was able to reduce the ability of UV-killed GNBs to induce
IL-12-p40 cytokine production in vitro. Furthermore, these results are reported for the
first time, indicating that this synthetic peptide could be an excellent candidate as an anti-
inflammatory agent (in vitro) to treat sepsis caused by GNB infections. In vivo experiments
to monitor organ injury in mouse models of LPS-induced endotoxemia and GNB-induced
septic shock could give more evidence about the efficiency of SAAP-148, as reported in
research by Jang et al. [102]. Several hypotheses on the mechanism of action of peptides
that can induce an anti-inflammatory response have been reported. First, cationic peptides
bind to LPS via electrostatic interactions, thereby neutralizing anionic amphiphilic lipid A.
Second, the peptide binds to the macrophage’s CD14 receptor and competitively inhibits
the interaction of the LPS–LPB complex and, thus, blocks access to the TLR4 receptor,
which mediates pro-inflammatory cytokines. Third, most LPS-binding peptides are able
to dissociate LPS oligomers by depolymerization, thereby inhibiting LPS from binding to
LBP [106,107].

In addition to antibacterial, anti-biofilm, and anti-inflammatory activities, low toxicity
against human red blood cells (RBCs) is an important parameter for novel agents to be used
as potential candidates in the treatment of biofilm-related infections [108]. We demonstrated
that compared with halicin, which has no effect on RBCs, the peptide SAAP-148 is more
toxic toward erythrocytes. The cytotoxicity assay, which is not included herein but is
reported in a study by van Gent et al. [36], also showed that SAAP-148 was more cytotoxic
than halicin for skin fibroblasts and RT-4 urethelial cells. It is known that hydrophobicity
is crucial for peptides to disintegrate bacterial membranes. It has been reported that
peptides possessing high hydrophobicity are correlated with high toxicity [36,109]. The
increasing hydrophobic content (tryptophan, lysine, and arginine) leads to a significantly
high hemolytic activity [110,111]. Moreover, SAAP-148 possesses a larger hydrophobic
region in its amino-acid sequence [112]. The ability to form amphipathic structures has also
been related to increased hemolytic activity [113]. Using SAAP-148 in combination with
other agents could reduce the concentration of the peptide, thereby reducing the peptide’s
toxicity. Interestingly, recent studies have reported improved strategies for designing
potent and safe peptides for therapeutics, such as PLGA (poly(lactic-co-glycolic acid))
nanoparticles [49] and C-terminal PEGylation [47], which seem to be promising approaches
to overcome these drawbacks.

Furthermore, synergistic and additive interactions were noted between SAAP-148 and
halicin against E. coli and K. pneumoniae, but not A. baumannii, in biofilms. These findings
are in agreement with previous observations that the peptide and halicin act synergistically
against planktonic MRSA but not against MDR A. baumannii [36]. Unfortunately, we cannot
give an explanation for these species/strain-specific interactions between SAAP-148 and
halicin. However, other researchers have reported similar findings for SAAP-148 and classi-
cal antibiotics [42] and for other antimicrobial peptides combined with other antimicrobial
agents against GNB biofilms [114–118]. Importantly, synergistic combinations of the pep-
tide and halicin enable the use of lower doses of SAAP-148, possessing good antibacterial
activities, while limiting harmful side effects in vivo. The use of antimicrobial peptides in
combination with conventional/novel antibiotics or other antimicrobial agents could be an
effective strategy to reduce the development of resistance [119]. Future medical applica-
tions of (combinations of) SAAP-148 and halicin can be both invasive and non-invasive.
Of note, combination treatment faces several hurdles, including the cytotoxicity and poor
PK/PD properties of SAAP-148. However, conjugates of SAAP-148 and halicin could over-
come several limitations encountered by the combinations. Regarding non-invasive usage,
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(combinations or conjugations of) SAAP-148 and halicin may be considered for antibiotic
lock therapy [120,121], where (i) the catheter can be coated with the agents encapsulated in
a polymeric formulation, such as hydrogel-loaded peptides and peptide-releasing hydro-
gels [122–124], or (ii) the agents may be immobilized on the surface of the catheter [122].
The use of antimicrobial agents as a coating is the most popular approach owing to their
ability to target microorganisms in different ways [125]. Several studies have reported
the effectiveness of the use of antibiotics [126–128] and antimicrobial peptides [129,130]
as coatings for eradicating/preventing the colonization of pathogens on catheter surfaces.
Alternatively, the agents may be used invasively, e.g., immediately after the removal of a
colonized catheter or as a treatment for patients with a CRI in whom the current treatment
has failed.

It should be mentioned that the current in vitro study has some limitations. First,
all the experiments were performed on a single strain of E. coli and A. baumannii and
two K. pneumoniae strains from one hospital. Another limitation of this study is that the
experiments were performed under static conditions (microtiter plate assays), whereas
colonized catheters in situ are constantly subjected to a dynamic flow of blood or urine.
This limitation may be circumvented in future experiments using flow cells, e.g., a modified
Robbin’s device, in which a biofilm is formed in an environment of plasma or urine flowing
under a constant shear (reviewed by Subramanian et al. [131]).

4. Materials and Methods
4.1. Isolation of Bacteria from Catheters

Between February and April 2016, 14 catheters (4 urinary and 10 intravenous catheters)
were removed from 14 patients (5 women and 9 men) hospitalized for at least 48 h in the
departments of resuscitation, general surgery, and internal medicine at Bejaia University
Hospital (Bejaia, Algeria) because of infectious disease complications. The age of the
patients ranged from 27 to 96 years, and the duration that the catheter was in situ ranged
from 2 to 16 days. The bacteria were harvested from the catheters using the method
of Brun Buisson et al. [132] with minor modifications. For this purpose, the tip of the
catheter was cut off, transferred to 10 mL of a sterile tryptone salt solution (TS; 0.1% w/v),
and then sonicated for 5 min at 42 kHz (ultrasonic cleaner, Bransonic, Saint Louis, MO,
USA). The bacterial suspension was vortexed for 1 min, after which the bacteria were
spread on nutrient agar (NA, Conda, Madrid, Spain) and trypticase soy agar (TSA, Biokar
Diagnostics, Allonne, France) plates for the enumeration of the total flora and on eosin
methylene blue agar (EMB, Conda, Madrid, Spain) plates to assess the Enterobacteriaceae
counts. The remaining catheters were washed and resuspended in 10 mL of nutrient broth
(NB, Conda, Madrid, Spain). After incubation at 37 ◦C for 24–48 h, streak isolations were
prepared from each positive broth on the specific agar plates mentioned above. The bacteria
were identified using conventional methods.

4.2. Identification of the Strains

All the Gram-negative isolates were genotypically identified using 16S rDNA se-
quencing. Briefly, single colonies were obtained from the NA plate using a sterile plastic
disposable loop, and bacterial DNA was extracted using 20 µL of lysis buffer (0.25% (w/v)
SDS, 0.05 N NaOH) and by heating for 15 min at 95 ◦C. The DNA samples were rapidly
cooled and centrifuged at 13,000 rpm for a few seconds (Beun De Ronde, Abcoude, the
Netherlands). Next, 180 µL of milli-Q water was added, and the DNA solution was mixed
thoroughly, centrifuged again for 5 min at 13,000 rpm, and stored at −20 ◦C until use. PCR
was used to amplify approximately 1500 bp of a consensus 16S rDNA gene: forward primer
αβ NOT (5′-AGT TTG ATG CTG GCT CAG-3′) and reverse primer ω MB (5′-TAC CTT
GTT ACG ACT TCG TCC CA -3′). Two microliters of the DNA sample, 2 µL of the 10 µM
forward and reverse primers, 25 µL of the master mix (Promega, Madison, WI, USA), and
21 µL of milli-Q water were mixed and subjected to the following program: 1 × 5 min at
95 ◦C; 3 × 1 min at 95 ◦C; 2 min at 50 ◦C; 1 min at 72 ◦C; 35 × (45 s at 95 ◦C, 45 s at 50 ◦C,



Antibiotics 2023, 12, 1743 14 of 23

and 1 min at 72 ◦C); and 1 × 5 min at 72 ◦C. The amplified products were analyzed using
electrophoresis (Bio-Rad, Hercules, CA, USA) on 1% (w/v) agarose (Roche Diagnostics,
Mannheim, Germany) gel at 120 V for 2 h. The PCR product was cleaned as follows: 0.5 µL
of ExoI (20 units/µL; Thermo Scientific, Vilnius, Lithuania) and 1 µL of Fast AP (1 unit/µL;
Thermo Scientific) were added to 5 µL of the PCR product and incubated at 37 ◦C for
15 min. The enzymes were then deactivated by heating at 85 ◦C for 15 min, and the mixture
was finally diluted 10× with Milli-Q water. For sequencing, 5 µL of the PCR product, 1 µL
of the forward and reverse primers (1 pmol/µL) and 4 µL of Milli-Q water were mixed.
The sequencing was performed on an Applied Biosystems 96-capillary system, ABI3730xl
with a pop7 matrix (Macrogen, Amsterdam, the Netherlands).

4.3. Antibiotic Susceptibility Testing

The antibiotic susceptibility of the strains was tested using the disc diffusion
method [133]. Briefly, bacterial suspensions of 0.5 McFarland were seeded on Mueller–
Hinton agar (Becton Dickinson, Mississauga, ON, Canada) plates. The plates were air-dried
for 15 min and then the discs impregnated with antibiotics were deposited on the plates
(antibiotics in Supplementary Table S1). The diameter of the inhibition zone around each
disc was measured after 24 h at 37 ◦C, and the strains were graded as sensitive (S), interme-
diate (I), or resistant (R) following the European Committee on Antimicrobial Susceptibility
Testing guidelines [134]. Escherichia coli ATCC25922 was included as a reference strain for
quality control.

4.4. Detection of Bacterial Virulence and Adhesion Genes

The presence of virulence and adhesion genes in the clinical isolates was assessed
using PCR. Briefly, 50 µL of a buffer containing bacterial DNA; 25 µL of the master mix
(Taq polymerase, polymerase buffer (pH 8.5), and 400 µM dNTPs2x (Promega)); and
10 µM forward and reverse primers (specific primers in Supplementary Table S2) were
mixed. The PCR programs are indicated in Supplementary Table S3.

4.5. Biofilm Formation on Polystyrene Microplates

The biofilm formation on sterile flat-bottom 96-well polystyrene microplates (Greiner
Bio-One, Frickenhausen, Germany) was assessed using the method by O’Toole [135].
The wells of the microplate, previously filled with 100 µL of trypticase soy broth (TSB,
Biokar Diagnostics), were seeded in triplicate with 100 µL of an 18 h bacterial culture
(1 × 106 CFU/mL) and incubated at 37 ◦C for 24 h. Wells containing 200 µL of sterile TSB
broth were included as negative controls. After incubation, the cultures were removed;
the wells were washed carefully with 200 µL of sterile TS solution, and the biofilms were
fixed with 200 µL of absolute ethanol (Biochem Chemopharma, Montreal, Quebec, Canada).
Subsequently, the fixed biomass was washed, stained with 0.1% (w/v) crystal violet solution
(Biochem Chemopharma) for 30 min, and finally washed with 200 µL of TS solution. The
biomass was finally quantified using a microplate reader (Chromate Awareness Technology,
Palm City, FL, USA) to measure the absorbance at 630 nm for the crystal violet extracted
with 96% (v/v) ethanol. The results were expressed as mean values.

4.6. Novel Antibacterial Agents

The SAAP-148 peptide (amide-LKRVWKRVFKLLKRYWRQLKKPVR-acetyl; Mw 3970)
was synthesized using 9H-fluorenylmethyloxycarbonyl (Fmoc) chemistry in an automated
peptide synthesizer (Syro II, MultiSyntech, Witten, Germany), as described previously [28,136].
The molecular mass of the peptide was confirmed using mass spectrometry (Voyager DE-
Pro, PerSeptive Biosystems, Framingham, MA, USA), and the purity amounted to >95%, as
determined using reverse-phase high-performance liquid chromatography (HPLC) and
detection at 214 nm [137]. The lyophilized peptide was stored at −20 ◦C until use. A stock
solution of 5.12 mM SAAP-148 was prepared in Milli-Q water and stored in the refrigerator
at 4 ◦C. Halicin (SU 3327; Mw 261.3) was purchased from Tocris Bioscience (Bristol, UK).
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Prior to use in the experiments, the halicin was dissolved in 748 µL of dimethyl sulfoxide
(DMSO, Honeywell Riedel-de Haën, Seelze, Germany) and further diluted in phosphate-
buffered saline (PBS, 140 mM, pH 7.4; Fresenius KABI, Zeist, the Netherlands) to a stock
solution of 51.2 mM.

4.7. In Vitro Killing Assay

From glycerol stock suspensions of K. pneumoniae (KP1 and KP2), A. baumannii (AB1),
and E. coli (EC2), overnight cultures were prepared at 37 ◦C. Thereafter, the bacteria were
cultured to the mid-log phase in TSB (Oxoid, Basingstoke, UK) for 2.5 h under continuous
rotation, centrifuged at 3000 rpm for 10 min, and resuspended in PBS to a concentration
of 5 × 106 CFU/mL. Subsequently, 30 µL of PBS containing SAAP-148 or halicin (final
concentrations ranging from 0.8 to 102.4 µM) and 2% (v/v) bacterial suspension were mixed
with pure PBS; PBS supplemented with 1% (v/v) TSB; or PBS supplemented with 50% (v/v)
pooled human plasma (for AB1) or 50% (v/v) pooled urine (for KP1, KP2, and EC2) in the
wells of a polypropylene V-shape microplate (Greiner bio-one). After incubation for 4 h
and 24 h at 37 ◦C (200 rpm), the number of viable bacteria was assessed microbiologically.
The results were expressed as lethal concentration (LC) 99.9, i.e., the lowest concentration
of the compound that killed 99.9% of the inoculum.

4.8. Anti-Biofilm Assay

One-hundred microliters of a suspension of log-phase bacteria (approximately 107

CFU/mL in brain heart infusion (BHI) broth, Oxoid, Basingstoke, UK) were added to each
well of a flat-bottom 96-well polystyrene microplate containing a sterile silicone elastomer
disc (Ø = 4 mm), which mimics medical devices, like intravenous and urinary catheters,
and incubated for 24 h at 37 ◦C. Thereafter, each disc was gently transferred in a sterile
96-well microplate, washed with PBS, and transferred again in a sterile flat-bottom 96-well
polystyrene plate for exposure to increasing concentrations of SAAP-148 (in the range
6.4–102.4 µM) or halicin (in the range 6.4–204.8 µM) for 4 h and 24 h at 37 ◦C. Three discs
were incubated with PBS as controls. In addition, three discs were exposed to 0.4% (v/v)
DMSO. The concentration of DMSO in the highest concentration of halicin that was tested
served as a control for halicin. After the treatment, each disc was washed as described
above; transferred to a sterile, flat-bottom, 96-well polystyrene microplate containing
100 µL of PBS; and sonicated for 10 min at 42 kHz. The number of surviving bacteria
was determined microbiologically. The results were expressed as biofilm bactericidal
concentrations (BBC99.9), i.e., the lowest concentrations of the agents resulting in a 99.9%
reduction in the bacterial counts in the biofilms.

4.9. Checkerboard Assay for Determination of SAAP-148 and Halicin Synergy

A checkerboard assay was used to determine the possible synergy between SAAP-148
and halicin against bacteria in biofilms. In short, 24 h biofilms formed on silicone elas-
tomer discs, as described above, were washed two times with 100 µL of PBS and then
exposed to combinations of increasing doses of SAAP-148 and halicin (Supplementary
Table S4) for 24 h at 37 ◦C. Thereafter, the antimicrobial agents were gently removed;
the plates were washed two times with PBS and sonicated for 10 min at 42 kHz. The
number of surviving bacteria was determined microbiologically. The fractional biofilm
eradication concentration index (ΣFBEC) was calculated according to the following for-
mula: ΣFBEC = FBECA + FEBCB [138], where FBECA = MBEC of compound A in the
combination/MBEC of compound A, and FBECB = MBEC of compound B in the com-
bination/MBEC of compound B. Synergy was defined as ΣFBEC ≤ 0.5; additive effect,
0.5 < ΣFBEC ≤ 1; indifference, 1 < ΣFBEC ≤ 2; antagonism, ΣFBEC > 2.

4.10. Anti-Persister Assay

Seven-day mature biofilms were developed in flat-bottom, 96-well polypropylene
plates using 100 µL of 1 × 107 CFU/mL bacteria in BHI (Oxoid) broth. The plates were
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sealed and incubated at 37 ◦C in a humidified atmosphere for 7 days. Thereafter, non-
adherent bacteria were removed by two washes with PBS, and 100 µL of fresh BHI broth
containing 50 × MBC of ciprofloxacin (25 µg/mL; Sigma-Aldrich, St. Louis, MO, USA) for
KP1, KP2, and EC1 and 50 × MBC of gentamycin (400 µg/mL; Sigma-Aldrich) for AB1 were
carefully added to each well. The medium containing the antibiotics was refreshed daily
for 3 days. After the treatment, the supernatant was removed; the biofilm was sonicated at
42 kHz for 10 min, and the resulting bacterial suspensions from 48 wells were pooled. A
total volume of 10 µL of increasing doses of SAAP-148 or halicin (in the range 0.2–102.4 µM)
was added to 90 µL of the pooled bacterial suspension and incubated for 4 h at 37 ◦C (and
200 rpm). As a control, bacteria were exposed to PBS without SAAP-148/halicin. Afterward,
the number of viable bacteria was determined microbiologically. To exclude the possibility
that persisters surviving the treatment were missed, the incubation on the agar plates was
prolonged for up to 5 days.

4.11. Assay for Bacterial Endotoxin Neutralization Capacities of SAAP-148 and Halicin

Approximately 15 µL of UV-inactivated (for 20 min; ChemiDoc, Bio-Rad, Hercules,
California, USA) bacteria (1 × 107 CFU/mL in PBS) were mixed with 15 µL of SAAP-148
or halicin at final concentrations ranging from 1 to 1000 nM in a 96-well polypropylene
V-bottom microplate and incubated for 2 h at 37 ◦C. Thereafter, 120 µL of Roswell Park
Memorial Institute medium (RPMI, Thermo Fisher, Paisley, UK) was added to each well
to dilute the samples 5×. Next, 5 µL of this mixture was added to 195 µL of 5× diluted
heparinized blood obtained from healthy donors, and the mixture was incubated for 20 h
at 37 ◦C under 5% CO2. Subsequently, the plates were spun for 5 min at 1200 rpm; the
supernatants were aliquoted and stored at −20 ◦C until further analysis. The level of the
pro-inflammatory cytokine IL-12p40 in these supernatants was quantified using the BioLe-
gend Elisa max deluxe set (BioLegend, San Diego, CA, USA) according to manufacturer’s
instructions, and the optical density (OD) at 450 nm was measured on a Spectramax i3X
(Molecular Devices, Wokingham, UK).

4.12. Hemolysis Assay

The hemolytic activities of the peptide SAAP-148 and halicin were investigated. Briefly,
freshly drawn citrate blood, from healthy volunteers, was washed three times with PBS by
centrifugation at 1000 rpm for 10 min and then resuspended in PBS to prepare an erythro-
cyte suspension of 20% (v/v). Subsequently, 25 µL of PBS containing SAAP-148 or halicin
(at final concentrations ranging from 12.8 to 204.8 µM) and 2% (v/v) erythrocyte suspension
were mixed with 50 µL of PBS or pooled human plasma in a 96-well polypropylene V-
bottom plate (Greiner bio-one), shaken for 10 sec at 300 rpm, and incubated for 1 h at
37 ◦C. DMSO and 5% (v/v) Triton-X (Fluka Chemie, Buchs, Switzerland) were used
as controls for 0% and 100% hemolysis, respectively. After centrifugation for 3 min at
1200 rpm, the supernatant was carefully transferred to new 96-well, polypropylene flat-
bottom plates, and the hemoglobin release was determined by measuring the OD at 415 nm.
The percentage of hemolysis was calculated as (OD415sample − OD4150µM)/(OD415TritonX
− OD4150µM) × 100%, where OD415sample is the optical density of the peptide/halicin,
OD4150µM is the optical density of the negative control, and OD415TritonX is the optical
density of the positive controls. Hemolysis ≤ 5% was considered as safe.

4.13. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software version 6.0 (Graph-
Pad Software, San Diego, CA, USA) and Kruskal–Wallis and Mann–Whitney U tests to
determine the significance of the differences between the values for the peptide- and/or
halicin-exposed and control samples. All the data were presented as mean; p ≤ 0.05 was
considered as statistically significant.
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5. Conclusions

In conclusion, the present work revealed that the two novel antimicrobial agents,
i.e., the synthetic peptide SAAP-148 and halicin, are promising candidates to fight CRIs
owing to their high broad-spectrum, antibacterial, anti-biofilm, anti-persister, and anti-
inflammatory activities in vitro; but importantly, their ability to act synergistically on
biofilm eradication, where their combined effect is superior to their individual effects. This
work provides a strong basis for further studies (using a human bladder model and animal
models of catheter-related infections and for transcriptomic studies) for the clinical use of
SAAP-148 and halicin to treat CRIs caused by Gram-negative bacteria. In addition, the
design of more potent and safer therapeutic antimicrobial agents using several strategies,
like chemical modification, nanotechnology-based delivery systems, and computer-aided
design, is an excellent way to overcome the drawbacks of antimicrobial agents (by reducing
their toxicities and improving their antimicrobial activities).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/antibiotics12121743/s1: Table S1: Antibiotics tested in this study;
Table S2: Target genes and primers used in this study; Table S3: PCR programs for virulence
gene detection; Table S4: Concentrations of SAAP-148 and halicin tested in checkerboard assays.
References [139–147] are cited in the Supplementary Materials.
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