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Abstract: Immunocompromised patients—including patients with cancer, hematological malignan-
cies, solid organ transplants and individuals receiving immunosuppressive therapies for autoimmune
diseases—account for an increasing proportion of critically-ill patients. While their prognosis has
improved markedly in the last decades, they remain at increased risk of healthcare- and intensive
care unit (ICU)-acquired infections. The most frequent of these are ventilator-associated lower
respiratory tract infections (VA-LTRI), which include ventilator-associated pneumonia (VAP) and
tracheobronchitis (VAT). Recent studies have shed light on some of the specific features of VAP and
VAT in immunocompromised patients, which is the subject of this narrative review. Contrary to
previous belief, the incidence of VAP and VAT might actually be lower in immunocompromised than
non-immunocompromised patients. Further, the relationship between immunosuppression and the
incidence of VAP and VAT related to multidrug-resistant (MDR) bacteria has also been challenged
recently. Etiological diagnosis is essential to select the most appropriate treatment, and the role of
invasive sampling, specifically bronchoscopy with bronchoalveolar lavage, as well as new molecular
syndromic diagnostic tools will be discussed. While bacteria—especially gram negative bacteria—are
the most commonly isolated pathogens in VAP and VAT, several opportunistic pathogens are a special
concern among immunocompromised patients, and must be included in the diagnostic workup.
Finally, the impact of immunosuppression on VAP and VAT outcomes will be examined in view of
recent papers using improved statistical methodologies and treatment options—more specifically
empirical antibiotic regimens—will be discussed in light of recent findings on the epidemiology of
MDR bacteria in this population.

Keywords: ventilator-associated pneumonia; immunosuppression; multidrug resistance; critical illness

1. Introduction

Although the proportion of critically ill patients with immunosuppression has in-
creased during the last decades, the prognosis of these patients has constantly improved.
A recent large meta-analysis used individual patient data of studies that focused on im-
munocompromised patients with acute respiratory failure requiring invasive mechanical
ventilation (IMV; 11,087 patients from 24 studies) [1]. The crude mortality rate was 53.2%,
and adjusted survival improved over time (from 1995 to 2017, odds ratio [OR] for hospital
mortality per year 0.96, 95% CI 0.95–0.97).

Immunosuppression was reported to be associated with higher rates of infection,
related to reduced defense mechanisms and higher exposure to healthcare facilities, and
antimicrobial courses [2]. However, few studies have carefully examined the relationship
between immunosuppression and ventilator-associated lower respiratory tract infection
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(VA-LRTI). The aim of this narrative review is to discuss recent data on this issue and to
determine further required research in this field (Figure 1).
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BAL: broncho-alveolar lavage; LMV: length of mechanical ventilation; LOS: length of stay; MDR:
multidrug resistant bacteria; VAP: ventilator-associated pneumonia. *: compared to immunocompe-
tent patients.

2. Methods

We searched the MEDLINE and Pubmed databases with the following search query
(using MeSH terms): “Ventilator-associated pneumonia AND (Immunocompromised Host
OR leukopenia OR neoplasms OR HIV OR transplants OR Autoimmune Diseases OR
steroids OR Immunosuppressive Agents)”. Further references were added through hand-
searching in the relevant literature and verifying references of key papers. We screened titles
and abstracts of papers identified by our search, and assessed the full text of potentially
relevant articles. The inclusion of papers in the final manuscript was based on consensus
among all three coauthors.

3. Incidence of VAP in Immunosuppressed Patients

Based on the data from the international prospective TAVeM database, Moreau et al.
estimated the global incidence of VA-LRTI to be 16.6% in immunocompromised patients [3].
Interestingly, the authors reported a lower incidence of ventilator-associated tracheobron-
chitis (VAT) (7% vs. 12%) and pneumonia (VAP) (9% vs. 13%) in patients with immuno-
suppression compared with those with no immunosuppression, with a VAP incidence
similar to those previously described in the lung and liver transplant populations [4,5].
In addition, VAP was more frequently caused by multidrug-resistant (MDR) bacteria in
immunocompromised patients, compared with those with no immunosuppression (78% vs.
58%). One of the hypotheses to explain these results was a higher frequency of antibiotic
exposure in immunocompromised patients, leading on the one hand, to a reduced risk
of VA-LRTI, and on the other hand, to the emergence of resistant mutants. Conversely,
the results of a retrospective multicenter study suggest that the initiation of corticosteroid
treatment in the initial phase of COVID-19 would be associated with a higher incidence
of VAP, estimated at 63% vs. 49% in patients not receiving corticosteroids [6]. These
latter data seemed consistent with the results from other previously published smaller
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series [7], contrasting with the data from the TAVeM database, which mostly depicted
patients with prior immunosuppression. However, duration of corticosteroid treatment
was not taken into account in these studies, and whether these patients could be considered
as immunosuppressed, because of corticosteroid treatment is unclear.

4. Diagnosis

The diagnosis of VAP often remains tricky in immunocompromised patients. First of
all, it must be reminded that the diagnosis of VAP is based on symptoms of lower respiratory
tract infection in patients who have been intubated for over 48 h and have a positive result
from a lower respiratory microbiological sample, along with the detection of a new infiltrate
on chest radiography. Moreover, the diagnosis of VAT is based on the combination of the
previously mentioned criteria, without any new radiographic infiltrates [8].

The first challenge lies in the frequency of non-infectious differential diagnoses, which
may be difficult to distinguish from VAP, due to atypical presentations in immunocompro-
mised patients, including the absence of an inflammatory syndrome. These differential
diagnoses include pulmonary toxicities of oncological treatments, acute pulmonary edema,
intra-alveolar hemorrhage, or lesions related to the underlying disease itself. The frequent
cohabitation of these entities to varying degrees with a genuine infectious process makes
the CT scan one of the first-line imaging exams in the case of VAP in the immunocompro-
mised [9]. The CT scan makes it possible to describe certain aspects orienting the infectious
etiological diagnosis. Thus, consolidations are frequently associated with bacterial etiolo-
gies, whereas ground-glass opacities are mostly found in viral pneumonia [10,11]. Other
strategies to document differential diagnoses, such as cardiac and pleural ultrasound, have
also emerged as primary diagnostic tools in this population.

The use of biomarker tests, such as PCT or CRP for monitoring VAP has been sug-
gested, although these studies have not been specifically conducted in immunocompro-
mised individuals. Luyt et al. found that PCT had a low accuracy for diagnosing VAP, with
areas under the ROC curves at 0.51 and 0.62 for D-1 PCT and PCT increase, respectively [12].
In the BioVAP study, Povoa et al. reported that CRP had a moderate performance in diag-
nosing VAP, with areas under the ROC curves at 0.7 and 0.8 for the CRP variations [13].
Interestingly, the authors also observed that a single measurement of CRP could be useful
for excluding a VAP diagnosis.

Microbiological documentation is the cornerstone of the diagnosis of VAP in the im-
munocompromised. This can be all the more delicate as fungal, in particular Aspergillus,
and viral etiologies, mostly herpes viruses, can frequently be added to the bacterial infec-
tious agents usually encountered. It must be first noted that the type of immunosuppression
is an important element to take into account in the etiological assessment. Thus, T cell defi-
ciencies, hematopoietic stem cell transplantation (HSCT) and high dose steroid treatments
are well known risk factors for herpes virus pneumonia [14]. The same risk factors have
been described for Aspergillus, along with severe neutropenia, acute myeloid leukemia,
and massive environmental exposures [15]. However, these risk factors remain inconstantly
associated with the etiological diagnosis. Fiberoptic bronchoscopy (FOB) with bronchoalve-
olar lavage (BAL) remains to this day one of the most exhaustive techniques for exploring
these different possibilities. Previously published data reported similar performances
between BAL and non-invasive tests in identifying the cause of acute respiratory failure in
a community setting in immunocompromised patients [16]. Indeed, in this study, BAL and
non-invasive strategies conducted to similar diagnosis rates, found at 79.6% and 78.3%,
respectively. However, several elements underline the interest of BAL and should be taken
into account in the choice of the examination in immunocompromised patients. The interest
of this technique lies first of all in the possibility of making macroscopic findings, such as
the herpetic lesions observed in HSV pneumonia [17]. BAL is also the reference technique
for viral pneumonia usually encountered in intubated patients, for which the diagnosis is
based on PCR, with the possible presence of intranuclear inclusion and detection of giant
cells in the case of HSV pneumonia. Thus, high accuracies of PCR performed in BAL have
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been reported, with areas under the ROC curves found at 0.89 and 0.91, respectively, for
the diagnosis of HSV and CMV pneumonia [17–20]. In addition, BAL is also of particu-
lar interest for the diagnosis of invasive pulmonary aspergillosis (IPA), for which recent
data suggest a high frequency of about 12% in patients with suspected VAP [21]. Direct
detection of Aspergillus in culture on BAL has a high specificity, but a low sensitivity,
ranging from 30 to 60% [22], with a delay of 2 to 5 days. The detection of galactomannan
antigen and the Aspergillus PCR on BAL allows for a rapid diagnosis, delivered within
one day. Repeated Aspergillus PCR in BAL yields a high specificity above 0.90 for the
detection of IPA, but remains associated with more variable sensitivities, sometimes found
below 0.80 [22]. Moreover, the sensitivity and specificity of BAL galactomannan with an
index cutoff of 1.0 are constantly found above 0.90. These exams therefore are among the
first-line tests in immunocompromised patients, at risk of IPA. Serum tests, based on the
detection of galactomannan, β-D-glucans and Aspergillus PCR, are more accessible, but
have a lower performance for the diagnosis of IPA [22]. Indeed, Aspergillus PCR yields
a low sensitivity, yet with high specificity for the diagnosis of IPA. In addition, serum
galactomannan and β-D-glucans both have low accuracies for the diagnosis of IPA, with
sensitivity and specificity found below 0.90. These non-invasive tests are therefore to be
considered as surveillance methods, which should lead to the performance of BAL in the
case of a suspected diagnosis.

If the interest of PCR seems to be well established in the context of viral and fungal
pneumonia, several characteristics of this method make it a technique of interest in the
context of bacterial VAP in the immunocompromised. Indeed, published data suggest
that the value of PCR compared to conventional culture in the correct identification of the
bacterial etiology of VAP [23], particularly in patients previously exposed to antibiotics, is
a situation that seems to be more frequently encountered in the immunocompromised [3].
Thus, among patients who had received prior antibiotics, Strålin et al. reported that BAL
culture was positive in 5/24 (21%) cases, while this rate reached 14/24 (58%) cases for
PCR [23]. The interest of PCR also lies in its capacity to provide a rapid etiological diagnosis,
of the order of a few hours vs. a few days for culture [24], coupled with the possibility
of detecting the presence of MDR [25]. These characteristics also seem to be of crucial
importance, given the increased frequency of the involvement of MDR bacteria in VAP in
the immunocompromised [3]. The potential value of PCR was highlighted in a two-center
study that included a majority of immunocompromised patients, in which a strategy based
on multiplex PCR on BAL specimens appeared to reduce inappropriate treatment time [26].

Among the more recently developed techniques, metagenomic next-generation se-
quencing (mNGS) is a high-throughput technique used for unplanned pathogen detection.
The mNGS analysis on BAL seems to allow for a wide detection of viral, bacterial, and
fungal infections, with a better performance than conventional culture in VAP [27]. Retro-
spective data suggest a gain in performance of mNGS over standard culture techniques
particularly marked in immunocompromised patients, especially with a much higher sensi-
tivity of mNGS for bacterial infections (0.90 vs. 0.50) and coinfections (0.69 vs. 0.48) [28].
These results underline the need for prospective evaluations to corroborate the benefit of
this technique in this population.

The expected benefits of FOB with BAL must nevertheless be weighed in balance with
the side effects of this technique. These are mainly represented by transient hypoxemia,
pneumothorax, and bleeding. Hypoxemia is by far the most frequent complication, found
in one in four patients immediately after BAL in an observational study of 164 mechanically
ventilated intensive care patients [29]. Nevertheless, this study underlined the transient
and mostly reversible character of hypoxemia, as well as the absence of bleeding or pneu-
mothorax in this context. These results were consistent with previously published data,
which emphasized the exceptional nature of these complications. Another study carried
out in a population of onco-hematology patients also suggested the very low frequency of
bleeding events after BAL, with an estimated occurrence of severe bleeding of 1/500, with
no apparent impact on the severity of thrombocytopenia [30]. Another study published by
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Kamel et al. clarified these data [31]. In this study, the authors described the frequency of
complications occurring within 24 h after BAL in a population of 378 ventilated patients,
including nearly 50% of immunocompromised patients. The most frequently documented
events within 24 h after BAL were arterial hypotension, found in 34.9% of cases, and a fall
in SpO2, found in 12.2% of cases. The frequency of hemoptysis after BAL was 1.6%. Death
within 24 h after BAL occurred in 3.2% of cases. It should be noted, however, that this
study did not make it possible to establish the imputability of BAL in the events recorded
afterwards, particularly because of the absence of control patients. It can also be noted
that most of the events reported, including hypotension and desaturation, did not lead to
a substantial modification of the administered therapies, underlining a moderate impact
on patient management. The main category at risk of complication remained the group of
patients on high-flow nasal oxygen or non-invasive ventilation, with a rate of intubation
occurring within 24 h post-LBA of more than 16%, to be compared to the extremely low
rate, below 1%, of life-threatening complications observed in intubated patients. These
data suggest that the use of BAL remains mostly safe in ventilated patients, including
immunocompromised patients, reinforcing the interest of this method for the diagnosis of
VAP in this population [32].

5. Microbiology

Bacteria are the leading pathogens responsible for VAP and VAT in the general non-
immunocompromised population, and this is also the case among immunocompromised
patients [33–35]. Most cases (50–80%) of bacterial VALTRI are caused by gram negative bac-
teria, the most frequently isolated species being Pseudomonas aeruginosa, Acinetobacter bau-
mannii, and Enterobacteriaceae, which include Escherichia coli and Klebsiella pneumonia [36,37].
Antibiotic resistance in gram negative bacteria has been steadily increasing worldwide and
is of particular concern because of the paucity of new antimicrobials with activity against
these pathogens [38]. Among Enterobacteriaceae, resistance to third- or fourth-generation
cephalosporins due to the expression of extended-spectrum β-lactamases (ESBLs) and/or
AmpC β-lactamases is an important worry, and so is the emergence of strains resistant to
last resource antibiotics, such as carbapenems and colistin. The proportion of multidrug-
resistant strains among nonfermenters (which in certain settings can be above ~30%) also
imposes significant constraints in the choice of empirical antibiotic regimens [38]. In gram
positive organisms, Staphylococcus aureus is the most frequently encountered species [39],
but the diffusion of methicillin-resistant strains has been relatively controlled [40].

Both the bacterial species isolated in patients with VALTRI, and maybe more im-
portantly their antibiotic susceptibility profile are influenced by several factors, such as
hospital and ICU length-of-stay and IMV duration before VALTRI onset. Prior coloniza-
tion and/or infection with MDR bacteria, prior to exposure to antibiotics, especially with
broad-spectrum activity, local ecology (i.e., the site-specific background prevalence of MDR
bacteria, as well as intra-hospital epidemics) are also important risk factors for MDR bac-
teria. Moreover, severity of acute illness, organ failures, shock, ARDS, and life support
techniques have been repeatedly associated with VAP related to MDR bacteria, even though
these variables act more likely as confounders than as direct causal factors [8,33,41–43].
Because of this, studying whether immunosuppression significantly and systematically
modifies the distribution of bacterial species implicated in VALTRI could be distorted by a
myriad of confounding factors, and would be of little overall significance. More interesting
is the assessment of the impact of immunosuppression on the risk of colonization and
infection, including VA-LTRI, with MDR bacteria.

Numerous studies have investigated the prevalence of antimicrobial resistance (AMR)
in immunocompromised patients (reviewed in [44,45]), and the dominant view in the litera-
ture has been that immunocompromised patients present a high risk of colonization and/or
infection with MDR bacteria. In line with this, immunosuppression has been considered
a risk factor for MDR bacteria in VAP [43], and guidelines have suggested to take this
into consideration when selecting an empiric antibiotic regimen in immunocompromised
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patients with VAP [41,46]. However, most of the related studies present important lim-
itations, including the lack of a formal comparison between immunocompromised and
non-immunocompromised patients and the failure to take into account important patient-
related confounding factors. In the CIMDREA study [47], an observational prospective
multicenter cohort study in France, we found that the incidence of ICU-acquired coloniza-
tion with MDR bacteria was lower in immunocompromised vs. non-immunocompromised
patients (adjusted subhazard ratio [sHR] 0.56, 95% CI 0.4–0.79), but the incidence of ICU-
acquired infection with MDR bacteria was not significantly different between groups
(adjusted sHR 0.59, 95% CI 0.33–1.05). This was also true when focusing on VAP related to
MDR bacteria (28-day cumulative incidence 33.3% and 38.3% in immunocompromised and
non-immunocompromised patients, respectively). Importantly, one limitation of that study
is that only the incidence of ICU-acquired infections related to MDR bacteria (i.e., not those
related to sensitive strains) was investigated.

In the study by Moreau et al., among patients with VALRTI, the rate of MDR bacteria was
significantly higher among immunocompromised than among non-immunocompromised
patients (72% vs. 59% of VALTRI episodes, OR 1.75, 95% CI 1.13–2.71) [3]. Similar results
were found in the subgroup of patients with VAP (78% vs. 58% of VALTRI episodes, OR
2.39, 95% CI 1.29–4.48), but not in patients with VAT (65% vs. 60%, p = 0.52). However,
as detailed above, because immunocompromised patients also had a lower cumulative
incidence of VALTRI and VAP in comparison to their non-immunocompromised coun-
terparts, the cumulative incidence of VALTRI and VAP related to MDR bacteria might in
fact be comparable between groups (12.5% vs. 14.7% for VALTRI and 7.4% vs. 7.7% for
VAP), which would be concordant with the results of the CIMDREA study [47]. Taken
together, these studies suggest that critically-ill immunocompromised patients may not be
at higher risk of being colonized and/or infected with MDR bacteria when accounting for
key confounding factors, and that immunosuppression should not be considered separately
from other risk factors when evaluating the need to prescribe broad-spectrum antibiotics
empirically in the setting of VAP.

In immunocompromised patients, more so than in their non-immunocompromised
counterparts, VAP related to opportunistic fungal and viral pathogens are also an important
concern. Regarding fungal infections, VAP related to Aspergillus sp. is the most pressing
concern among immunocompromised patients, but its exact prevalence and epidemiolog-
ical determinants are difficult to assess, mostly due to the absence of formal diagnostic
criteria [22,48]. Immunosuppression is a well-established risk factor for community-onset
invasive pulmonary aspergillosis (IPA), but it has been increasingly recognized that it
could develop in mechanically ventilated patients, and thus lead to VAP, even more so
when they are immunocompromised [49]. Classically, ICU-onset IPA has been described
in patients receiving IMV in the setting of severe influenza [50,51], and in a retrospective
multicenter cohort study on 432 critically-ill flu patients, its incidence was more than twice
higher (32% vs. 14%) among immunocompromised than among non-immunocompromised
patients [50]. Similarly, in a multicenter observational study on 563 ICU patients (of whom
86% were receiving IMV at the time of diagnosis), factors of immunosuppression were more
prevalent among those with proven or putative IPA than among those with Aspergillus
colonization [52]. VAP related to Pneumocystis jirovecii [53–55] (PCP) and Cryptococcus
sp. [56,57] are uncommon in immunocompromised patients (especially for PCP in those
receiving prophylaxis with cotrimoxazole), but both pathogens should be included in the
diagnostic workup when no bacterial pathogen is identified. There is no data supporting
the role of Candida sp. in VAP [58].

Finally, viruses have also been implicated in VAP, both in non-immunocompromised [59]
and immunocompromised patients [60]. The pathophysiology of viral VAP involves either
the reactivation of endogenous viruses from the Herpesviridae family, including Herpes
simplex virus (HSV) and Cytomegalovirus (CMV), or more rarely ICU-acquired infections with
respiratory pathogens (e.g., influenza, rhinovirus, etc.). Histologically-proven HSV [17]
and CMV [61] pneumonia have been documented in ICU patients under IMV, and in a
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retrospective monocenter study on 710 ventilated patients, immunosuppression (adjusted
OR 2.97, 95% CI 1.44–6.14) and stem-cell transplantation (aOR 3.58, 95% CI 1.17–10.99)
were independently associated with viral replication in the lungs. However, large-scale
data on the incidence and risk factors of viral VAP are limited, which can be related to the
fact that detecting the genetic material of a virus, especially HSV or CMV, in the respiratory
secretions of ventilated patients does not necessarily imply direct pathogenicity, which can
only be proven through histopathology [61].

6. Impact of Immunosuppression on Outcomes in VAP and VAT Patients

Several studies have documented an increased mortality in unselected cohorts of
critically-ill patients presenting with at least one episode of VAP during ICU stay, in
comparison with patients with no VAP. In a meta-analysis of 24 trials (6284 patients), the
overall attributable mortality of VAP was estimated at 13% [62]. However, the excess of
mortality directly attributable to VAP has been a subject of debate, as it appears to be lower
when estimated using statistical methodologies that appropriately account for competing
risks and time-dependent confounding factors [63–65].

It has been suggested that the attributable mortality of VAP may be influenced by
patient-related features (e.g., it may be higher in surgical than in medical patients) [62], but
the effect of immunosuppression on the relationship between the occurrence of VAP and
mortality has been scarcely investigated. In the study by Moreau et al. [3], which provides
the most compelling evidence, both immunocompromised and non-immunocompromised
patients with VAP had a higher mortality than patients with no VA-LRTI and patients with
VAT, but more importantly, among patients with VALTRI and with VAP, ICU mortality
was significantly higher in immunocompromised vs. non-immunocompromised patients
(54% versus 30%, OR 2.68, 95% CI 1.78–4.02 in patients with VALTRI). Furthermore, among
patients with VALTRI, immunosuppression was an independent predictor of ICU mortality
(HR 1.6, 95% CI 1.19–2.16). In a meta-analysis of 26 studies published in 2010 on patients
with microbiologically-confirmed VAP, malignancy was associated with an increased mor-
tality (OR 2.20, 95% CI 1.10–4.40), but this estimate was not adjusted for confounders [66]. In
the study on ICU-acquired IPA, bone-marrow transplant was an independent predictor of
mortality (OR 3.352, 95% CI 1.060–10.598) [52]. Finally, studies with smaller sample sizes, a
mono-centric design [67] and/or a focus on restricted sub-groups of immunocompromised
patients—e.g., liver transplant [68] and HIV patients [69]—have not found a significant
effect of immune status on the association between VALTRI or VAP and mortality, but firm
conclusions cannot be drawn from these studies due to their methodological limitations.

VAT has not been associated directly with an increased mortality in ICU patients, but
transition from VAT to VAP was found to be an independent risk factor for mortality in
the TAVeM study [39]. Furthermore, appropriate antibiotic treatment of VAT has been
shown to decrease the risk of transition from VAT to VAP [70], and has been associated
with lower ICU mortality in the TAVeM study [39]. In the study by Moreau et al. on
immunocompromised patients [3], the incidence of progression from VAT to VAP was
not significantly different between immunocompromised and non-immunocompromised
patients (13% vs. 12%, p = 0.69), suggesting that immunosuppression is not a risk factor for
progression from VAT to VAP.

Both VAP [71] and VAT [39] have been associated with a higher duration of IMV and
longer ICU length-of-stay in unselected cohorts of critically-ill patients. In the study by
Moreau et al. [3], similar findings were obtained, but more importantly immunosuppression
did not seem to modify the impact of VAP/VAT on these outcomes. As an example, in
non-immunocompromised patients, median IMV duration was 14 days (IQR 8–26) in case
of VAP and 13 days (8–22) in case of VAT, as compared to 7 days (4–12) in case of no
VALTRI, and in immunocompromised patients it was 15 days (8–27) in case of VAP, 16 days
(10–25.5) in case of VAT, as compared to 7 days (4–14) in case of no VALTRI. Similar trends
were found when assessing the impact of immunosuppression on the association between
VAP/VAT and ICU LOS.
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Based on the available evidence, immunosuppression could amplify the impact of VAP
occurrence on mortality, but more evidence on this is needed. Second, immunosuppression
does not seem to modify the impact of VAT and VAP on ICU LOS and IMV duration, nor
the probability of transitioning from VAT to VAP.

7. Treatment of VAP in Immunosuppressed Patients

Current European and American guidelines on VAP [8,42] recommend considering
immunosuppression as a risk factor for MDR bacteria, and treating VAP in immunosup-
pressed patients with large spectrum combination therapy, including a betalactam with
activity against Pseudomonas aeruginosa. However, these recommendations are based on
common sense and on available evidence. In a single center observational study, our group
found immunosuppression to be associated with increased risk for colonization or infection
related to MDR bacteria [72]. However, after careful adjustment for antibiotic treatment
and other potential confounders, immunosuppression was not independently associated
with increased risk for colonization or infection related to MDR bacteria (ICU-MDR-col and
ICU-MDR-inf, respectively). In a recent multicenter prospective observational study, our
group evaluated the relationship between immunosuppression and ICU-MDR-col and/or
ICU-MDR-inf in a cohort of 750 critically ill patients [47]. Following the adjustment for
center and pre-specified baseline confounders, immunocompromised patients had a lower
incidence rate of ICU-MDR-col and/or ICU-MDR-inf (adjusted incidence ratio 0.68, 95% CI
0.52–0.91). When considered separately, the difference was significant for ICU-MDR-col,
but not for ICU-MDR-inf. These data suggest that large spectrum antimicrobial treatment
in immunosuppressed patients with VAP might not be justified in stable patients with no
other risk factors for MDR. Further large multicenter studies are needed to confirm these
data before modifying the current recommendations.

Although no statement on antimicrobial treatment for VAT is provided in European
recommendations, American guidelines recommend not treating VAT with antimicrobials
(weak recommendation, based on low evidence level). To our knowledge, no specific data
exist on the interest of treating VAT with antibiotics in immunosuppressed patients.

8. Conclusions

VAP and VAT are among the most frequent ICU-acquired infections in immunocompro-
mised patients, but their incidence might actually be lower than in non-immunocompromised
patients. While the proportion of VAP and VAT episodes related to MDR bacteria might
be higher in immunocompromised patients (possibly owing to higher antibiotic expo-
sure), recent data have shown that the cumulative incidence of ICU-acquired infections
(including VAP) with MDR bacteria might be lower in immunocompromised patients than
non-immunocompromised ones. The microbiology of VAP and VAT in this population
includes bacteria (especially gram negative), fungi (notably Aspergillus sp.), and viruses.
Accurate and timely detection of pathogens and their antibiotic resistance profile is key to
delivering the optimal antibiotic treatment, which is associated with positive outcomes.
The exact role of bronchoscopy and bronchoalveolar lavage, as well as recent multiplex
PCR-based diagnostic tools and serum biomarkers warrants further investigation. Immuno-
suppression could amplify the impact of VAP occurrence on mortality. Finally, recent data
on the epidemiology of AMR in critically-ill immunocompromised patients might help
nuance guidelines on empirical antibiotic regimens in immunocompromised patients with
VAP, but further studies are needed to complement these findings.
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BAL bronchoalveolar lavage
CMV cytomegalovirus
CT computed tomograpy
FOB fiberoptic bronchoscopy
HR hazard ratio
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HSV herpes simplex virus
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mNGS metagenomic next-generation sequencing
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VA-LTRI ventilator-associated lower respiratory tract infection
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