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Abstract: In the context of the global health issue caused by the growing occurrence of antimicrobial
resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and
organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a
computer-aided drug design (CADD) based on a ‘scaffold-hopping’ approach for the synthesis and
antibacterial evaluation of fac-Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate
ligand. The prepared molecules were selected following a pre-screening in silico analysis according to
modification of the 2,2′-bipyridine (bpy) ligand in the coordination sphere of the complexes. CADD
pointed to chiral 4,5-pinene and 5,6-pinene bipyridine derivatives as the most promising candidates.
The corresponding complexes were synthesized, tested toward methicillin-sensitive and -resistant
S. aureus strains, and the obtained results evaluated with regard to their binding affinity with a
homology model of the S. aureus MurG enzyme. Overall, the title species revealed very similar
minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values as
those of the reference compound used as the scaffold in our approach. The obtained docking scores
advocate the viability of ‘scaffold-hopping’ for de novo design, a potential strategy for more cost-
and time-efficient discovery of new antibiotics.

Keywords: rhenium; clotrimazole; Staphylococcus aureus MurG; docking

1. Introduction

One of the most concerning medical challenges nowadays consists in addressing the
constant advent of new antimicrobial resistances (AMRs). Indeed, if this global health issue
is not rapidly answered, the human cost could represent approximately ten million deaths
a year in a near future [1]. For this purpose, there is an increasing need for novel drugs
that could afford better activity against resistant pathogens by different mechanisms of
action with respect to decades-old antibiotics. The testing of inorganic and organometallic
complexes has arisen as an efficient strategy in order to overcome AMR [2–10], including
coordination of well-established antimicrobial agents to a metal center [11]. The resulting
inorganic and organometallic molecules are usually synthesized in a very straightforward
manner and do not feature elaborated design, while often displaying superior biological
activity compared to the coupled therapeutic potency of the drug or organic ligand and the
metallic fragment. Moreover, the structural changes caused upon complexation commonly
lead to distinct modes of action. This so-called ‘metal–drug synergism’ (MDS) occurs
in particular thanks to improved pharmacokinetics through mutual chemical protection
between the coordinated organic compound and the metal core [12].

A remarkable example of MDS in antibiotic research was reported by Sadler and
coworkers, who synthesized piano stool Ir(III) complexes bearing various biguanide deriva-
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tives as bidentate ligand [13]. The complexes showed significant activity against multi-
resistant Staphylococcus aureus (MRSA), with an MIC of 0.125 µg/mL (0.17 µM) alongside
a fungicidal potency toward C. albicans and C. neoformans (MIC of 0.25 µg/mL), whereas
uncoordinated biguanides displayed no activity within the tested range. Furthermore,
no significant cytotoxicity was measured toward mammalian cells. Similar piano stool
compounds [14,15] as well as iridium complexes with different scaffolds [16–19] were inves-
tigated by other groups with comparably promising results. Apart from iridium, gold, as a
further example of a third-row transition metal, is popular and effective in antimicrobial
research [20–30].

Our group [31–33], and others [34–38], have focused their attention on rhenium-based
antibiotic agents [39]. Wenzel et al. first evaluated the antimicrobial potential of rhenium
carbonyl complexes, reporting the activity of hetero-tri-organometallic compounds with
MIC values of 1.4 µM against Gram-positive bacteria including MRSA [40]. The same
groups also disclosed a family of fac-[Re(CO)3]+ N-heterocyclic carbene complexes with
MIC values against Gram-positive bacteria between 0.7–2 µg/mL [41]. More recently,
Cooper et al. introduced a new class of rhenium(V) dioxo complexes showing potent activ-
ity (MIC ≤ 0.25 µg mL−1) both against Staphylococcus aureus (S. aureus) and Candida albicans
(C. albicans) alongside low human cell toxicity and low haemolytic action against human
red blood cells [42]. Studies on the mechanism of action of these complexes are limited
and possible biological targets still unknown. The hetero-tri-organometallic complexes of
Wenzel et al. act on the cytoplasmic membrane of the bacteria, where they disrupt essen-
tial cellular processes as respiration and cell wall biosynthesis [40], while light-activated
species of Frei et al. may induce microbe death via reactive oxygen species production and
destabilization of Fe–S clusters [36].

Recently, however, Mendes et al. have studied in details the mechanism of action
of a clotrimazole (ctz) complex of rhenium (complex 1, Figure 1), showing that this com-
pound acts as an inhibitor of membrane-associated stages of peptidoglycan synthesis [43].
Specifically, complex 1 triggers the accumulation of the ultimate cytoplasmic peptidoglycan
precursor undecaprenyl-pyrophosphate-MurNAc-PP (Lipid I, Figure 1). The accumu-
lation of Lipid I suggests an obstruction at a later stage of peptidoglycan biosynthesis.
Mendes et al. showed that 1 inhibits undecaprenyl-pyrophosphate-MurNAc-PP-N-acetyl
glucosamine biosynthesis (Lipid II, Figure 1) by inhibiting the MurG-mediated conversion
of Lipid I to Lipid II. No effect on the MraY-mediated formation of Lipid I was observed.
The authors further argued that inhibition of the MurG reaction can occur either by direct
interference of the rhenium complex with the catalytic function of the enzyme or by seques-
tration of Lipid I serving as the substrate of MurG. It is unknown if 1 may sequester Lipid I,
but there may be additional targets of 1 [43].

Overall, the study of Mendes et al. indicates that MurG may be selected as a target for
the de novo drug design of antibiotic rhenium complexes. To this end, we have employed
a computer-aided drug design (CADD) to identify new fac-[Re(CO)3]+ derivatives of ctz.
CADD methods have played a key role in leading discovery in drug design research,
adding complementing value to experimental high-throughput screening [44]. Nowadays,
the use of virtual compound libraries affords access to unexploited regions of the chemical
space [45], thereby extending the diversity of potential drug candidates, which will open
new avenues in the search of new compounds labeled with sudden properties. Molecular
de novo design enables a ‘scaffold-hopping’ approach in new drug discovery. In this
contribution, we show our way of developing a combined experimental and computational
methodological concept for finding new Re-ctz candidates with the desired antimicrobial
effects. The concept of starting from known molecular skeletons as templates ensures
significant chances for the new molecules with inspired scaffold variations to feature
desirable antimicrobial properties.
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Figure 1. Schematic diagram of the membrane steps of the bacterial peptidoglycan synthesis pathway
showing the known inhibitory function of 1. For more details about the scheme, see [46].

2. Results and Discussion
2.1. De Novo Design—Pre-Screening Step

In order to identify ‘hit’ derivatives of Re-ctz complexes, molecular design and initial
scoring were performed in two steps. A pre-screening step was based on docking calcu-
lations without taking into account the flexibility of the receptor chains in the binding
pocket, and then a refinement step following experimental results. The initial docking was
performed using the homology models of S. aureus MurG and a chemical library of com-
pounds (ca. 60 molecules) based on different diimine ligands previously selected to identify
potent and non-toxic rhenium complexes active against C. albicans-MRSA co-infection [32]
(Figure 2). Overall, the results indicated that, compared to the simple 2,2’-bipyridine (bpy)
derivative of Mendes et al. (complex 1 in Figure 1), modification of the bidentate ligand did
not improve the obtained docking scores of the new species, except where aliphatic sub-
stituents (i.e., a CH3 group) were introduced. In this case, the tested complexes improved
by ca. 0.3–0.7 kcal mol−1 (depending on the homology model used). While not a significant
improvement, rationalization of the data led us to eventually evaluate the possibility of
testing 4,5-pinene and 5,6-pinene bipyridine derivatives (#,#-pinbpy in Figure 3) originally
described by Hayoz and von Zelewsky [47]. When these ligands were introduced in the
coordination sphere of the rhenium tricarbonyl species, and the corresponding ctz com-
plexes were computationally evaluated, a significant increase (up to −1.7 kcal mol−1) in
the docking scores of the complexes to homology models of S. aureus MurG (SaMurG)
was calculated.
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Figure 3. Molecular structure of Re-ctz complexes used for molecular docking with receptor SaMurG.
Note that the # refers to the complexes. The corresponding 4,5-pinene and 5,6-pinene bipyridine are
referred as L# in the text. The * refers to the specific nitrogen atom coordinated to the Re center as
depicted for the complex on the top left.

Here we should mention that the results obtained from the docking scoring functions
implemented in the Vina software do not represent a direct measure of high binding
affinity. The calculated negative docking score is only considered here as indicative of
a potentially better binding potency towards the selected receptor. The applied docking
methods can predict multiple binding poses and calculate their docking score in a fast
and computationally efficient way, and they are widely used to virtually screen potential
drug candidates. However, the limitations of the applied methods should be addressed.
The absolute values of the binding affinity obtained from docking programs should not
be taken as the true values of binding affinity but rather could be used for obtaining
possible lead structures and their binding poses. The effort in this field has focused in
developing physical-based or knowledge-based docking scoring functions for efficiently
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predicting binding affinity with machine learning methods able to produce effective scoring
functions [48–50]. However, it remains notoriously difficult to predict binding affinity
by docking scoring functions. Warren et al. performed a study based on 10 docking
programs and 37 scoring functions and the obtained results show that scoring functions
need significant improvements for predicting binding affinity [51]. Other studies along the
same line [52] compared the performance by ranking the binding of small molecules within
seven scoring functions from five docking programs, one end-point method (MM/GBSA),
and two MD-based free energy methods (PMX, FEP+). The obtained results are mostly in
favor of the MD-based methods over the docking algorithms.

The MD methods and the docking scoring functions are very different, because the
scoring function assigns a common set of weights to the individual energy terms that
contribute to the overall energy score. Many different types of scoring functions have
been developed, although they often simplify the protein–ligand interactions on the com-
plementarity shape and treat solvation effects implicitly, missing physical components
such as entropy contributions from solvent molecules and proteins. Pose ranking is less
accurate with docking methods and sometimes overlooks plausible binding poses. MD
simulations provide the atomic resolution of protein structure and dynamics. With the free
energy perturbation (FEP) or thermodynamic integration methods, all degrees of freedom
relevant to protein–ligand bindings, including solvent motion and binding affinities, can be
accurately predicted. The most stable binding poses of a given complex can be predicted
accurately from long MD trajectories, in principle, even if high resolution structures of the
complex are unavailable. The protein flexibility is not sufficiently considered in most of
the docking simulations, while ligand bindings often couple with protein conformational
changes. Docking methods are, therefore, less accurate in ranking the predicted poses
and sometimes overlook plausible binding structures. In our case, the main limitation for
applying MD simulation to Re complexes is that there are no bonding and non-bonding
parameters available in the force field implemented in the commonly used MD codes. Thus,
docking calculations appear to us as the only possible and reasonable choice to accomplish
the objective set out in the present study.

2.2. Synthesis and Characterization of Complexes

Following prescreening identification of the new potential antibiotic complexes, we
moved to the preparation of the candidate molecules. The 4,5-pinene and 5,6-pinene
bipyridine ligands (L2–L5 in Scheme 1) were synthesized according to established pro-
cedures [47,53]. Ligands L2 and L3 were prepared in a single step from the reaction of
natural (lR)-(-)-myrtenal (L2) or 1R-(+)-pinocarvone (L3) [54] with 1-(2-oxo-2-(pyridin-2-
yl)ethyl)pyridin-1-ium iodide. Ligands L4 and L5 were prepared from the same starting
materials, following their condensation with 1-(cyanomethyl)pyridin-1-ium iodide accord-
ing to the chemistry described by Fletcher et al. [55]. Finally, the rhenium complexes
were obtained by treatment of fac-[Re(CO)5Br] with the corresponding ligand L# in hot
toluene, followed by abstraction of the coordinated bromide and reaction with the drug ctz
(Scheme 1).

IR spectroscopy analysis was in accordance with the typical tricarbonyl vibration
pattern for this type of species. 1H NMR spectra of the complexes showed pure diamagnetic
compounds, according to the symmetry given by the facial-arranged CO’s and low-spin d6

nature of the metal ion. Given the chiral nature of L2 and L3, Re complexes of those ligands
(i.e., compounds 2 and 3) were obtained in a 3:1 (2) or 4:1 (3) mixture of diastereomers
(as determined by 1H NMR analysis). Attempts to isolate the two different diastereomers
were unsuccessful, thus in order to identify the relative ratio of species 2a:2b and 3a:3b,
we performed DFT calculations. As perhaps intuitively expected, the computational data
indicate that diastereomers 2a and 3a (i.e., diastereomers with the two pinene methyl
groups pointing towards the opposite plane of the ctz ligand) are more stable than the
corresponding species 2b and 3b by 0.6 and 0.8 kcal/mol, respectively. It must be said
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that the energy difference is minimal, thus it is difficult to state if indeed the samples are
enriched in the #a diastereomers.
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Scheme 1. Top and bottom respectively: general synthetic procedures and chemical structures
of 4,5-pinene and 5,6-pinene bipyridine ligands (L#) and of Re complexes. For ligand synthesis,
conditions are: (a) stepwise 1. EtOH/AcOH NH4OAc; 2. NaNO2, HBr, 0◦; 3. CuBr, HBr, 70◦;
4. Zn/[Ni(PPh3)4Cl2], DMF [55]. (b) NH4OAc/AcOH, 100◦ [47].

We were unsuccessful in obtaining crystals of complexes 2–5, but crystals of complex 1
suitable for X-ray diffraction measurements were obtained by diffusion of diethyl ether into
a solution of the compound in acetonitrile at−20 ◦C. The ctz complex 1 (Figure 4) represents
only the third example of a metal carbonyl species bearing a coordinated azole that is struc-
turally characterized. The structure of 1 is similar to the corresponding fac-[Mn(CO)3(bpy)]+

complex [11], but its crystallographic parameters are significantly dissimilar. In comparison
to the Mn analogue, the X-ray structure analysis of 1 shows that metrical parameters around
the central Re ion define a more regular octahedron, and that the five-membered ring of
the ctz ligand is not tilted toward the bpy ring plane. The Re and Mn structures share a
common feature, represented by a weak interaction between one of the ctz phenyl rings and
one of the aromatic rings of the bpy ligand (Figure S17, Supplementary Material). A second
structure, featuring the fac-[Re(CO)3(phen)]+ unit (where phen = 1,10-phenanthroline), was
recently reported by Soba et al. in a study that investigated the potential of the complex as
a bioactive agent for the treatment of Chagas disease [56]. Other structurally characterized
organometallic complexes of ctz are relatively rare. Such compounds are known only for
platinum [57], ruthenium [58,59], and rhodium [60]. The other reported structures featuring
a ctz moiety are of purely inorganic nature with copper, zinc [61–63], palladium [64], and
gold [60] metal centers.
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2.3. Antimicrobial Activity and Refined Docking Studies of Complexes

Following the initial screening results and synthesis of complexes, in the next step,
we moved to the antimicrobial evaluation of the molecules. The results of this study pos-
itively advocate that the approach for the ‘scaffold-hopping’ design leads to very good
results, which were confirmed with the MIC values presented in Table 1. The antibacte-
rial properties of the Re-based compounds were investigated in vitro by measuring the
MIC (Figure 5) and the minimum bactericidal concentration (MBC, Table 1) against two
S. aureus strains (wild type and methicillin-resistant), respectively. Following the Clinical
and Laboratory Standards Institute (CLSI) guidelines, the MIC is the lowest concentration of
an antimicrobial agent inhibiting the visible growth of the bacteria after 24 h treatment [65].
The MBC represents the bactericidal endpoint of an antimicrobial agent and is defined as
>99.9% (>3-log) reduction of the initial inoculum after 24 h treatment [65]. Complexes 2a/b,
3a/b, and 4 had an MIC of 8 µg mL−1 against both S. aureus strains while complex 5 had
an MIC > 8 µg mL−1 (Table 1).

Table 1. MIC and MBC values of Re-ctz complexes against S. aureus strains.

Complexes
MIC [µg mL−1] MBC [µg mL−1]

Wild-Type Resistant-Type Wild-Type Resistant-Type

1 4 4 8 8
2a/b 8 8 >8 >8
3a/b 8 8 >8 >8

4 8 8 8 8
5 >8 >8 8 8

DMSO
(negative control) >8 >8 >8 >8

Vancomycin [31] 9 9 - -
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Figure 5. Antibacterial activity of different Re-ctz complexes against (a) S. aureus wild-type strain,
and (b) S. aureus methicillin-resistant type strain, respectively.

In comparison, complex 1 had an MIC of 4 µg mL−1. DMSO used as a negative control
did not inhibit the growth of the bacteria and had an MIC > 8 µg mL−1. The results showed
that the newly synthesized Re-ctz complexes were active against the tested bacterial strains,
and with very similar MIC and MBC values to the parent complex 1. Here it should be
pointed out that a random diimine ligand variation of equivalent Mn complexes invariably
lead to inactive molecules [43]. Our results thus confirm that our CADD grounded on a
‘scaffold-hopping’ approach is a valuable methodology for a de novo drug design based on
a molecular scaffold from compounds with already proven antimicrobial properties.

The antimicrobial data were finally compared with the refined molecular docking
of the tested ligands. We found that compound 4 exhibited the best binding towards the
SaMurG receptor, while the compounds 2a and 5 the lowest docking score within the
screened set. The ligand–receptor coordination of compound 4 may be explained by the
strong interaction with the binding site through the formation of H-bonds (HBs) with
important amino acids. The binding energy for 4 was found to be −8.86 kcal/mol, and it
interacted with the binding pocket of SaMurG by forming seven HBs with GLN 15 and
236, PRO 237, TRP 254, GLY 15, and ANS 161. Figure 6 shows the interactions between
the compound 4 and selected amino acid residues in the binding pocket. The detailed
amino acids environment distribution of the active site of the receptor are presented in
the Supporting Information for each of the compounds and interactions listed in Table 2.
Compounds 3a and 3b showed lower docking scores (−7.6 and−7.4 kcal/mol) and formed
less HBs with the receptor. The observed behavior could be related to the change in
the amino acid’s environment interaction modes of the ligands with the receptor, and
particularly with the hydrophilic amino acid backbone in the binding site.
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Table 2. Molecular docking results for the homological model MurG inhibitors 1–5.

Compound
Docking

Score
(kcal/mol)

Receptor—
Ligand Contact

Area [nm2]

H
Bonds

Receptor
AA

Ligand
Atom

Donor—
Acceptor
Dostance

[Å]

H-A
Distance

[Å]

D-H Bond
Length [Å] Angle

1 * −8.06 4.3 2 ARG 67
ARG 67

Re-CO
Re-CO

3.37
3.26

2.49
2.33

1.00
1.00

146.35
154.04

2a −7.20 5.1 0

2b −8.0 4.9 3
GLY 14
GLY 15
GLU 47

pin-CH
ctz-Ph
ctz-Ph

3.48
3.49
3.30

2.66
2.63
2.56

1.08
1.11
1.08

131.89
134.01
124.72

3a −7.6 5.1 3
ARG 67
ARG 67
GLN 127

Re-CO
Re-CO

bpy-CH

3.19
3.18
3.40

2.30
2.27
2.40

1.00
1.00
1.09

148.53
150.33
151.84

3b −7.4 5.1 2 GLY 18
GLY 18

ctz-Ph
ctz-Ph

3.49
3.27

2.64
2.41

1.08
1.08

135.46
135.68

4 −8.86 5.2 7

GLY 15
ANS 161
GLN 236
GLN 236
GLN 236
PRO 237
TRP 254

pin-CH
Re-CO
Re-CO
Re-CO
Re-CO
Re-CO
Re-CO

3.35
3.2
3.41
3.37
3.50
3.43
3.42

2.31
2.41
2.67
2.65
2.78
2.39
2.65

1.11
1.00
1.09
1.08
1.08
1.09
1.08

156.17
140.60
124.42
123.92
123.29
159.37
127.79

5 −7.25 5.3 1 MET 103 Re-CO 3.50 2.61 1.09 138.85

* Reference compound.

The molecular docking of the new designed structures was used to study binding
interactions in the active site of the homological model of SaMurG. Based on the results,
we have a compound with a high docking score, with the nonpolar contributions from
the amino acids environment stabilizing the binding affinity of the ligand 4 in the binding
pocket. Figure 7 shows a comparison of the lowest energy-binding pose of 4 and 5 with
SaMurG displaying hydrophobicity scales of the amino acids in the binding cavity of the
pocket. It is undeniable that the distributed networks of the ligand–receptor HB play a
significant role in the process of receptor inhibition. As a result of the findings that were
presented in the study, it is expected that further research and extended libraries with new
compounds will be conducted towards developing a new drug specifically designed to
treat antimicrobial resistance problems.
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hydrophobicity.

3. Conclusions

Initial CADD calculations based on a ‘scaffold-hopping’ approach allowed designing
complexes 2–5 as potentially active agents against S. aureus by comparison of their docking
scores toward SaMurG with the already known bpy derivative 1. Molecules were success-
fully synthesized and suitable crystals for X-ray diffraction of 1 were successfully grown.
The pre-synthetic results were corroborated by subsequent biological assays in which most
compounds displayed MIC and MBC values in the low micromolar range comparable to
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1, even toward the resistant S. aureus strain. In our case, the functionalization of the bpy
ligand at positions 4 and 4′ did not seem to significantly impact the antibacterial activity
of the resulting complex like it was proven to occur for manganese analogs [43]. Indeed,
further in silico investigation using a refined algorithm for molecular docking confirmed
the high affinity of all title species for SaMurG, especially in the case of compound 4, which
features stabilizing nonpolar interactions in the binding pocket. Undoubtedly, one of the
main roles was played by the distributed networks of the ligand–receptor HBs. In summary,
the outcomes of the present study afforded evidence toward the viability of the de novo
drug design strategy. Indeed, this method allowed us to identify relevant drug candidates,
validate their antimicrobial ability, and confirm affinity properties required in order to
undergo further design and studies aimed at their mechanism of action.

4. Materials and Methods
4.1. Reagents, Instruments, and Analysis

Solvents and reagents were obtained from standard suppliers and used as received.
The compound [Re(CO)5Br] was purchased from Sigma-Aldrich, while the drug ctz from
Thermoscientific-Acros. Compound 1 [43] and ligands (6R,8R)-7,7-dimethyl-3-(pyridin-
2-yl)-5,6,7,8-tetrahydro-6,8-methanoisoquinoline (4,5-pinbpy), (5R,7R)-6,6-dimethyl-2-
(pyridin-2-yl)-5,6,7,8-tetrahydro-5,7-methanoquinoline (5,6-pinbpy) [47], 4,5-pin2bpy,
and 5,6-pin2bpy [53,55] were prepared according to published procedures. Unless other-
wise noted, the solvents used in the preparation of all molecules were dry and O2-free.
NMR spectra were measure on a Bruker Advance III 400 MHz spectrometer. 1H chemical
shifts of molecules are reported relative to the residual solvent protons. Mass analysis
measurements were carried out with a Bruker FTMS 4.7-T Apex II spectrometer; UV-vis
spectra on a Thermo Fisher Scientific Jasco V730 spectrophotometer; InfraRed spectra (solid
state) on a Bruker TENSOR II spectrometer (4000–600 cm−1 range, 4 cm−1 resolution). Sin-
gle crystals suitable for X-ray diffraction were measured with a Stoe IPDS2 diffractometer
(CuKα1 radiation) furnished with an Oxford Cryosystems mechanical cooler. Structure
solution: The ShelXT Crystal program was used to solve and refine the structures [66,67].
Crystallographic data, CCDC number 2244172, have been deposited at the Cambridge
Crystallographic Data Centre.

4.2. Synthetic Procedures

Complexes 1–5 [32] were synthesized by reacting [Re(CO)5Br] (1.0 equiv.), with the
desired bipyridine (bpy) ligand (1.0 equiv.) in hot toluene (refluxing temperature) for 7–9 h.
Upon cooling of the solution (RT), the corresponding fac-[Re(CO)3(#,#-pinbpy)Br] (obtained
as a fluorescent yellow powder) was filtered and washed twice with cold toluene as. The
solid was then desiccated under vacuum for 24 h. NMR and HPLC measurements indicated
a purity of ≥96%. They were then suspended in MeOH (0.02 M) with ctz (1.5 equiv.) and
AgOTf (2.0 equiv.) and refluxed in the dark for 20 h. After the reaction mixture had cooled
down to the room temperature, it was filtered to discard AgBr and dried in vacuo. The
crude products were purified by semi-preparative HPLC.

fac-[Re(CO)3(4,5-pinbpy)ctz] (2). Yellow solid, yield 13%. IR (solid, cm−1); νCO: 2027,
1902. UV-Vis (MeOH), λmax [nm]: 327, 315. 1H-NMR (400 MHz, CD3CN, ppm): 9.00
(d, J = 5.50 Hz, 1H; a) 8.96 (d, J = 5.50 Hz, 1H; b) 8.59 (s, 0.1H; a) 8.52 (s, 1H; b) 8.24
(d, J = 8.07 Hz, 1H; a/b) 8.14–8.19 (m, 1H; a/b) 8.10 (s, 1H; a/b) 7.52–7.59 (m, 1H; a/b)
7.23–7.45 (m, 10H; a/b) 6.99 (t, J = 1.28 Hz, 1H; a/b) 6.79–6.83 (m, 6H; a/b) 6.70 (s, 1H; a)
6.62 (s, 1H; b) 3.15–3.22 (m, 2H; a/b) 2.96–3.03 (m, 1H; a/b) 2.72–2.82 (m, 1H; a/b) 2.35–2.39
(m, 1H; a/b) 1.44 (s, 3H; a) 1.42 (s, 3H; b) 1.21 (d, J = 10.03 Hz, 1H; b) 1.00 (d, J = 10.03 Hz, 1H;
a) 0.66 (s, 3H; a) 0.42 (s, 3H; b). ESI+-MS (MeOH): m/z, 864.9 [C42H35ClN4O3Re]+, [M]+.

fac-[Re(CO)3(5,6-pinbpy)ctz] (3). Pale yellow solid, yield 24%. IR (solid, cm−1); νCO:
2027, 1906. UV-Vis (MeOH), λmax [nm]: 334. 1H-NMR (400 MHz, CD3CN, ppm): 9.06 (d,
J = 5.50 Hz, 1H; a) 9.01 (d, J = 5.50 Hz, 1H; b) 8.03–8.27 (m, 3H; a/b) 7.70–7.73 (m, 1H; a/b)
7.53–7.62 (m, 1H; a/b) 7.23–7.45 (m, 10H; a/b) 7.05 (s, 1H; b) 6.94 (s, 1H; a) 6.77–6.86 (m,
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7H; a/b) 6.60 (s, 1H; a) 3.45 (d, J = 2.81 Hz, 1H; a/b) 2.99 (t, J = 5.75 Hz, 1H; a/b) 2.70–2.78
(m, 1H; a/b) 2.47–2.51 (m, 1H; a/b) 1.43 (s, 3H; a) 1.41 (s, 3H; b) 1.28–1.30 (m, 1H; a/b)
0.95 (d, J = 10.15 Hz, 1H; a) 0.64 (s, 3H; a) 0.38 (s, 3H; b). ESI+-MS (MeOH): m/z, 864.9
[C42H35ClN4O3Re]+, [M]+.

fac-[Re(CO)3(4,5-pin2bpy)ctz] (4). Yellow solid, yield 8.0%. IR (solid, cm−1); νCO: 2025,
1898. UV-Vis (MeOH), λmax [nm]: 332, 282. 1H-NMR (400 MHz, CD3CN, ppm): 8.54 (s, 1H)
8.46 (s, 1H) 8.06 (d, J = 7.70 Hz, 2H) 7.46 (td, J = 7.95, 1.47 Hz, 1H) 7.24–7.40 (m, 9H) 7.08 (t,
J = 1.47 Hz, 1H) 6.87 (t, J = 1.59 Hz, 1H) 6.76–6.83 (m, 5H) 6.57 (s, 1H) 3.09–3.21 (m, 4H) 2.99
(t, J = 5.38 Hz, 1H) 2.94 (t, J = 5.26 Hz, 1H) 2.70–2.81 (m, 2H) 2.34–2.38 (m, 2H) 1.41–1.46
(m, 7H) 1.22 (d, J = 10.03 Hz, 1H) 0.97 (d, J = 10.03 Hz, 1H) 0.66–0.70 (m, 4H) 0.41 (s, 3 H).
ESI+-MS (MeOH): m/z, 959.0 [C49H45ClN4O3Re]+, [M]+.

fac-[Re(CO)3(5,6-pin2bpy)ctz] (5). Pale yellow solid, yield 15%. IR (solid, cm−1); νCO:
2025, 1900. UV-Vis (MeOH), λmax [nm]: 343, 286. 1H-NMR (400 MHz, CD3CN, ppm): 7.97
(t, J = 7.58 Hz, 2H) 7.67 (t, J = 8.74 Hz, 2H) 7.24–7.44 (m, 10H) 6.97 (t, J = 1.53 Hz, 1H)
6.79–6.88 (m, 6H) 6.53 (t, J = 1.34 Hz, 1H) 3.42–3.60 (m, 4H) 2.95–2.99 (m, 2H) 2.70–2.76 (m,
2H) 2.48–2.52 (m, 2H) 1.43 (s, 3H) 1.42 (s, 3H) 1.26 (d, J = 10.03 Hz, 1H) 0.97 (d, J = 10.03 Hz,
1H) 0.63 (s, 3H) 0.45 (s, 3H). ESI+-MS (MeOH): m/z, 959.1 [C49H45ClN4O3Re]+, [M]+.

4.3. Antimicrobial Assay

The antimicrobial activity of different Re-ctz complexes was assessed against Staphylo-
coccus aureus ATCC 35556 [wild type] and Staphylococcus aureus ATCC 43300 (methicillin-
resistant) strains following the Clinical and Laboratory Standards Institute (CLSI) guide-
lines [65] and the broth microdilution protocol of Wiegand et al. [68]. Briefly, 16 µg mL−1

of each complex was prepared in DMSO as a stock solution and was UV-sterilized for
30 min before use. Each stock solution was twofold diluted in PBS and 50 µL of each
dilution was dispatched in 96-well plates. In parallel, S. aureus overnight cultures grown in
Mueller–Hinton Broth (non-cation-adjusted, MHB) were used to prepare bacterial suspen-
sions at 1 × 106 CFU mL−1 in MHB 2×. Next, 50 µL of S. aureus suspensions was mixed in
the 50 µL of complexes serial dilutions, leading to a final bacterial concentration of 5 × 105

and the complexes concentrations ranging from 8 µg ml−1 to 0.01563 ug mL−1. The mi-
crotiter plates were then incubated at 37 ◦C for 24 h. The minimum inhibitory concentration
(MIC) values were determined by measuring the optical density at 600 nm (OD600). The
minimum bactericidal concentration (MBC) values were determined by spotting 5 µL of
each dilution on MHB agar plates, and CFU counting after overnight incubation at 37 ◦C.
The assay was conducted in triplicate.

4.4. In Silico Calculations
4.4.1. Structural Modeling of S. aureus MurG—Initial Homological Model for
Pre-Screened Study

The crystal structure of the S. aureus MurG protein is not reported; thus, to perform
docking calculations, we employed different homology models. The initial screening of
compounds was performed with E. coli MurG [69] and homology models built according
to Mann et al. [70], the protein homology/analogy recognition engine (Phyre2) [71], the
UniProt sequence Q6GGZ0 [72]. The Phyre2 engine identified the crystal structure of the
P. aeruginosa MurG as the most suitable template for the 3D homology model [73]. In
agreement with what was previously reported [70], our homology model predicts a high
structural relation between S. aureus MurG (SaMurG) and E. coli MurG (EcMurG) [69]. Cross
analysis of the folding results was performed with the (PS)2 protein structure prediction
server (version 3.0) [74]. The server also identified the P. aeruginosa MurG as the most
suitable template, but provided a slightly different predicted 3D structure of SaMurG with
a β-sheet close to the proposed membrane binding interface [75]. The docking calculations
were performed as previously described [31] with the exception that the receptors were
kept rigid. Preliminary molecular docking calculations were carried out with the AutoDock
Vina (version 1.2.0) [76] and the AutoDock4 (version 4.2.6) [77] softwares. The Biovia
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Discovery Studio Visualizer software (version 21.1.0.20298) was employed to distinguish
interactions between the ligand and the receptor.

4.4.2. Homological Modeling with ESMFold from Meta and Molecular
Docking Simulations

The homology modeling for building the unknown protein 3D structure for S. aureus
MurG protein was primary checked by the sequence scoring function based on similarity
exploring with a Swiss model based on E. coli MurG. Regarding results for the structural
scoring similarities with other proteins, we defined the following with highest similarity
score PDB: 1NLM. Then, the overlapping score was recalculated with ESMFold imple-
mented in the Samson (https://www.samson-connect.net, accessed on 21 November 2021,
Figure 8). The process of homology modeling was conducted in sequential steps. The best
model was obtained with Samson, then the docking was conducted. The hydrogens close
to ligands were not fixed, nor were the whole set of chains in the binding pocket. The
next step was docking the ligand molecules with Autodock Vina implemented in Samson
elements [78,79].
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4.4.3. DFT Calculations

All computations were performed with the Gaussian 09 programs. Geometry op-
timizations as well as frequency analysis calculations were performed in the gas phase.
The Becke three-parameter hybrid functional B3LYP [80] for H, C, O, and N was used in
combination with the standard SDD basis sets for Re [81–83] and Perdew–Burke–Ernzerhof
(PBE) [84,85] auxiliary basis set with Planewave. Geometries optimizations were performed
without symmetry restrictions. Vibrational frequencies were computed to verify minima.
We observed no imaginary frequencies for the reported structures and values.
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3:1 mixture in CD3CN, Q = solvent residual peak; Figure S2: 1H NMR spectrum of a 2a/2b 3:1 mixture
in CD3CN, aromatic region; Figure S3: 1H NMR spectrum of a 2a/2b 3:1 mixture in CD3CN, aliphatic
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region; Figure S13. IR spectrum of a 2a/2b 3:1 mixture (left) and of a 3a/3b 4:1 mixture; Figure S14.
IR spectrum of 4 (left) and 5; Figure S15. UV-Vis spectrum of a 2a/2b 3:1 mixture (left) and of a 3a/3b
4:1 mixture in MeOH; Figure S16. UV-Vis spectrum of 4 (left) and of 5 in MeOH; Figure S17. Weak
interaction between one of the ctz phenyl rings and one of the aromatic rings of the bpy ligand in the
structures of 1 (left) and corresponding Mn complex; Figure S18. Homological model Residues in
the pocket; Figure S19. Surrounding amino acids histogram for Drug 1 and 2D distribution bonds
in two planes (YZ and XY) for the H-bonds from the center of the ligand; Figure S21. Surrounding
amino acids histogram for Drug 2a and H-bonds distribution maps in two planes (ZY and XY);
Figure S22. Surrounding amino acids histogram for Drug 2b and H-bonds distribution map in
plane YZ; Figure S23. Surrounding amino acids histogram for Drug 3a and H-bonds distribution
map map for plane YZ; Figure S24. Surrounding amino acids histogram for Drug 3b and H-bonds
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H-bonds distribution map for plane YZ; Table S1. Prescreening AutoDock molecular docking results
for different homological MurG models (fixed receptor) with inhibitors 1–5.
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