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Abstract: Microbial biofilms cause several environmental and industrial issues, even affecting human
health. Although they have long represented a threat due to their resistance to antibiotics, there
are currently no approved antibiofilm agents for clinical treatments. The multi-functionality of
antimicrobial peptides (AMPs), including their antibiofilm activity and their potential to target
multiple microbes, has motivated the synthesis of AMPs and their relatives for developing antibiofilm
agents for clinical purposes. Antibiofilm peptides (ABFPs) have been organized in databases that
have allowed the building of prediction tools which have assisted in the discovery/design of new
antibiofilm agents. However, the complex network approach has not yet been explored as an assistant
tool for this aim. Herein, a kind of similarity network called the half-space proximal network (HSPN)
is applied to represent/analyze the chemical space of ABFPs, aiming to identify privileged scaffolds
for the development of next-generation antimicrobials that are able to target both planktonic and
biofilm microbial forms. Such analyses also considered the metadata associated with the ABFPs,
such as origin, other activities, targets, etc., in which the relationships were projected by multilayer
networks called metadata networks (METNs). From the complex networks’ mining, a reduced
but informative set of 66 ABFPs was extracted, representing the original antibiofilm space. This
subset contained the most central to atypical ABFPs, some of them having the desired properties
for developing next-generation antimicrobials. Therefore, this subset is advisable for assisting the
search for/design of both new antibiofilms and antimicrobial agents. The provided ABFP motifs list,
discovered within the HSPN communities, is also useful for the same purpose.

Keywords: antibiofilm peptide; chemical space; StarPep toolbox; complex network; centrality measure;
motif discovery

1. Introduction

Microorganism biofilms have aroused increasing interest within the scientific com-
munity [1,2]. Biofilms are microbial communities composed of either single or multiple

Antibiotics 2023, 12, 747. https://doi.org/10.3390/antibiotics12040747 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics12040747
https://doi.org/10.3390/antibiotics12040747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0002-9908-2418
https://orcid.org/0000-0002-1328-1732
https://orcid.org/0000-0001-6128-9504
https://orcid.org/0000-0003-3166-745X
https://orcid.org/0000-0003-4761-1784
https://orcid.org/0000-0003-2721-1142
https://doi.org/10.3390/antibiotics12040747
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics12040747?type=check_update&version=2


Antibiotics 2023, 12, 747 2 of 28

species that can be adhered to different types of surface, thereby allowing their survival
in changing environmental conditions caused by the use of biocides and antibiotics in
industrial and clinical settings, as well as by other circumstances such as the presence of
UV light, heavy metals, anaerobic conditions, salinity, pH gradients, etc. [3] However, they
frequently cause environmental and industrial issues due to their adherence to metals, river
rocks, deep-sea vents, and plant tissues; they have had a negative impact on human health
by settling in body tissues and medical implant materials [3,4].

According to the National Institute of Health (NIH), biofilms are responsible for more
than the 65% of microbial infections in humans, and for 80–90% of chronic conditions, rep-
resenting a serious healthcare issue [5,6]. Thus, chronic inflammation, pain and damage to
certain tissues or organ systems caused by biofilm-associated infections may be manifested
in endocarditis, cystic fibrosis, urinary tract infections, and periodontitis [1]. Biofilms are
especially hard to remove from implanted medical devices, e.g., catheters, stents, pros-
thetic heart valves, pacemakers, and artificial joints or limbs [7,8]. Furthermore, when
planktonic forms (free-living microbes) are detached from biofilms, they can trigger other
complications for patients, e.g., bacteremia, thromboembolism and septic episodes [9,10].
Globally, the prevalence of biofilm-associated multi-drug resistant (MDR) infections among
hospitalized patients ranges from 17.9% to 100.0%, and these are mostly caused by bacteria
such as S. aureus, A. baumannii, K. pneumoniae, P. aeruginosa and E. coli, which can also
be found as MDR free-living strains. As a consequence, only 98,000 deaths attributed to
them annually in the United States, according to the US Centre for Disease Control and
Prevention [11].

Although microbial biofilms have long represented a threat to human health due to
their resistance to antibiotics [12,13], there are currently no approved antibiofilm agents for
clinical treatments, despite years of research [5]. There are only two antibiofilm candidates
in the pipeline of clinical trials: (i) nitric oxide, a known regulator of biofilms [14], has been
proposed for treating chronic rhinosinusitis (Phase 2, NCT04163978), and (ii) the human
monoclonal antibody (TRL1068) against the bacterial protein DNABII, which stabilizes
DNA in the extracellular matrix of biofilms [15], is being evaluated for treating prosthetic
joint infections (Phase 1, NCT04763759) [5]. Currently, exploration of biofilms’ formation,
mainly through OMICS approaches, has uncovered new genetic and protein entities as
targets for biofilm modulation. Knowledge on molecular signaling in biofilms’ formation
has paved the way for exploration of natural and synthetic peptides to target such new
entities [5]. For example, the nucleotide second-messenger guanosine tetraphosphate and
pentaphosphate ((p)ppGpp) is found in all bacteria as part of the stringent stress response,
also playing an important role in biofilm formation in many species [16,17]. Therefore,
(p)ppGpp is an excellent target for developing antibiofilm agents, and surprisingly, cationic
amphipathic peptides related to the antimicrobial and host defense function can bind
directly to (p)ppGpp for its degradation [5,16]. Other promising second-messenger-like
target in bacteria is the cyclic diguanylate (c-di-GMP), which regulates a wide range of
cellular functions from biofilm formation to growth and survival. In this sense, a c-di-
GMP-sequestering peptide (CSP) was designed considering the high binding ability of the
c-di-GMP with one of its protein effectors, a CheY-like (Cle) protein found in Caulobacter
crescentus. The CSP was developed from a short arginine-rich region located at the C
termini of Cle [5,18]. Thus, synthetic peptides derived from reported antimicrobial peptides
(AMPs) have been also explored to find more promising antibiofilm agents/targets for
clinics [5,19]. As a consequence, several derivatives from registered AMPs such as LL-37
and Indolicidin, from human and bovine origin, respectively, have been synthetized based
on the potent antibiofilm/antibacterial actions of their natural templates [20].

This background points out AMPs and their synthetic relatives as promising alter-
natives for developing antibiofilm agents, also leveraging the multi-functionality of the
AMPs class through their immunomodulatory, anti-inflammatory, wound-healing, anti-
fungal and antibacterial activities, especially their potentialities to target MDR planktonic
strains [21,22]. It is also important to highlight the relative low cost of peptides’ production
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in comparison with other emerging therapeutic alternatives [23]. Thus, their antibiofilm ac-
tivity has gained attention in the AMPs world, being evaluated in vitro and in vivo models
and registered either in general AMP databases such as UniProtKB [24], the Antimicrobial
Peptide Database (APD) [25], the Data Repository of Antimicrobial Peptides (DRAMP) [26],
or in others exclusively dedicated to antibiofilm peptides, such as the Biofilm-active AMPs
(BaAMPS) database [27]. This last specific database has been useful for researchers to train
machine learning (ML) models to predict antibiofilm activity [28–31].

Despite efforts to populate AMPs databases and build ML models to assist the dis-
covery/design of antibiofilm peptide drugs, the success rate has been extremely low,
considering there is no antibiofilm agent in clinical use [5]. Therefore, the development
of new in silico approaches, providing new insights into the classical drug discovery
pipeline, is always welcome. Thus, emerging tools and databases based on graph and
networks science could be integrated in the discovery/design pipeline of peptide drugs
through analyzing the chemical space of bioactive peptides [32–34]. Consequently, the
relevant features of antibiofilm peptides (ABFPs) can be approached by applying complex
networks to identify privileged scaffolds and motifs, aiming to develop next-generation
antimicrobials able to combat MDR microbes by either targeting their biofilm or planktonic
forms. Namely, complex networks can be useful for (i) analyzing the structural diversity of
ABFPs according to the network topology/modularity, (ii) selecting the most representative
and atypical ABFPs, determined mainly by centrality measures, (iii) identifying relevant
functionalities (other than the antibiofilm contributing to efficient antimicrobial activity)
by weighting their associated metadata with centrality measures, (iv) identifying ABFP
motifs within networks communities, and (v) determining of a reduced set of peptides that
actually represents the original antibiofilm chemical space.

Here, the half-space proximal network (HSPN) was applied to represent the structural
(sequence-based) space of anti-biofilm peptides registered in the graph-based database
(StarPepDB) [35], which probably has the most comprehensive subset of antibiofilm pep-
tides collected from both generic AMPs databases and specific databases for antibiofilms
(Available online: http://mobiosd-hub.com/starpep/ (accessed on 5 January 2023)). The
HSPN is a local proximity graph that extracts a low-degree spanner of the complete graph.
Each node is associated with its nearest neighbor, clearing from the complete graph all re-
dundant nodes in the nearest neighbor’s direction by using a half-space hyperplane [36,37].
HSPNs do not consider all the possible pairwise relationships between nodes; instead, these
networks apply the half-space proximal test over the set of nodes, obtaining a connected
network with a smaller fraction of the maximum number of edges. As they show a lower
density, a lesser RAM memory is needed for their construction; therefore, they were recently
applied by our group to study the chemical space of antiparasitic peptides [34].

The estimation of several HSPN parameters, e.g., number of communities, centrality
measures, metadata associated with central and atypical nodes, and neighborhood analysis,
along with network visual mining, has allowed effective exploration of the chemical
space of antibiofilm peptides, aiming to assist in the discovery/design of next-generation
antimicrobials targeting both planktonic and biofilm microbial forms. Such a new approach
was made possible by mainly using network science tools such as the StarPep toolbox [35]
and Gephi [38], complemented with classical bioinformatic analyses.

2. Materials and Methods
2.1. Half-Space Proximal Network Building

The building of half-space proximal networks (HSPNs) was described in [34,36,37].
Here, they were applied to represent the chemical/structural space of 174 antibiofilm
peptides (ABFPs) which were registered in StarPepDB after removing redundant pep-
tides at 98% similarity from the original set of 221 ABFPs; this was achieved by applying
the Smith–Waterman algorithm [39]. Thus, the resulting 174 ABFPs were used to gener-
ate HSPNs. In doing so, an optimized set of alignment-free (AF) sequence descriptors
found by feature selection methods were used to represent ABFPs as network nodes [36].

http://mobiosd-hub.com/starpep/
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The Euclidean distance metrics with min-max normalization were applied to determine
the pairwise similarity relationships among them. ABFPs within the HSPN are clus-
tered by using the modularity optimization algorithm based on the Louvain method [40];
thus, peptide communities sharing similar features can be displayed in the network. All
these steps were performed using the StarPep toolbox (zip distribution) associated with
StarPepDB version 1.0 (CAMD-BIR International network, Quito, Ecuador, available online:
http://mobiosd-hub.com/starpep/ (accessed on 5 January 2023)) [35].

2.2. Metadata Networks

Metadata networks (METNs) were also explained in [36]. They are another type of
network that do not display similarity relationship among the nodes/peptides, similar to
the HSPNs. METNs are bi-layer networks represented by the ABFPs and their associated
metadata (origin, database, function, target), respectively [35]. Particularly, one layer is
composed of the 174 ABFPs, and the other by their sourcing database and origin. Therefore,
ABFPs belonging from the same database are connected to the same “database node”, but
additionally can be connected to nodes representing other databases. METNs can include
other layers (metadata) and multi-type links so that hierarchical connections may be set.
METNs are also constructed using the StarPep toolbox v1.0. They aim to gain a better
insight into the associated data (antimicrobial activity on MDR strains, immunomodulatory,
anti-inflammatory, etc.) from the ABFPs in order to select privileged scaffolds for the
development of next-generation antimicrobial agents.

2.3. Networks Similarity Cutoff Analysis

The optimal similarity threshold for the HSPN was set up by analyzing the network
parameters/topology behavior at varying the pairwise similarity cutoffs between nodes
(peptides). HSPNs representing the ABFPs were built with the Euclidean distance metric,
but changing similarity threshold from 0 (no cutoff) to 0.95. The exploration was performed
from the minimum cutoff 0, where all possible similarity relationships (edges) are displayed,
increasing to 0.3, 0.4, etc. until 0.95; only edges with similarity values higher than the
applied threshold are shown in the network.

The resulting HSPNs at each similarity cutoff are exported as GraphML files from
StarPep toolbox (v1.0-zip distribution) to be imported in Gephi v0.10 [38]. Gephi allows
the calculation of a comprehensive set of network parameters not implemented in StarPep
toolbox v1.0, such as average degree, density, modularity, average clustering coefficient
(ACC), number of communities and singletons, network diameter, and average path
length at each similarity threshold. The joint analysis of all these network properties
together with the visual mining of the resulting network topologies was considered to
determine the optimal value (File S1 of Supplementary Materials). The optimal cutoff
should draw the most informative network topology that best represents/models the ABF
chemical space. These exploratory analyses will be addressed in detail in the Results and
Discussion sections.

2.4. Network Visualization

Network visualization is conducted in Gephi v0.10 by applying layout algorithms
to the original HSPNs, allowing a readable network representation wherein nodes are
intended to not overlap [38]. The Fruchterman–Reingold algorithm was applied to layout
HSPNs as a circle wherein communities are represented by different colors, while the
nodes size was scaled according to centralities measures [41]. Several types of centrality
measures were calculated for each node: (i) node degree, (ii) harmonic, (iii) betweenness
and (iv) hub-bridge. For HSPNs, all these centrality measures were calculated, while for
the networks with metadata associated with peptides (e.g., database, origin, target and
function), betweenness is the centrality of choice.

http://mobiosd-hub.com/starpep/
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These networks can also be directly shown by using the principal components as the
cartesian coordinates of nodes (peptides) represented by a set of AF molecular descriptors.
In this case, no layout algorithm is applied.

2.5. Scaffold Extraction by Centrality Measures

The HSPN model selected from the similarity threshold analysis was used to retrieve
the most central and atypical ABFPs from its communities and singletons. The ABFPs were
ranked down separately according to the harmonic and hub-bridge centrality measures,
then a process of redundancy reduction was performed using the Scaffold extraction plugin
from the StarPep toolbox v1.0 [36]. This procedure aims to avoid an overrepresentation
of the ABFPs according to their centrality values by applying different sequence identity
cutoffs from 0.90 to 0.30. In this way, in a peptide pair bearing similar centrality measures,
only the one with the highest centrality is retained when sharing with its competing
peptide’s identity above a predefined cutoff, e.g., 0.90. Thus, several non-redundant and
representative sets of ABFPs corresponding to the cutoffs of 0.90, 0.80, 0.70, 0.50, 0.45, 0.40
and 0.30 were extracted. The identity measure was calculated by the Smith–Waterman local
alignment algorithm using default settings [39]. As this is a pairwise iterative comparison,
the resulting extracted sets contain peptides bearing unique values of centrality measures
and sharing sequence identities under the predefined cutoffs.

2.6. Selection of the Most Representative Extracted Subset

As several subsets were extracted by applying both the harmonic and hub-bridge
centralities at different identity cutoffs (0.9–0.3), the selection of the subset optimally
representing the original HSPN space with a minimum number of ABFPs per metric is
needed. This selection was performed by visual mining from the HSPN overlapping of
the extracted subsets on the HSPN model. The evaluated subsets represented between
30–45% of the original HSPN space (174 ABFPs). We considered for the selection the spatial
distribution (spatial coverage) of the reduced subset on the HSPN model, represented by
the cartesian coordinates nodes estimated from the two most relevant principal components.
Once the subsets corresponding to the best overlap with the minimum identity cutoff and
the smallest number of peptides were found for each metric, the union of the centralities
(HC ∪ HB) was also explored at 0.45, 040 and 0.35 identity thresholds. The subsets from
the union of two centralities should have more coverage than when a single one is applied.

2.7. Motif Discovery
2.7.1. Multiple Sequence Alignments

The motif discovery process was conducted on the ABFPs communities from the
HSPN model. A total of 11 communities were analysed; 8 of them showed more than
2 members (clusters 4, 7, 9, 11, 14, 15, 17 and 22), while clusters 6 and 28 only contained
2 peptides. The 20 singletons were gathered in one cluster. The detection of anti-biofilm
motifs using alignments was approached as follows:

- Communities with more than 2 ABFPs, including the one containing 20 singletons,
were aligned independently using multiple sequence alignment (MSA) algorithms.
The algorithms of choice were MAFFT (Multiple Alignment using Fast Fourier Trans-
form) v7.487 with the iterative refinement FFT-NS-i option [42] and MUSCLE (Mul-
tiple Sequence Comparison by Log- Expectation) v3.8 [43], publicly available at
https://www.ebi.ac.uk/Tools/msa/, EMBL-EBI, Cambridgeshire, UK, accessed on
22 December 2022.

- The conserved motifs were detected by jointly analyzing the consensus sequences
and Seq2Logo, implemented in the Jalview v2.11.2.5 program [44] and EMBOSS
Cons v6.6.0, available at https://www.ebi.ac.uk/Tools/msa/emboss_cons, EMBL-
EBI, Cambridgeshire, UK, accessed on 22 December 2022).

https://www.ebi.ac.uk/Tools/msa/
https://www.ebi.ac.uk/Tools/msa/emboss_cons
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- Communities with only 2 ABFPs were pairwise aligned using local and global align-
ment algorithms [39,45]. The resulting alignments were also imported to the Jalview
v2.11.2.5 program [44] to estimate the consensus for the detection of the motifs.

2.7.2. Alignment-Free (AF) Detection

The AF detection of motifs was carried out similarly by communities. They were
analyzed in STREME v5.5.1 (Sensitive, Thorough, Rapid, Enriched Motif Elicitation) to dis-
cover ungapped motifs that are enriched with respect to a control set generated by shuffling
input peptides (https://meme-suite.org/meme/tools/streme, MEME Suite, Washington,
DC, USA, accessed on 3 January 2023) [46]. The analyses were performed via MEME suite
v5.5.1 [47]. The motif width was set between 3–5 amino acids length. STREME applies a
statistical test at p-value threshold = 0.05 to determine the enrichment of motifs in the input
peptides compared to the control set as a stopping criterion.

2.7.3. Motif Enrichment Analysis

Simple Enrichment Analysis (SEA) v5.5.1 (https://meme-suite.org/meme/tools/sea,
MEME Suite, Washington, DC, USA, accessed on 16 January 2023) [48] from the MEME
suite v5.5.1 was used to validate the motif discovery process by evaluating the enrichment
of each listed motif in external benchmark datasets of ABFPs. The relative enrichment ratio
of each motif in the query vs. control sequences is defined as

Ratio = ((TP + 1)/(NPOS + 1))/((FP + 1)/(NNEG + 1)), (1)

where NPOS is the number of positive sequences (query peptides) in the input, and NNEG
is the number of control sequences in the input.

2.8. Overall Workflow Integrating Complex Networks to Next-Generation
Antimicrobials Development

The overall workflow integrating complex network analyses as an emerging tool in the
next-generation antimicrobials’ development pipeline from ABFPs is displayed in Figure 1.
The figure summarizes the methodological steps previously described to achieve the pro-
posed goal as follows: HSPN building, HSPN visualization by delineating its communities
and scaling the node size according to centrality values, the selection of an HSPN model
(optimal cutoff) using a similarity cutoff analysis, and the selection of a representative
subset of ABFPs using the scaffold extraction algorithm from the HSPN model.
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The metadata associated with the representative ABFP subset were analyzed by
METNs visual mining to identify privileged scaffolds which have shown promising antimi-
crobial activities on MDR strains, together with antibiofilm action but non-toxicity toward
mammalian cells. In turn, the HSPN model (optimal similarity cutoff) was used to discover
ABFP motifs within the network communities using alignment-based (AB) and AF tools
(MSA, STREME, SEA). The ABFP motifs enriched in two characterized datasets will also be
useful for designing next-generation antimicrobials (Figure 1).

3. Results and Discussion
3.1. Half-Space Proximal Network Model

HSPNs of ABFPs were built with the Euclidean distance metric, but changing similarity
threshold from 0.0 to 0.95. As long as the cutoff increases, the network density decreases
due to the loss of edges satisfying the similarity cutoff. Therefore, several nodes become
disconnected from the giant component of the network, and appear as isolated communities
or singletons representing atypical sequences. The original HSPNs (with no similarity
cutoff) have the particularity that all nodes are fully connected, as in the giant components
of half-space graphs; however, upon applying increased similarity cutoffs, increasingly
sparser graphs with unconnected nodes (singletons) are displayed.

Then, some network parameters were retrieved at different similarity cutoffs in order
to determine the optimal parameter for determining the most informative network topology.
In relevance order, network parameters such as density, modularity, average clustering
coefficient and number of communities were analyzed (Figure 2).

Antibiotics 2023, 10, x FOR PEER REVIEW 8 of 29 
 

 

Figure 2. Behavior of HSPNs parameters representing the 174 ABFPs when the similarity cutoff 

varies from 0 to 0.95. 

The network density is the actual number of edges over the maximum number of 

possible edges in a network. If the density is too high, the understanding of network top-

ological features becomes complicated, and if it is too low, then get loses useful infor-

mation; therefore, a compromise between both extremes is needed. Generally, a network 

density of around 0.1 is acceptable; however, HSPNs are sparser networks showing much 

lower density values (<0.01). HSPNs are non-classical similarity networks because their 

node connections are determined by a predefined half-space proximal (HSP) test that gen-

erates a connected network but that only uses a small fraction of the maximum number 

of possible edges. More detailed information about the HSPNs construction can be found 

at [36]. Considering they are sparser networks by definition, upon increasing the similar-

ity cutoff, HSPNs’ density tends to drop even more, only retaining a reduced number of 

edges weighted with high similarity. 

The modularity of the networks was also analyzed at each similarity cutoff. This is a 

network parameter that compares the density within a community with the expected den-

sity for the same group of nodes in a random network. We calculated modularity and the 

number of communities using the modularity optimization clustering algorithm (based 

on the Louvain method [40]). Unlike the network density, both the modularity and the 

number of communities/singletons are significantly increased, especially upon applying 

similarity cutoffs from 0.5 (Figure 2). 

On the other hand, the average clustering coefficient (ACC) is a global measure of 

nodes’ neighborhood connectivity and can also be used for evaluating network topology 

changes against similarity thresholds. Although at a similarity cutoff of 0.80 all network 

parameters displayed a dramatical change (Figure 2), the optimal value was selected by 

jointly analyzing all HSPN parameters and topologies (File S1). The point at which the 

network density dramatically drops but at the same time the modularity increases (while 

considering the trade-off between the number of communities/singletons generated) is a 

good starting criterion for selection. In this sense, the cutoff value should be between 0.6–

0.7, where the density and modularity have an inverse behavior, while the ACC does not 

Figure 2. Behavior of HSPNs parameters representing the 174 ABFPs when the similarity cutoff
varies from 0 to 0.95.

The network density is the actual number of edges over the maximum number of
possible edges in a network. If the density is too high, the understanding of network topo-
logical features becomes complicated, and if it is too low, then get loses useful information;
therefore, a compromise between both extremes is needed. Generally, a network density
of around 0.1 is acceptable; however, HSPNs are sparser networks showing much lower



Antibiotics 2023, 12, 747 8 of 28

density values (<0.01). HSPNs are non-classical similarity networks because their node
connections are determined by a predefined half-space proximal (HSP) test that gener-
ates a connected network but that only uses a small fraction of the maximum number of
possible edges. More detailed information about the HSPNs construction can be found
at [36]. Considering they are sparser networks by definition, upon increasing the similarity
cutoff, HSPNs’ density tends to drop even more, only retaining a reduced number of edges
weighted with high similarity.

The modularity of the networks was also analyzed at each similarity cutoff. This is
a network parameter that compares the density within a community with the expected
density for the same group of nodes in a random network. We calculated modularity and
the number of communities using the modularity optimization clustering algorithm (based
on the Louvain method [40]). Unlike the network density, both the modularity and the
number of communities/singletons are significantly increased, especially upon applying
similarity cutoffs from 0.5 (Figure 2).

On the other hand, the average clustering coefficient (ACC) is a global measure of
nodes’ neighborhood connectivity and can also be used for evaluating network topology
changes against similarity thresholds. Although at a similarity cutoff of 0.80 all network
parameters displayed a dramatical change (Figure 2), the optimal value was selected by
jointly analyzing all HSPN parameters and topologies (Supplementary File S1). The point
at which the network density dramatically drops but at the same time the modularity
increases (while considering the trade-off between the number of communities/singletons
generated) is a good starting criterion for selection. In this sense, the cutoff value should be
between 0.6–0.7, where the density and modularity have an inverse behavior, while the
ACC does not suffer any dramatic change and the number of communities and singletons
are reasonable in order to display an informative network topology (Figure 2). Thus, the
optimal cutoff of 0.65 was selected by analyzing all the HSPN parameters displayed in
Figure 1 and Supplementary File S1, and the networks’ topologies as well. The selected
HSPN (cutoff = 0.65) was the best network, projecting the antibiofilm chemical space
and grouping the ABFPs in a reasonable number of both interconnected and isolated
communities, in which their peptides probably share common or singular physicochemical
and biological properties. The relevance of this HSPN will be addressed from now on.

In addition, the degree distributions of the HSPN with no similarity cutoff and at 0.65
were plotted to explore the behavior of these networks as generic models [49]. The node
degree distribution of HSPN with no cutoff shows a bell-shaped distribution around a
maximum value of 8 (Figure 3 and Supplementary File S1). This bell-shaped distribution is
inherent from the random models. However, when the optimal similarity cutoff is applied,
the maximum value is reached at node degree 3, and the classical bell-shaped distribution is
lost. Instead, several small bell-shaped patterns with peaks appear within the node degree
intervals. Therefore, the HSPN model evidently does not display random behavior, which
indicates that it could be used as a topological network model (Figure 3 and Supplementary
File S1).

3.2. Network Visual Mining
3.2.1. Visual Mining of HSPNs; The Most Central and Atypical ABFPs

In addition to the numerical characterization of HSPNs by the calculation of net-
work parameters, their visualization also provides new and simple insights to unravel the
complex relationships of the objects they represent. In our case, the HSPNs were used
to represent and analyze the chemical space of 174 non-redundant ABFPs by applying
AF similarity networks with the application of the half-proximal space graphs [34,36,37].
Network visualization can mirror several network parameters such as density and commu-
nities; node size can be ranked according to different centrality measures, e.g., node degree,
harmonic, hub-bridge, betweenness, etc. Thus, the most important or central peptides can
be highlighted, and the edges weighted with high or low similarities. This work aimed at
the outset to exploit the visual representation of complex networks representing ABFPs in
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order to analyze their structural space and associated metadata, both of which are relevant
for the discovery and design of antibiofilm agents [31].

Both the original HSPN (no cutoff) and the HSPN model (cutoff at 0.65) representing
the structural space occupied by the 174 ABFPs are depicted in Figure 4, and the Supple-
mentary File S2 complements the network projection through numerical characterization.
Networks communities are highlighted with different colors, and nodes’ importance is
represented by the node degree centrality. The original HSPN shows 5 communities clearly
identified by different colors, while in the HSPN model bearing 30 communities (20 single-
tons included), their delineation by color is more difficult (see details in Supplementary
File S2). However, since the HSPN model is a low-density network with a smaller number
of edges (325) than the original HSPN (689), it allows for a better depiction of the nodes’
relationships (Supplementary File S2).
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The most relevant nodes according to the node degree were clearly identified in the
HSPN with no cutoff (e.g., starPep_07526, starPep_02281, starPep_00048, starPep_03668,
starPep_08958), whereas upon applying the similarity cutoff, a significant fraction of graph
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edges are lost and the nodes’ degree decreases. This is why only two of the most connected
nodes were highlighted (the starPep_00048 and starPep_03668). As these two peptides
were also brought up in the original HSPN in similar locations and clusters, it can be
deduced that changes in the HSPN topology upon applying similarity cutoffs do not alter
the most popular peptides in both networks. In order to address this question, the top ten
most relevant peptides according to each four centrality measures (node degree, harmonic,
betweenness and hub-bridge) were extracted from the HSPNs with and without similarity
cutoff (Supplementary File S2). Then, the intersection of the resulting four peptide sets
was analyzed for each HSPN. Table 1 displays the common peptides identified from the
ten top-ranked ABFPs by four, three and two centrality measures, from HSPNs with and
without similarity cutoff. The last four rows of each HSPN represent singular peptides
identified for each of the four centralities. The cluster/community containing the ten
top-ranked ABFPs is also displayed.

Table 1 shows a different composition of common and singular peptides from the ten
top-ranked ABFPs by centrality measures at HSPNs with and without similarity cutoff.
This observation supports that changes in the HSPN topology by removing edges (simi-
larity relations) not only produce sparser networks with an increased number of clusters,
but also lead to a variation in peptides’ centrality measures and therefore the networks’
topological distribution. However, a small set made up of likely the most relevant peptides
was identified for four and three centrality measures in both HSPNs. These are the cases of
starPep_00048, starPep_03668, starPep_10922 and starPep_00000. These peptides seem to
be very important within the ABF chemical space. The starPep_00048 is a human defensin
derivative (HNP1) of 30 amino acid length, with several reported interesting bioactivities
(antiviral, anti-Gram+/−, antifungal, anticancer, enzymatic inhibitor) alongside its an-
tibiofilm action, which is probably exerted by its ability to disrupt membranes and interfere
in biological processes involved in interspecies interaction [50,51]. The starPep_03668 and
starPep_10922 peptides are synthetic constructions of 35 and 12 aa length, respectively.
The starPep_03668 was designed as pathogen-selective peptide, based on the fusion of
a species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide
domain. Thus, it showed activity against several communities of Streptococcus species [52].
By contrast, starPep_10922 was designed as a D-enantiomeric peptide aiming to resist
proteases’ degradation and also to prevent the accumulation of (p)ppGpp, which is a key
messenger for biofilm formation. StarPep_10922 was able to prevent biofilm formation
from P. aeruginosa as well as to disperse and eradicate the bacteria in the resulting mature
biofilm [53]. So far, these three central peptides have not been reported as toxic to mam-
malian cells, and are lead peptides for developing ABFP drugs. The peptide starPep_00000,
a 26 aa length ABFP that was derived from melittin (bee venom), appears to be a promising
candidate, since several pharmacological activities have been assigned to it quite apart from
its antibiofilm activity; it has also been extensively evaluated against many targets [54,55].
However, starPep_00000 has also shown haemolytic activity and toxicity to eukaryotic cells,
which may limit its therapeutic potential unless its toxicity can be relieved by optimization
procedures [55].

The ABFP space is not only represented by the central peptides; there also exist
peptides that are disconnected from the giant component of the network and which bear low
values of node degree. These peptides are categorized as atypical because they share very
low sequence similarities with the central or popular ones, which prevents the estimation
of their properties. However, they are remote members of the ABFP family and they also
account for the antibiofilm chemical space. In this sense, the HSPN with similarity cutoff
is very useful for uncovering atypical peptides. The cutoff of AF similarity at 0.65 was
the optimal for retaining a reasonable trade-off between the number of communities and
singletons; where the simplest community is considered to be when two nodes (peptides)
are connected, and singletons are those that are not connected with any other in the network.
Atypical peptides represent singular structures that may represent privilege scaffolds for
designing antibiofilm agents.
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Table 1. Common and singular peptides from the ten top-ranked ABFPs by four, three, two and one
centrality measure (node degree, harmonic, betweenness and hub-bridge centralities). The cluster
number for each peptide at each HSPN is displayed.

HSPN—No Cutoff

Centrality Measure Total Peptide Name Cluster

Node Degree Harmonic
Betweenness Hub-Bridge 1 starPep_03668 (1)

Node Degree Betweenness
Hub-Bridge 1 starPep_00048 (1)

Harmonic Hub-Bridge 2 starPep_00000
starPep_10922 (1) (3)

Node Degree Betweenness 7

starPep_12469
starPep_07526
starPep_00145
starPep_06130
starPep_00042
starPep_08958
starPep_02281

(3) (2)(2) (3) (0) (2) (2)

Node Degree 1 starPep_00517 (0)

Harmonic 7

starPep_07864
starPep_07895
starPep_02907
starPep_12770
starPep_12531
starPep_13517
starPep_07893

(0) (3)(3) (3)(3) (3) (2)

Betweenness 1 starPep_08001 (3)

Hub-Bridge 6

starPep_00496
starPep_00561
starPep_00361
starPep_13515
starPep_00193
starPep_05561

(1) (1) (1) (2) (1) (1)

HSPN—Cutoff 0.65

Node Degree Harmonic
Betweenness Hub-Bridge 1 starPep_00048 (9)

Node Degree Betweenness
Hub-Bridge 1 starPep_00042 (11)

Harmonic Betweenness Hub-Bridge 1 starPep_10922 (15)
Node Degree Harmonic

Betweenness 2 starPep_00000
starPep_03668 (15) (4)

Node Degree Harmonic 1 starPep_00361 (9)
Node Degree Betweenness 1 starPep_07526 (17)

Node Degree Hub-Bridge 2 starPep_00004
starPep_00193 (11) (9)

Harmonic Betweenness 1 starPep_02379 (17)

Harmonic Hub-Bridge 3
starPep_07895
starPep_02907
starPep_12531

(15) (15) (15)

Node Degree 2 starPep_00561
starPep_05561 (9) (4)

Harmonic 1 starPep_07893 (14)

Betweenness 3
starPep_12530
starPep_04734
starPep_08958

(15) (17) (15)

Hub-Bridge 2 starPep_12770
starPep_02908 (15) (15)
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Since the HSPN with no cutoff is fully connected, no isolated communities and single-
tons can be identified. Table 2 displays the atypical peptides from the HSPN at a similarity
cutoff of 0.65; the 20 singletons where all centrality measures reached 0 value and two
isolated communities made up of two peptides interconnected with node degree 1.

Table 2. Atypical peptides identified by the HSPN at a similarity cutoff of 0.65. Particularly, the
singletons and isolated communities made up of two peptides are detailed.

HSPN—Cutoff 0.65

Atypical Peptides Total Peptide Name Cluster

Singletons 20

starPep_00002
starPep_00739
starPep_02281
starPep_02383
starPep_02400
starPep_02730
starPep_03693

starPep_04044 *
starPep_05305 *
starPep_05447 *
starPep_05964
starPep_06255

starPep_06358 *
starPep_08001

starPep_09934 *
starPep_09989 *
starPep_10637 *
starPep_14812 *
starPep_16445 *
starPep_18706 *

(10) (18) (20) (25) (0) (5) (19)
(13) (8) (27) (26) (21) (23) (24)

(16) (29) (1) (12) (2) (3)

Isolated Community 2

starPep_04274–
starPep_04424

starPep_13860 *–
starPep_13861 *

(6)
(28)

* Atypical ABFPs with no toxicity reported. Those highlighted in bold show a variety of activities other
than antibiofilm.

The atypical peptides could have been analyzed similarly to the central peptides, but
as all singletons displayed 0 values for all centrality measures, the analysis was carried
out by exploring the metadata associated with each peptide using the StarPep toolbox.
Atypical peptides with no reported toxicity to mammalian cells are marked with an as-
terisk, while those that also have a diversity of desired functions contributing to the
antibiotic/antibiofilm activity were highlighted in bold. This is the case for starPep_04044,
which is a synthetic peptide of 13 aa length representing a singular structure that can
successfully coat titanium surfaces and can also target Gram+ and Gram− bacterial strains
in both their planktonic and biofilm forms, thereby allowing its utilization for preventing
infection-related implant failures in dentistry and orthopaedics. It has been proven effective
on Pseudomonas aeruginosa, Streptococcus gordonii, Porphyromonas gingivalis, Staphylococcus
aureus and Escherichia coli [56,57].

3.2.2. Metadata Analysis by Visual Mining

The METNs corresponding to the 174 ABFPs were constructed considering their source
database and origin. Similar to the previous visualization, nodes were displayed by color
and size. Red nodes represent source databases and origin, respectively, while the ABFPs
are in gray (Figure 5A,B). Node size was scaled according to their betweenness centrality
values, which is based on the shortest path between two nodes. Thus, this type of centrality
is the number of shortest paths that pass through a target node, particularly on the red
nodes representing “database” and “origin”.
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As shown in Figure 5A, the 174 ABFPs registered in StarPepDB were mainly collected
from BaAMP [27], the Structurally Annotated Therapeutic database (SATPdb) [58] and
Database of Antimicrobial Activity and Structure of Peptides (DBAASP) [59], which are
represented by larger nodes with the highest connection with the ABFPs. While BaAMP
and DBAASP entries were carefully collected from the literature, the SATPdb was built
from 22 peptide databases that included BaAMP [27] and others similarly dedicated to
specific activities such as AVPdb (antiviral) [60], ParaPep (anti parasitic) [61], Hemolytik
(hemolytic) [62], CancerPPD (anticancer) [63], etc. It was also built from generic AMP
databases such as DAMPD [64], APD [25], CAMP [65], LAMP [66], DRAMP [67], etc. Such
databases that integrated SATPdb were represented as smaller red nodes, sharing fewer
edges with the ABFPs.

Most of the ABFPs come from synthetic constructs and are represented by the largest
node or hub in the network (Figure 5B). However, other natural sources have also provided
ABFP scaffolds for further modification/optimization. Among the most contributing
taxonomic groups are the Bacteria, Homininae, Similiformes, Pan and Bos (Bos Taurus).
Therefore, this information can guide the discovery and design of antibiofilm agents from
peptides. Particularly, it can inform us of the most relevant ABFPs databases and the main
sources/origins of promising ABFP scaffolds.

3.3. Representing the ABFPs with a Reduced Subset
3.3.1. The Selection of the Best Representative Subset

The original space of 174 ABFPs, illustrated by the HSPN model at the optimal cutoff
of 0.65 (Figure 4B), can be further simplified by applying the scaffold extraction algorithm
implemented in the StarPep toolbox. This algorithm allows the topological simplification
of the network by removing nodes with equal or similar values of centrality measures but
retaining those that still share a local similarity below a certain cutoff. As the reduction
of ABFPs intends to keep the HSPN topology and properties, it is applied to all type
of nodes, from the most central to the atypical ones (singletons). The reduction was
performed by ranking the harmonic and hub-bridge centrality values of the nodes and by
applying similarity cutoffs from relaxed criteria (retaining all peptides sharing < 0.9) to
more restrictive similarities (<0.45 of sequence identity). This step produces several subsets
for each centrality metric (Table 3 and Supplementary File S3).
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Table 3. ABFP subsets extracted from the HSPN model made up of 174 nodes and 325 edges using
the scaffold extraction algorithm from the StarPep toolbox. The harmonic and hub-bridge centralities
were applied for the reduction step at different similarity cutoff values.

Harmonic (HC) Hub-Bridge (HB)

Subsets Cutoff Edges Nodes Coverage 1 % Edges Nodes Coverage 1 %

1 0.90 227 154 89 276 154 89
2 0.80 230 138 79 235 137 79
3 0.70 199 122 70 201 125 72
4 0.60 167 103 59 162 104 60
5 0.50 128 80 46 112 80 46
6 0.45 115 74 43 88 68 39
7 0.40 74 54 31 63 51 29
8 0.35 62 45 26 44 40 23
9 0.30 40 32 22 35 34 20

1 Coverage is the percentage representing each subset of the 174 ABFPs.

As mentioned before, the best subset produced by the HSPN model and representing
the original space should be composed of a minimum number of ABPFs with a coverage of
the original space of <50%. However, the coverage is not the unique criterion for selecting
a representative subset of the original space; the distribution of the HSPN model in the
bi-dimensional (2D) space should also be considered. An effective subset should have
topological representativeness over all the network, representing connected communities,
isolated communities and even singletons. In this sense, a subset extracted under the
criterion of only one centrality measure might not fulfil the expected 2D coverage. Thus, we
decided to fuse the information of the HC and HB centralities, since they rank the network
nodes according to their position using different definitions. Thus, the union of the subsets
6, 7 and 8, which are highlighted in bold in Table 3, was evaluated. Subsets 6, 7 and 8
display a coverage of <50% with a low of number of ABFPs, but are promising for their
union (HC ∪ HB) at the same cutoff value. It is notable that the union between two subsets
includes the common peptides (intersection) and the singular peptides from each subset.
The union of subsets 6, 7 and 8 resulted in fasta files (Supplementary File S3) containing 85,
66 and 52 ABFPs, representing 49%, 38% and 30% of the HSPN model, respectively. The
Supplementary File S3 also contains the 221 ABFPs registered in StarPepDB, and the 174
used to generate the HSPNs.

Finally, the subsets 6, 7 and 8 from each centrality metric as well as their resulting fu-
sion (HC ∪HB) were overlapped on the HSPN model to evaluate their 2D coverage/spatial
distribution (Figure S1). In the three subsets, the union of the centrality measures (HC ∪HB)
at the evaluated similarity cutoffs displayed a better 2D spatial distribution on the HSPN
model. Particularly, the HC ∪ HB from subset 7 showed the best trade-off, considering the
lowest number of peptides with the best 2D coverage (Figure S1). Figure 6 summarizes the
overlapping of the HC ∪ HB from subset 6, 7 and 8 with the HSPN model. The overlapped
subsets are represented by small black nodes over the colored nodes that represent the
communities in the HSPN model.

3.3.2. Visualizing/Analyzing the Best Representative Subset with HSPNs

The main goal of extracting a reduced subset representing the complex networks is
to enable the retrieval of useful information from visual inspection of the networks. With
a reduced number of nodes and edges, complex networks become more legible for the
human eyes, and the representativeness of the subset is also useful for multi-reference
similarity searches against unlabeled peptides. Figure 7 shows the HSPN constructed from
the reduced space, which is made up of 66 ABFPs resulting from the HC ∪ HB of the subset
7 (cutoff 0.40). As can be seen in Figure 7A,B, most of the main ABFPs identified in the
HSPN model were transferred to the reduced space; such is the case for starPep_00000,
starPep_00042, starPep_00048, starPep_03668, starPep_05561 and starPep_00004, which
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additionally were among the ten most relevant ABFPs, as ranked by the HC and HB
centralities (Table 1). Its noteworthy that other ABFPs not identified among the top-ranked
in the HSPN model were brought up significantly when constructing the HSPN with 66
representatives, e.g., starPep_00522 and starPep_00514 (Figure 7A,B and Supplementary
File S4).
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Figure 6. Overlapping subsets 6, 7 and 8 resulting from the union of the harmonic and hub-bridge
centralities at 0.35, 0.40 and 0.45 over the HSPN model. (A) 52 ABFPs from the HC ∪ HB of the subset
8 (cutoff 0.35) over the total 174 ABFPs; (B) 66 ABFPs from the HC ∪ HB of the subset 7 (cutoff 0.40)
over the total 174 ABFPs; (C) 85 ABFPs from the HC ∪ HB of the subset 6 (cutoff 0.45) over the total
174 ABFPs.
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Figure 7. HSPNs visualization of the representative subset integrated by 66 ABFPs from the
HC ∪ HB of the subset 7 (cutoff 0.40) using the Fruchterman-Reingold layout. Peptides communities
are represented by different colors while the nodes size was scaled according to harmonic (A) and
hub-bridge centrality (B) measures.

On the other hand, 5 out of the 20 singletons appeared in the representative subset.
They are starPep_00002, starPep_04044, starPep_05305, starPep_09934, and starPep_10637,
with all being reported as non-toxic except starPep_00002. It was not by chance that the
privileged scaffold of starPep_04044 was also selected, which indicates that the scaffold
extraction algorithm implemented in the StarPep toolbox works.
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The subset of 66 representative ABFPs extracted from the HSPN model is described in
Supplementary File S4, which includes their IDs, sequences, lengths, the cluster to which
they belonged in the HSPN model, and their centralities measures both in the HSPN model
and in the newly constructed HSPN (Figure 7). This non-redundant subset of 66 peptides
represents the chemical space of the ABFPs, and it is advisable use it as a reference to map
new ABFP sequences as well as in multi-reference similarity searches against unlabeled
peptide datasets and for design purposes. Other network-based analyses of the metadata
associated with these 66 ABFPs will provide a different insight for the selection of privileged
scaffolds for the development of next-generation antimicrobials.

3.3.3. Visualizing Mining of the METNs

The reduced subset is also useful for unravelling information from METNs, which are
even more complex than similarity networks because they include other layers containing
additional nodes with associated peptide metadata. Consequently, counting on a repre-
sentative subset of the original space aids in analyzing the huge amount of information
associated with ABFPs. As previously mentioned, microbial biofilms are responsible for
most chronic and medical device-related infections, as well as for microbial resistance
to several antibiotic classes; thus, the identification of promising ABFP scaffolds is an
urgent task.

As an illustrative example of the METNs’ contribution to the identification of promising
ABFPs scaffolds, six relevant ABFPs according to the HC and HB centralities were selected
from the representative subset (Figure 7) for visual analysis of their metadata. This time, key
metadata for the development/design of ABF agents from ABFPs were chosen, e.g., other
associated activities of the ABFPs and the targets that they have been evaluated on (Figure 8).
The study cases were starPep_00000 (blue), starPep_00193 (yellow), starPep_00004 (green),
starPep_00025 (pink), starPep_00514 (black), and starPep_00522 (cyan).
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Figure 8. METNs visualization of the representative subset integrated by 66 ABFPs from the HC
∪ HB of the subset 7 (cutoff 0.40) using the Fruchterman–Reingold layout. (A) Red nodes repre-
sent the bioactivities, while the ABFPs under study, starPep_00000, starPep_00193, starPep_00004,
starPep_00025, starPep_00514, and starPep_00522, are in blue, yellow, green, pink black and cyan
colors, respectively. (B) Red nodes represent the targets on which the ABFPs have been evaluated.
The ABFPs under study are highlighted with the color scheme used in A.

Figure 8A is organized in such a way that the desired activities were placed outside
at the left part of the METN, and the undesired ones at the right. The six candidates
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under study, in addition to antibiofilm activity also have antifungal and the antibacterial
properties, specifically against Gram-positive and Gram-negative strains, which are very
convenient for developing next-generation antimicrobial agents able to target both plank-
tonic and biofilm microbial forms. However, four of them were reported as hemolytic,
and five as “toxic to mammals”. The peptide starPep_00522 (in cyan) is the only one that
was neither reported as “hemolytic” nor “toxic to mammals”, and therefore its peptidic
scaffold can be used for developing antibiofilm agents for clinical purposes. Additionally,
Figure 8B also shows that starPep_00522 has been evaluated in Escherichia. coli, Pseudomonas
aeruginosa, Candida albicans, and Cryptococcus neoformans, of which the two first targets are
classified as ESKAPEE pathogens, considered the most threatening antimicrobial-resistant
microbes [68]. This visual analysis of the METNs can be extended to all 66 ABFPs of the
representative set.

3.4. External Representative ABFPs on the Representative Antibiofilm HSPN

In a recent work, Li at al. arrived at 14 representative ABFPs out of a total of 51 pep-
tides with a reported antibiofilm activity either through inhibition of the biofilm formation
or through the eradication of pre-formed biofilms. The selection was based on the identifica-
tion of 14 ABFP classes according to their mechanisms of action. They also evaluated them
against the biofilm and planktonic forms of Gram-positive bacterium Streptococcus mutans,
the Gram-negative bacterium Pseudomonas aeruginosa, and the fungus Candida albicans.
Those ABFPs with minimal biofilm inhibitory concentrations (MBICs) that are lower than
their minimal inhibitory concentration (MICs) represented promising candidates against
biofilm-related infections. Table 4 shows the 14 representative candidates categorized by
their antibiofilm mechanisms of action (information taken from Table S2 published in [69]).

Table 4. Representative ABFPs categorized in 14 classes according to the mechanisms of action
elucidated for their antibiofilm activity. The information displayed in this table was gathered from
Table S2 published in ref. [69].

Class-Peptides Action Mode Sequence

Class1- HBD-3 Influences icaAD and icaR genes’ transcription levels GIINTLQKYYCRVRGGRCAVLSCLP
KEEQIGKCSTRGRKCCRRKK

Class2- Nisin Z Decreases adhesion, kills bacteria, reduces biofilm formation ITSISLCTPGCKTGALM
GCNMKTATCNCSIHVSK

Class3- MUC7 12-mer-L Attracted to bacterial surfaces by the electrostatic bonding RKSYKCLHKRCR

Class4- ATRA1 Promotes biofilm dispersal KRFKKFFKKLKNSVK KRFKKFFKKLKVIGVT
FPF

Class5- Pleurocidin
Induces disturbance/permeabilization of the membranes and
bindssss to bacterial DNA, causing interference with cellular

functions
GWGSFFKKAAHVGK HVGKAALTHYL

Class6- Pac-525 Able to enter membranes and to affect the
lipopolysaccharides of Gram-negative bacteria KWRRWVRWI

Class7- peptide 1037
Decreases the attachment of bacterial cells, stimulates

twitching motility, and influences two major quorum sensing
systems

KRFRIRVRV

Class8- Indolicidin Induces lipid removal and mixed indolicidin–lipid patches
alongside membrane permeabilization ILPWKWPWWPWRR

Class9- Protegrin-1 * Forms amyloid fibers to associate with the bacterial
membrane and produce transmembrane pores RGGRLCYCRRRFCVCVGR

Class10- Peptide 3002 Blocking (p)ppGpp ILVRWIRWRIQW
Class11-TetraF2W-RR * Disrupts membranes to kill bacteria rapidly WWWLRRIW

Class12-P1 Interferes with the proper secretion and/or intermolecular
interaction of key extracellular polymers in the biofilm matrix PARKARAATAATAATAATAATAAT

Class13-WLBU2 * LPS-binding property interferes with bacterial attachment,
destroying the bacterial membrane RRWVRRVRRVWRRVVRVVRRWVRR

Class14-Melittin * Inhibits the expression of biofilm-associated bap genes GIGAVLKVLTTGLPALISWIKRKRQQ

* Promising antibiofilm candidates with lower MBICs than MICs.

This set made up of 14 ABFP classes representing different mechanisms of action
for carrying out antibiofilm activity was mapped on the structural/chemical space of the
66 ABFPs, drawn by the HSPN model (Figure 9A). As the subset of 66 ABFPs showed the
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best representativeness of the antibiofilm chemical space, it was used along with the most
suitable HSPN projection for overlapping purposes.
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Figure 9. Visual mining of the 14 ABFPs corresponding to 14 classes of mode of actions on the
chemical space of ABFPs. (A) Overlapping the 14 representative ABFPs on the set integrated by
66 ABFPs using HSPN. Peptide communities are represented by different colors, while the 14 ABFPs
nodes/labels are highlighted in black color. (B) Mapping of the representative ABFPs with similarities
higher than 0.60 within the antibiofilm HSPN using the Fruchterman–Reingold layout.

The HSPN that plots nodes coordinates from their two most relevant principal compo-
nents, estimated from a non-redundant set of AF descriptors, is the most real approach to
display the peptide’s location in the network, allowing a more accurate visual inspection
of the similarity and distribution of the 14 representative ABFPs on the reported chemical
space (Figure 9A).

Figure 9A shows the node and names corresponding to 14 ABFPs in black color,
while the other 66 from StarPepDB were labeled according to the colors assigned to each
one of the five network communities. As can be observed in Figure 9A, all 14 ABFPs
were framed within the antibiofilm HSPN. In fact, the Indolicidin, Protegrin-1 and HBD-3
overlapped perfectly with starPep_00002, starPep_00020 and starPep_00116, respectively.
The 14 mechanisms of action classes were distributed among all the five HSPN communities,
which may indicate a connection between structural patterns (motifs) found within network
communities with the antibiofilm mode of action. In order to illustrate this fact, six ABFPs
that showed antibiofilm activity against both bacteria and fungi (pleurocidin, Pac-525,
protegrin-1, TetraF2W-RR, WLBU2, and melittin) overlapped perfectly or almost perfectly
over different communities. Pleurocidin, Pac-525, protegrin-1 and melittin are evidently
overlapped on the communities colored in blue, green, pink and light purple. WLBU2 was
also placed in the green community as the Pac-525, probably because both act using similar
mechanisms of action involving the interaction with the lipopolysaccharides to destroy or
penetrate the bacterial membrane. Although TetraF2W-RR is within the antibiofilm space
represented by the HSPN, it did not overlap on any specific community. However, it was
placed between green and pink communities containing members such as Pac-525, WLBU2,
Indolicidin and protegrin-1, whose mode of action is closely related to that reported for
TetraF2W-RR (bacterial membrane disruption). These four ABFPs are arginine ®-rich
peptides containing repeated units of R, allowing interaction with negatively-charged
bacterial membranes, the formation of transmembrane pores, and cell penetration [70].
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Figure 9B complements the information extracted from Figure 8A. It shows those
representative ABFPs sharing AF similarities > 0.60 with some of the 66 ABFPs extracted
from StarPepDB. Black nodes represent the 9 out of the 14 representative ABFPs that fulfill
this condition, while the black edges display the similarity relationships between black
nodes (origin) and colored nodes (target). Target nodes labeled as starPep_XXXXX retained
the same color identifying them at the network communities in Figure 9A. Figure 9B
confirms that Indolicidin, Protegrin-1 and HBD-3 share the max. similarity (1.0) with
those ABFPs that overlapped with starPep_00002, starPep_00020 and starPep_00116 in
Figure 9A. The location of pleurocidin and protegrin-1 was also supported by their highest
similarities (0.65 and 1.0), with members of the communities blue (starPep_00496) and pink
(starPep_00020), respectively. However, as the pleurocidin shows multiple actions such as
membrane disturbance and permeabilization, binding to bacterial DNA and interference
with several cellular functions, it also displays similarities with members (starPep_00193,
starPep_00051) from two other communities (Figure 9B).

On the other hand, Figure 9B also served to correct the location of melittin that is
actually overlapped over the orange community, showing 0.95 similarity to starPep_00000
(a melittin derivative), despite looking over the light purple community in Figure 9A.
Although the 14 ABFPs could be mapped within the HSPN, Figure 9B confirmed the
certain singularity of Pac-525, peptide 1037, TetraF2W-RR, P1 and WLBU2 within the
representative ABFP space, not sharing AF similarities higher than 60%. Such singularity
was also confirmed by evaluating the pairwise identity of these last 5 ABFPs against
the 66 representative ones (Figure 10B). The 9 ABFPs that were clearly mapped at AF
similarities > 0.60 were also compared by pairwise global alignments (Figure 10A).
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3.5. Motif Discovery Assisted by Complex Networks 

Figure 10. Heat maps corresponding to the pairwise identities from the comparison of the 14 ABFPs
representing the mechanisms of action classes against the 66 representatives of the antibiofilm
chemical space. (A) the 9 ABFPs that could be mapped on the representative HSPN at AF similarity
>0.60 occupy the from 1 to 9 position in the heatmap. (B) the 5 that did not map at AF >0.60 were
placed from 1 to 5 position. The target zone of the heat maps is framed by a white line. All-vs-all
global alignments and heat maps visualization were conducted using the SeqDivA software reported
in [71].

The lower part of Figure 10A, framed by the white line, displays five red dots that
correspond to those ABFPs (Indolicidin, Protegrin-1, HBD-3, Melittin and Nisin) sharing
network edges weighted with AF similarities higher than 0.90; the edge weighted with 0.69
is likely represented by the yellow dot, and the remaining edges slightly above 0.60 are
depicted in cyan colors. Figure 10B confirmed that the similarities shared by the all five
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unmapped ABFPs were actually below 0.60. All dots were mostly colored in blue, and a
few in cyan may represent values close to but below 0.60.

It is important to note that as the AF and AB similarities are defined under different
methodological frameworks, they may characterize the same pairwise relation with differ-
ent values, despite being correlated. The Supplementary File S5 shows the pairwise identity
values of nine and five ABFPs from the 14 mode-of-action classes against the 66 ABFPs
representing the antibiofilm chemical space.

3.5. Motif Discovery Assisted by Complex Networks

The identification of motifs accounting for the antibiofilm activity can be assisted by
the exploration of ABFP similarity networks looking for sequence patterns within network
communities. Although the HSPN representing the ABFP chemical space was built using
AF distance metrics (Euclidean) and the network communities are estimated considering
parameters from the nodes and edges properties [40], such clusters should contain peptides
sharing similar features. Thus, the communities from the HSPN model of the 174 ABFPs
resulted in the source for the motif discovery. The sequence diversity in each community
was evaluated by global alignments. Figure S2 displays the heatmaps that mirror the
pairwise sequence identities for communities containing more than two peptides that
correspond to the clusters 4, 7, 9, 11, 14, 15, 17, and 22, including clustered singletons (Sup-
plementary File S3). Figure S2 evidenced a high sequence diversity within all communities.
Consequently, iterative alignment algorithms such as MAFFT and MUSCLE were applied
to deal with the high sequence diversity. The multiple sequence alignments (MSAs) were
visualized with the Jalview, which allowed the estimation of their corresponding consensus
sequences and Seq2Logos. The consensus sequences from the MSAs were also estimated
by the EMBOSS Cons. The full exploration of the MSAs considering their corresponding
consensus sequence and Seq2Logos allowed the identification of conserved regions consid-
ered ABF motifs. The strategy carried out for the identification of the motifs in the MSAs
and performed on cluster 4 of the HSPN is illustrated in Figure 11, while the strategy for
all communities/clusters is displayed in Figure S3.
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Figure 11. Motif detection by the multiple sequence alignment (MSA) algorithms MAFFT and
MUSCLE on the network cluster 4. The MSAs are visualized with the Jalview program, which also
estimates a Seq2Logo and the consensus from the alignment positions. Another consensus sequence
that served as a guide for motif location was estimated by the EMBOSS Con.

Table 5 listed ABFP motifs identified by each MSA method at each network com-
munity or cluster. The consensus estimated by the EMBOSS Cons was the preferred
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template for motif identification, because it gives a more legible output. High-scoring
amino acids/positions are represented by capital letters, and lower-scoring but positive
residues by lower-case letters; non-consensus positions are denoted by x (Table 5).

Table 5. Motifs discovered by multiple sequence alignment (MSA) in each network cluster/community.

No Motif EMBOSS
Cons. Cluster Cluster Size MSA Method Enrichment Ratio *

1 RLFNR xxxNR

4 15

MAFFT/
MUSCLE -

2 GGG GxG MAFFT -

3 GGGWK xxGWK MUSCLE (−)/(2.25)

4 FKKA xKKx MAFFT (−)/(4.0)

5 FWKWA FWK MAFFT (3.0)/(2.83)

6 WGK WxK MAFFT (−)/(1.41)

7 LLLLLKKK LLLLLKKK 6 2 Pair-Aligned -

8 LISWIK lisxik

7 8

MAFFT (−)/(2.71)

9 KNKRK knkxk MUSCLE (3.0)/(2.22)

10 KRKQ kxkQ MAFFT (3.0)/(−)

11 R[GP]RVS rxRVS MAFFT (−)/(3.0)

12 RRPR RRxR MUSCLE -

13 [GR]GG xGG MAFFT (3.0)/(1.90)

14 GGRRRR GGrrRR MUSCLE (−)/(2.0)

15 RRRRR RRRRR MAFFT/
MUSCLE -

16 ISGI Ixxx 9 23 MAFFT -

17 FKKLL

xKKLL
11 27

MAFFT/
MUSCLE (−)/(2.25)

18 KKLK MAFFT -

19 KKL MUSCLE -

20 LKK LKK MUSCLE -

21 RIRVR RIRVR

14 23

MAFFT (−)/(1.58)

22 RVIR
xRVIR

MAFFT (−)/(1.32)

23 VRVIR MUSCLE (−)/(2.83)

24 R[WL]R RxR MUSCLE (1.57)/(−)

25 RIRRW
RIxRW

15 26

MAFFT/
MUSCLE

(−)/(4.0)

26 RI[VR]W (−)/(1.67)

27 WVV WVV MAFFT (−)/(1.44)

28 I[IR]R IIxR MUSCLE -

29 WLRK Wxxx

17 23

MAFFT (−)/(2.50)

30 RWK Rxx MUSCLE -

31 KKL Kxx MAFFT -

32 KR[AKL]RK KRxRK MUSCLE (6.0)/(3.0)

33 WR[IV]R

xRWR[IV]R 22 5

MAFFT/
MUSCLE

32 FRWRI MAFFT (3.0)/(−)

33 RWRVR MUSCLE (−)/(1.63)

34 YAPWYN YAPWYN 28 2 Pair-Aligned -

35 [FI][KW]RK iKrK Singletons 20 MAFFT/
MUSCLE (−)/(1.46)

* Enrichment ratio was evaluated on the 14 ABFPs categorized by action mode in ref. [69] (first value) and
192 non-redundant ABFPs extracted from 214 reported in BaAMP (second value).

As part of the motif discovery process, the AB search was complemented by evaluating
an AF approach. Based on its high performance and versatility in identifying motifs in
OMICs data, the STREME algorithm was applied to find unaligned patterns ranging from
3–5 aa length in each network community [46]. STREME computes a score for the detected
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motifs meeting the threshold of statistical significance (p-value < 0.05), set also as a stopping
search criterion. Table 6 displays the discriminating motifs against control sequences in
each ABFP cluster/community. Motifs appearing in more than 20% of the query peptides
are listed according to their statistical significance (score).

Table 6. Motifs identified by STREME at each network cluster.

No Motif Cluster Cluster Size Matches in
ABFPs

Matches in
Control Sites (%) Score Enrichment

Ratio *

1 FKKA

4 15

7 0 46.7 3.3e-003 (−)/(3.33)

2 GGGR 7 0 46.7 3.3e-003 (−)/(2.11)

3 W[KR]WF 7 0 46.7 3.3e-003 (−)/(1.38)

4 FIH 6 0 40.0 8.4e-002 -

5 RLFNR 5 0 33.3 2.1e-003 -

6 KKK
6 2

2 0 100 1.7e-001 -

7 LLLLL 2 0 100 1.7e-001 -

8 RGG

7 8

8 0 100 7.8e-005 (3.0)/(1.56)

9 ISWIK 4 0 50 3.8e-002 (−)/(2.83)

10 NKRKQ 4 0 50 3.8e-002 -

11 RPRVS 3 0 37.5 1.0e-001 (−)/(3.71)

12 RRRRR 3 0 37.5 1.0e-001 -

13 SAC

9 23

16 1 69.6 3.3e-006 -

14 AKA 5 0 21.7 2.85e-002 -

15 CD[VI] 5 0 21.7 2.85e-002 -

16 IA[GVK] 5 0 21.7 2.85e-002 -

17 LFKKL

11 27

9 0 33.3 8.8e-004 (−)/(2.40)

18 KVLK 8 0 29.6 2.1e-003 (3.0)/(4.0)

19 KRFL 6 0 22.2 1.1e-002 (3.0)/(1.8)

20 VRLRI
14 23

12 0 52.2 3.5e-005 -

21 RVIR 10 0 43.5 2.8e-004 (−)/(1.32)

22 VWVI
15 26

14 3 53.8 1.3e-003 (3.0)/(3.0)

23 VIWRR 8 0 30.8 2.1e-003 (−)/(2.50)

24 LRK
17 23

9 0 39.1 7.4e-004 (3.0)/(1.27)

25 WRRK 6 0 26.1 1.1e-002 (−)/(1.67)

26 WRIR
22 5

5 1 100 2.4e-002 (−)/(3.25)

27 IRR 2 3 40.0 9.0e-001 (1.67)/(−)

28 APWTN 28 2 2 0 100 1.7e-001 (−)/(3.0)

29 KKRK

Singletons 20

2 0 10.0 2.3e-001 -

30 KKVVF 2 0 10.0 2.4e-001 -

31 LLKLL 2 0 10.0 2.4e-001 -

32 VKFK 2 0 10.0 2.4e-001 -

33 WRWR 2 0 10.0 2.4e-001 (−)/(1.64)

* Enrichment ratio was evaluated on the 14 ABFPs categorized by action mode in ref. [69]) (first value) and
192 non-redundant ABFPs extracted from 214 reported in BaAMP (second value).

Motifs highlighted in bold in Tables 5 and 6 are closely related or included in each
other. This means that both the MSA algorithms and STREME showed some degree of
agreement in their motif detection. However, both approaches also identify singular motifs,
which are not highlighted. This fact demonstrates that the application of both AB and
AF approaches was the right choice for a full motif exploration. Given that both methods
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identified a relatively high number of motifs between 33–35, enrichment analyses were
further performed in order to filter the discovery motifs shown in Tables 5 and 6.

Motif enrichment analyses are used to determine if a group of sequences contains a
statistically significant number of matches to a given motif. In this sense, we used the SEA
algorithm [48] to select which motifs from both tables were significantly enriched in two sets
of ABFPs. The first set was that reported by Li et al. consisting of 14 representative ABFPs
of antibiofilm modes of action [69], and the second one encompassed 192 non-redundant
ABFPs, extracted from the 214 ABFPs registered in BaAMP database [27] (Supplementary
File S3). Eight members from the representative subset were included among the 192 ABFPs,
but all of them have shown antibiofilm activity at different levels. As a screening criterion,
ABFPs enriched in both the representative and the extended dataset were selected. Table 7
lists the ABFP motifs discovered by the AB and AF approaches in the network communities.

Table 7. Summary of the discovered ABFP motifs per network community (cluster), enriched in
two datasets.

No Motif Cluster Method Enrichment Ratio

1 FWKWA 4 MAFFT (3.0)/(2.83)
2 KNKRK 7 MUSCLE (3.0)/(2.22)
3 [GR]GG 7 MAFFT/STREME (3.0)/(1.90)
4 KVLK 11 STREME (3.0)/(4.0)
5 KRFL 11 STREME (3.0)/(1.8)
6 VWVI 15 STREME (3.0)/(3.0)
7 KR[AKL]RK 17 MUSCLE (6.0)/(3.0)
8 LRK 17 STREME (3.0)/(1.27)

Our motif search approach assisted by complex networks produced results that are not
so far from the few findings reported in the literature. Recently, Anastasiu et al. found that
the following motifs “RIRV,” “RIVQRIK,” and “IGKEFKR” appeared with more frequency
in 242 ABFPs collected from APD and BaAMP databases with respect to a curated negative
set [31], when using the “MERCI” software [72]. In this sense, we agree with them in the
detection of the “RIRV” which was fully integrated in the RIRVR motif detected in cluster
14 by the MAFFT algorithm, and also enriched in the BaAMP dataset. Although “RIVQRIK”
and “IGKEFKR” were not detected as such, we could identify in clusters 15 and among
the singletons by the MSA methods, the “RIV” and “FIK” patterns, which are part of them.
These two last three-amino acid motifs were also enriched in the extended dataset.

In a previous report, the authors also found that the dipeptides “IR/RI”, “WR/RW”,
and “KK” were the most common among the selected ABFPs [31]. Certainly, these dipep-
tides are present in the motifs discovered with the intervention of complex networks, at
a relatively high frequency. For example, the “IR/RI”, “WR/RW” and “KK” dipeptides
appear in 9/7, 7/8 and 12 of the total motifs, respectively. In addition to them, the “RR”
and “KL” dipeptides also displayed a similar representation among the motifs.

In a recent report, arginine-rich motifs of the antibiofilm activity of peptides designed
for sequestering the nucleotide second messenger c-di-GMP, involved in the formation
of P. aeruginosa and K. pneumoniae biofilms, were revisited [73]. The key role of the DRR
and [RK] RxxD motifs in these sequestering peptides (SP) to specifically bind to c-di-GMP
was demonstrated by nuclear magnetic resonance (NMR)-based experiments [18]. These
motifs associated with CSPs are difficult to discover using bioinformatics methods, since
their sourcing peptides are probably still not registered or underrepresented in databases.
However, the peptide R4F4 (RRRRFFFF), with a proven antibiofilm activity on P. aeruginosa
through c-di-GMP sequestration [73,74], bears a more frequent motif (RRRR) among the
arginine-rich ABFPs. In fact, “RRRR” was detected in our complex network-assisted motif
search (Tables 5 and 6).

On the other hand, the role of the WWW motif in disrupting preformed biofilms
of methicillin-resistant Staphylococcus aureus was elucidated by NMR and arginine scan
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experiments in 2017 [75]; the WWW motif hardly appears in ABFP databases, being only
represented by the designed peptide TetraF2W-RR [76].

As both the motif discovery and the distinction of ABFP hallmarks are highly influ-
enced by peptide databases’ composition and by the searching algorithm, here, we provide
new ABFP motifs discovered from combining network science with AB- and AF-based
computational tools for motif detection. Unlike the study reported in [31], our approach
hardly depends on the selection of a negative set to retrieve relevant information from the
reported ABFPs; this may represent an advantage, since final outcomes/conclusions could
be biased by the selection of a negative set [77]. The motifs listed in 5, 6 and especially in
Table 7 are useful for the “in silico” generation of peptide libraries addressing antibiofilm
and antimicrobial activities, as well as for the optimization of antibiofilm candidates for
clinical purposes. Finally, predicted motifs that actually account for/improve antibiofilm
activity could be used as motif-based descriptors for developing machine-learning models
to screen peptide libraries and peptidomes as part of the discovery process.

4. Conclusions

Half-space proximal networks were successfully introduced to project the pairwise
alignment-free similarities of the reported ABFPs. Particularly, an HSPN model was
obtained by applying an optimal similarity cutoff of 0.65, which allowed an effective
delineation of network communities with the respective identification of the most central
(relevant) and atypical peptides among the ABFPs. From the topology of the HSPN model,
a reduced subset of 66 ABFPs, resulting from the union of the harmonic and hub-bridge
centralities, was extracted by the scaffold extraction algorithm from the StarPep toolbox.
As these 66 peptides, made up of both the most relevant and atypical ABFPs, were not
only selected by the centrality criteria but also considering their topological distribution
and coverage on the original space, they can be considered representatives of the ABFP
chemical space.

Alongside this previously mentioned procedure, the metadata associated with both
the most central and atypical peptides were analyzed by the visual mining of complex
networks, integrating additional relevant properties for the antibiofilm action and for
the discovery/design of next-generation antimicrobial agents able to combat MDR infec-
tions. On the other hand, the proposed network-assisted motif discovery allowed the
identification of ABFP motifs by AB and AF approaches within the communities of the
HSPN model.

In short, the network-based identification of the most central to atypical ABFP scaffolds
bearing promising antimicrobial activities on MDR targets was mostly transferred to the
representative subset of 66 ABFPs. Therefore, this subset together with the discovered ABFP
motifs is recommended for use in the mapping and design of new ABFPs as privileged
scaffolds for the development of next-generation antimicrobials.

This is the first work that illustrates how complex networks can be integrated in the
discovery pipeline of more effective antimicrobial agents from the existing data. As an
emerging methodology in the field, it still has many uncovered potentialities and will need
the support of existing methodologies, as stated here.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics12040747/s1, e.g., File S1: HSPN_Parameters
Cutoff Selection & Node Degree; File S2: HSPNs Clusters and Centralities & 10-ToP Central ABFPs;
File S3: Subsets HCUHB 6, 7 and 8 & Starting ABFPs Sets fasta files; File S4: 66 Rep. ABFPs Description
& HSPN; File S5: All vs all global alignments 14 ABFPs vs 66 Rep.; Figure S1: Overlapping Subsets 6,
7, 8 HC-HB & HC-U-HB for Selection; Figure S2: Heat Maps All vs All Pairwise Global Identities by
Community; Figure S3: Motif Detection by Sequence Alignments per Network Clusters; also avail-
able at Zenodo (DOI 10.5281/zenodo.7706555): https://zenodo.org/record/7706555#.ZAef_y8Q1X0
(accessed on 22 February 2023)

https://www.mdpi.com/article/10.3390/antibiotics12040747/s1
https://zenodo.org/record/7706555#.ZAef_y8Q1X0


Antibiotics 2023, 12, 747 25 of 28

Author Contributions: G.A.-C. and Y.M.-P. worked mainly on the conceptualization, formal analysis,
supervision, validation, writing and reviewing of the manuscript. E.C.-T., F.M.-R. and J.R.V.-M.
worked on data curation and the design/implementation of the HSPNs and METNs visualization.
J.R.M. and N.P. were responsible for the motif discovery and peptide diversity analyses. A.A., and
C.H.Z. were participated in funding acquisition, writing, and reviewing the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the Strategic Funding UIDB/04423/2020 and
UIDP/04423/2020 through national funds provided by FCT—Foundation for Science and Technology
of Portugal and by the USFQ Collaboration Grant (Project ID16897) and Med-Grant (Project ID17601).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The StarPep toolbox software and the respective user manual are freely
available online at: http://mobiosd-hub.com/starpep, accessed on 5 January 2023 (CAMD-BIR
International network, Quito, Ecuador).

Acknowledgments: Y.M.-P. thanks the USFQ Collaboration Grant (Project ID16897) and Med-Grant
(Project ID17601). G.A.-C. and A.A. were supported by national funds through FCT—Foundation for
Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vestby, L.K.; Gronseth, T.; Simm, R.; Nesse, L.L. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics 2020, 9, 59.

[CrossRef] [PubMed]
2. Gloag, E.S.; Fabbri, S.; Wozniak, D.J.; Stoodley, P. Biofilm mechanics: Implications in infection and survival. Bioinformatics

2020, 2, 100017. [CrossRef] [PubMed]
3. de la Fuente-Nunez, C.; Reffuveille, F.; Fernandez, L.; Hancock, R.E. Bacterial biofilm development as a multicellular adaptation:

Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013, 16, 580–589. [CrossRef]
4. Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmolle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding

the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [CrossRef]
5. An, A.Y.; Choi, K.G.; Baghela, A.S.; Hancock, R.E.W. An Overview of Biological and Computational Methods for Designing

Mechanism-Informed Anti-biofilm Agents. Front. Microbiol. 2021, 12, 640787. [CrossRef]
6. Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm

and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [CrossRef]
7. Bryers, J.D. Medical biofilms. Biotechnol. Bioeng. 2008, 100, 1–18. [CrossRef]
8. Veerachamy, S.; Yarlagadda, T.; Manivasagam, G.; Yarlagadda, P.K. Bacterial adherence and biofilm formation on medical

implants: A review. Proc. Inst. Mech. Eng. H 2014, 228, 1083–1099. [CrossRef]
9. Fleming, D.; Rumbaugh, K. The Consequences of Biofilm Dispersal on the Host. Sci. Rep. 2018, 8, 10738. [CrossRef]
10. Rumbaugh, K.P.; Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18, 571–586. [CrossRef]
11. Rather, M.A.; Gupta, K.; Bardhan, P.; Borah, M.; Sarkar, A.; Eldiehy, K.S.H.; Bhuyan, S.; Mandal, M. Microbial biofilm: A matter of

grave concern for human health and food industry. J. Basic Microbiol. 2021, 61, 380–395. [CrossRef] [PubMed]
12. Breidenstein, E.B.; de la Fuente-Nunez, C.; Hancock, R.E. Pseudomonas aeruginosa: All roads lead to resistance. Trends Microbiol.

2011, 19, 419–426. [CrossRef] [PubMed]
13. Romling, U.; Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med.

2012, 272, 541–561. [CrossRef] [PubMed]
14. Barraud, N.; Hassett, D.J.; Hwang, S.H.; Rice, S.A.; Kjelleberg, S.; Webb, J.S. Involvement of nitric oxide in biofilm dispersal of

Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7344–7353. [CrossRef] [PubMed]
15. Xiong, Y.Q.; Estelles, A.; Li, L.; Abdelhady, W.; Gonzales, R.; Bayer, A.S.; Tenorio, E.; Leighton, A.; Ryser, S.; Kauvar, L.M. A

Human Biofilm-Disrupting Monoclonal Antibody Potentiates Antibiotic Efficacy in Rodent Models of both Staphylococcus
aureus and Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2017, 61, e00904-17. [CrossRef] [PubMed]

16. de la Fuente-Nunez, C.; Reffuveille, F.; Haney, E.F.; Straus, S.K.; Hancock, R.E. Broad-spectrum anti-biofilm peptide that targets a
cellular stress response. PLoS Pathog. 2014, 10, e1004152. [CrossRef]

17. Chavez de Paz, L.E.; Lemos, J.A.; Wickstrom, C.; Sedgley, C.M. Role of (p)ppGpp in biofilm formation by Enterococcus faecalis.
Appl. Environ. Microbiol. 2012, 78, 1627–1630. [CrossRef]

18. Hee, C.S.; Habazettl, J.; Schmutz, C.; Schirmer, T.; Jenal, U.; Grzesiek, S. Intercepting second-messenger signaling by rationally
designed peptides sequestering c-di-GMP. Proc. Natl. Acad. Sci. USA 2020, 117, 17211–17220. [CrossRef]

19. Verderosa, A.D.; Totsika, M.; Fairfull-Smith, K.E. Bacterial Biofilm Eradication Agents: A Current Review. Front. Chem. 2019, 7, 824.
[CrossRef]

http://mobiosd-hub.com/starpep
https://doi.org/10.3390/antibiotics9020059
https://www.ncbi.nlm.nih.gov/pubmed/32028684
https://doi.org/10.1016/j.bioflm.2019.100017
https://www.ncbi.nlm.nih.gov/pubmed/33447803
https://doi.org/10.1016/j.mib.2013.06.013
https://doi.org/10.1038/s41579-022-00767-0
https://doi.org/10.3389/fmicb.2021.640787
https://doi.org/10.1016/j.jcma.2017.07.012
https://doi.org/10.1002/bit.21838
https://doi.org/10.1177/0954411914556137
https://doi.org/10.1038/s41598-018-29121-2
https://doi.org/10.1038/s41579-020-0385-0
https://doi.org/10.1002/jobm.202000678
https://www.ncbi.nlm.nih.gov/pubmed/33615511
https://doi.org/10.1016/j.tim.2011.04.005
https://www.ncbi.nlm.nih.gov/pubmed/21664819
https://doi.org/10.1111/joim.12004
https://www.ncbi.nlm.nih.gov/pubmed/23025745
https://doi.org/10.1128/JB.00779-06
https://www.ncbi.nlm.nih.gov/pubmed/17050922
https://doi.org/10.1128/AAC.00904-17
https://www.ncbi.nlm.nih.gov/pubmed/28717038
https://doi.org/10.1371/journal.ppat.1004152
https://doi.org/10.1128/AEM.07036-11
https://doi.org/10.1073/pnas.2001232117
https://doi.org/10.3389/fchem.2019.00824


Antibiotics 2023, 12, 747 26 of 28

20. Overhage, J.; Campisano, A.; Bains, M.; Torfs, E.C.; Rehm, B.H.; Hancock, R.E. Human host defense peptide LL-37 prevents
bacterial biofilm formation. Infect. Immun. 2008, 76, 4176–4182. [CrossRef]

21. Di Somma, A.; Moretta, A.; Cane, C.; Cirillo, A.; Duilio, A. Antimicrobial and Antibiofilm Peptides. Biomolecules 2020, 10, 652.
[CrossRef] [PubMed]

22. Ma, L.; Ye, X.; Sun, P.; Xu, P.; Wang, L.; Liu, Z.; Huang, X.; Bai, Z.; Zhou, C. Antimicrobial and antibiofilm activity of the
EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. EBioMedicine 2020, 55, 102775. [CrossRef] [PubMed]

23. Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications
and future directions. Signal Transduct Target Ther. 2022, 7, 48. [CrossRef] [PubMed]

24. UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef]
25. Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res.

2016, 44, D1087–D1093. [CrossRef]
26. Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data

repository of antimicrobial peptides. Nucleic Acids Res. 2022, 50, D488–D496. [CrossRef]
27. Di Luca, M.; Maccari, G.; Maisetta, G.; Batoni, G. BaAMPs: The database of biofilm-active antimicrobial peptides. Biofouling

2015, 31, 193–199. [CrossRef]
28. Sharma, A.; Gupta, P.; Kumar, R.; Bhardwaj, A. dPABBs: A Novel in silico Approach for Predicting and Designing Anti-biofilm

Peptides. Sci. Rep. 2016, 6, 21839. [CrossRef]
29. Gupta, S.; Sharma, A.K.; Jaiswal, S.K.; Sharma, V.K. Prediction of Biofilm Inhibiting Peptides: An In silico Approach. Front.

Microbiol. 2016, 7, 949. [CrossRef]
30. Fallah Atanaki, F.; Behrouzi, S.; Ariaeenejad, S.; Boroomand, A.; Kavousi, K. BIPEP: Sequence-based Prediction of Biofilm

Inhibitory Peptides Using a Combination of NMR and Physicochemical Descriptors. ACS Omega 2020, 5, 7290–7297. [CrossRef]
31. Bose, B.; Downey, T.; Ramasubramanian, A.K.; Anastasiu, D.C. Identification of Distinct Characteristics of Antibiofilm Peptides

and Prospection of Diverse Sources for Efficacious Sequences. Front. Microbiol. 2021, 12, 783284. [CrossRef] [PubMed]
32. Aguero-Chapin, G.; Galpert-Canizares, D.; Dominguez-Perez, D.; Marrero-Ponce, Y.; Perez-Machado, G.; Teijeira, M.; Antunes, A.

Emerging Computational Approaches for Antimicrobial Peptide Discovery. Antibiotics 2022, 11, 936. [CrossRef] [PubMed]
33. Romero, M.; Marrero-Ponce, Y.; Rodriguez, H.; Aguero-Chapin, G.; Antunes, A.; Aguilera-Mendoza, L.; Martinez-Rios, F. A

Novel Network Science and Similarity-Searching-Based Approach for Discovering Potential Tumor-Homing Peptides from
Antimicrobials. Antibiotics 2022, 11, 401. [CrossRef]

34. Ayala-Ruano, S.; Marrero-Ponce, Y.; Aguilera-Mendoza, L.; Perez, N.; Aguero-Chapin, G.; Antunes, A.; Aguilar, A.C. Network
Science and Group Fusion Similarity-Based Searching to Explore the Chemical Space of Antiparasitic Peptides. ACS Omega
2022, 7, 46012–46036. [CrossRef] [PubMed]

35. Aguilera-Mendoza, L.; Marrero-Ponce, Y.; Beltran, J.A.; Tellez Ibarra, R.; Guillen-Ramirez, H.A.; Brizuela, C.A. Graph-based data
integration from bioactive peptide databases of pharmaceutical interest: Toward an organized collection enabling visual network
analysis. Bioinformatics 2019, 35, 4739–4747. [CrossRef]

36. Aguilera-Mendoza, L.; Marrero-Ponce, Y.; Garcia-Jacas, C.R.; Chavez, E.; Beltran, J.A.; Guillen-Ramirez, H.A.; Brizuela, C.A.
Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: An
unsupervised learning approach. Sci. Rep. 2020, 10, 18074. [CrossRef]

37. Chavez, E.; Dobrev, S.; Kranakis, E.; Opatrny, J.; Stacho, L.; Tejeda, H.; Urrutia, J. Half-space proximal: A new local test for
extracting a bounded dilation spanner of a unit disk graph. In Proceedings of the Principles of Distributed Systems: 9th
International Conference, OPODIS 2005, Revised Selected Papers 9, Pisa, Italy, 12–14 December 2005; pp. 235–245.

38. Cherven, K. Network Graph Analysis and Visualization with Gephi; Packt Publishing: Birmingham, UK, 2013.
39. Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 1981, 147, 195–197. [CrossRef]
40. Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, 2008, P10008. [CrossRef]
41. Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [CrossRef]
42. Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier

transform. Nucleic Acids Res. 2002, 30, 3059–3066. [CrossRef]
43. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797.

[CrossRef] [PubMed]
44. Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2–a multiple sequence alignment editor

and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [CrossRef] [PubMed]
45. Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two

proteins. J. Mol. Biol. 1970, 48, 443–453. [CrossRef]
46. Bailey, T.L. STREME: Accurate and versatile sequence motif discovery. Bioinformatics 2021, 37, 2834–2840. [CrossRef]
47. Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [CrossRef] [PubMed]
48. Bailey, T.L.; Grant, C.E. SEA: Simple enrichment analysis of motifs. BioRxiv 2021. [CrossRef]
49. Newman, M. Networks; Oxford University Press: Oxford, UK, 2018.

https://doi.org/10.1128/IAI.00318-08
https://doi.org/10.3390/biom10040652
https://www.ncbi.nlm.nih.gov/pubmed/32340301
https://doi.org/10.1016/j.ebiom.2020.102775
https://www.ncbi.nlm.nih.gov/pubmed/32403086
https://doi.org/10.1038/s41392-022-00904-4
https://www.ncbi.nlm.nih.gov/pubmed/35165272
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/nar/gkv1278
https://doi.org/10.1093/nar/gkab651
https://doi.org/10.1080/08927014.2015.1021340
https://doi.org/10.1038/srep21839
https://doi.org/10.3389/fmicb.2016.00949
https://doi.org/10.1021/acsomega.9b04119
https://doi.org/10.3389/fmicb.2021.783284
https://www.ncbi.nlm.nih.gov/pubmed/35185814
https://doi.org/10.3390/antibiotics11070936
https://www.ncbi.nlm.nih.gov/pubmed/35884190
https://doi.org/10.3390/antibiotics11030401
https://doi.org/10.1021/acsomega.2c03398
https://www.ncbi.nlm.nih.gov/pubmed/36570318
https://doi.org/10.1093/bioinformatics/btz260
https://doi.org/10.1038/s41598-020-75029-1
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkh340
https://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1093/bioinformatics/btp033
https://www.ncbi.nlm.nih.gov/pubmed/19151095
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1093/bioinformatics/btab203
https://doi.org/10.1093/nar/gkv416
https://www.ncbi.nlm.nih.gov/pubmed/25953851
https://doi.org/10.1101/2021.08.23.457422


Antibiotics 2023, 12, 747 27 of 28

50. Martinez, L.R.; Casadevall, A. Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial
molecules produced by the innate immune system. Infect. Immun. 2006, 74, 6118–6123. [CrossRef]

51. Moazzezy, N.; Asadi Karam, M.R.; Rafati, S.; Bouzari, S.; Oloomi, M. Inhibition and eradication activity of truncated α-defensin
analogs against multidrug resistant uropathogenic Escherichia coli biofilm. PLoS ONE 2020, 15, e0235892. [CrossRef]

52. Eckert, R.; He, J.; Yarbrough, D.K.; Qi, F.; Anderson, M.H.; Shi, W. Targeted killing of Streptococcus mutans by a pheromone-
guided “smart” antimicrobial peptide. Antimicrob. Agents Chemother. 2006, 50, 3651–3657. [CrossRef]

53. de la Fuente-Nunez, C.; Reffuveille, F.; Mansour, S.C.; Reckseidler-Zenteno, S.L.; Hernandez, D.; Brackman, G.; Coenye, T.;
Hancock, R.E. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal
Pseudomonas aeruginosa infections. Chem. Biol. 2015, 22, 196–205. [CrossRef]

54. Jamasbi, E.; Batinovic, S.; Sharples, R.A.; Sani, M.A.; Robins-Browne, R.M.; Wade, J.D.; Separovic, F.; Hossain, M.A. Melittin
peptides exhibit different activity on different cells and model membranes. Amino Acids 2014, 46, 2759–2766. [CrossRef]

55. Guha, S.; Ferrie, R.P.; Ghimire, J.; Ventura, C.R.; Wu, E.; Sun, L.; Kim, S.Y.; Wiedman, G.R.; Hristova, K.; Wimley, W.C. Applications
and evolution of melittin, the quintessential membrane active peptide. Biochem. Pharmacol. 2021, 193, 114769. [CrossRef]

56. Chen, X.; Hirt, H.; Li, Y.; Gorr, S.U.; Aparicio, C. Antimicrobial GL13K peptide coatings killed and ruptured the wall of
Streptococcus gordonii and prevented formation and growth of biofilms. PLoS ONE 2014, 9, e111579. [CrossRef] [PubMed]

57. Holmberg, K.V.; Abdolhosseini, M.; Li, Y.; Chen, X.; Gorr, S.U.; Aparicio, C. Bio-inspired stable antimicrobial peptide coatings for
dental applications. Acta. Biomater. 2013, 9, 8224–8231. [CrossRef] [PubMed]

58. Singh, S.; Chaudhary, K.; Dhanda, S.K.; Bhalla, S.; Usmani, S.S.; Gautam, A.; Tuknait, A.; Agrawal, P.; Mathur, D.; Raghava,
G.P. SATPdb: A database of structurally annotated therapeutic peptides. Nucleic Acids Res. 2016, 44, D1119–D1126. [CrossRef]
[PubMed]

59. Pirtskhalava, M.; Gabrielian, A.; Cruz, P.; Griggs, H.L.; Squires, R.B.; Hurt, D.E.; Grigolava, M.; Chubinidze, M.; Gogoladze, G.;
Vishnepolsky, B.; et al. DBAASP v.2: An enhanced database of structure and antimicrobial/cytotoxic activity of natural and
synthetic peptides. Nucleic Acids Res. 2016, 44, 6503. [CrossRef]

60. Qureshi, A.; Thakur, N.; Tandon, H.; Kumar, M. AVPdb: A database of experimentally validated antiviral peptides targeting
medically important viruses. Nucleic Acids Res. 2014, 42, D1147–D1153. [CrossRef]

61. Mehta, D.; Anand, P.; Kumar, V.; Joshi, A.; Mathur, D.; Singh, S.; Tuknait, A.; Chaudhary, K.; Gautam, S.K.; Gautam, A.;
et al. ParaPep: A web resource for experimentally validated antiparasitic peptide sequences and their structures. Database
2014, 2014, bau051. [CrossRef]

62. Gautam, A.; Chaudhary, K.; Singh, S.; Joshi, A.; Anand, P.; Tuknait, A.; Mathur, D.; Varshney, G.C.; Raghava, G.P. Hemolytik: A
database of experimentally determined hemolytic and non-hemolytic peptides. Nucleic Acids Res. 2014, 42, D444–D449. [CrossRef]

63. Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P. CancerPPD: A
database of anticancer peptides and proteins. Nucleic Acids Res. 2015, 43, D837–D843. [CrossRef]

64. Seshadri Sundararajan, V.; Gabere, M.N.; Pretorius, A.; Adam, S.; Christoffels, A.; Lehvaslaiho, M.; Archer, J.A.; Bajic, V.B.
DAMPD: A manually curated antimicrobial peptide database. Nucleic Acids Res. 2012, 40, D1108–D1112. [CrossRef] [PubMed]

65. Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of
antimicrobial peptides. Nucleic Acids Res. 2016, 44, D1094–D1097. [CrossRef] [PubMed]

66. Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS ONE 2013, 8, e66557.
[CrossRef] [PubMed]

67. Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides.
Sci. Rep. 2016, 6, 24482. [CrossRef] [PubMed]

68. Reza, A.; Sutton, J.M.; Rahman, K.M. Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in
Gram-Negative (ESKAPEE) Bacteria. Antibiotics 2019, 8, 229. [CrossRef]

69. Li, J.; Chen, D.; Lin, H. Antibiofilm peptides as a promising strategy: Comparative research. Appl. Microbiol. Biotechnol.
2021, 105, 1647–1656. [CrossRef]

70. Juretic, D. Designed Multifunctional Peptides for Intracellular Targets. Antibiotics 2022, 11, 1196. [CrossRef]
71. Agüero-Chapin, G.; Galpert, D.; Molina-Ruiz, R.; Ancede-Gallardo, E.; Pérez-Machado, G.; De la Riva, G.A.; Antunes, A. Graph

Theory-Based Sequence Descriptors as Remote Homology Predictors. Biomolecules 2020, 10, 26. [CrossRef]
72. Vens, C.; Rosso, M.N.; Danchin, E.G. Identifying discriminative classification-based motifs in biological sequences. Bioinformatics

2011, 27, 1231–1238. [CrossRef]
73. de Souza, C.M.; da Silva, Á.P.; Júnior, N.G.O.; Martínez, O.F.; Franco, O.L. Peptides as a therapeutic strategy against Klebsiella

pneumoniae. Trends Pharmacol. Sci. 2022, 43, 335–348. [CrossRef]
74. Edwards-Gayle, C.J.C.; Barrett, G.; Roy, S.; Castelletto, V.; Seitsonen, J.; Ruokolainen, J.; Hamley, I.W. Selective Antibacterial

Activity and Lipid Membrane Interactions of Arginine-Rich Amphiphilic Peptides. ACS Appl. Bio. Mater. 2020, 3, 1165–1175.
[CrossRef]

75. Zarena, D.; Mishra, B.; Lushnikova, T.; Wang, F.; Wang, G. The pi Configuration of the WWW Motif of a Short Trp-Rich Peptide Is
Critical for Targeting Bacterial Membranes, Disrupting Preformed Biofilms, and Killing Methicillin-Resistant Staphylococcus
aureus. Biochemistry 2017, 56, 4039–4043. [CrossRef] [PubMed]

https://doi.org/10.1128/IAI.00995-06
https://doi.org/10.1371/journal.pone.0235892
https://doi.org/10.1128/AAC.00622-06
https://doi.org/10.1016/j.chembiol.2015.01.002
https://doi.org/10.1007/s00726-014-1833-9
https://doi.org/10.1016/j.bcp.2021.114769
https://doi.org/10.1371/journal.pone.0111579
https://www.ncbi.nlm.nih.gov/pubmed/25372402
https://doi.org/10.1016/j.actbio.2013.06.017
https://www.ncbi.nlm.nih.gov/pubmed/23791670
https://doi.org/10.1093/nar/gkv1114
https://www.ncbi.nlm.nih.gov/pubmed/26527728
https://doi.org/10.1093/nar/gkw243
https://doi.org/10.1093/nar/gkt1191
https://doi.org/10.1093/database/bau051
https://doi.org/10.1093/nar/gkt1008
https://doi.org/10.1093/nar/gku892
https://doi.org/10.1093/nar/gkr1063
https://www.ncbi.nlm.nih.gov/pubmed/22110032
https://doi.org/10.1093/nar/gkv1051
https://www.ncbi.nlm.nih.gov/pubmed/26467475
https://doi.org/10.1371/journal.pone.0066557
https://www.ncbi.nlm.nih.gov/pubmed/23825543
https://doi.org/10.1038/srep24482
https://www.ncbi.nlm.nih.gov/pubmed/27075512
https://doi.org/10.3390/antibiotics8040229
https://doi.org/10.1007/s00253-021-11103-6
https://doi.org/10.3390/antibiotics11091196
https://doi.org/10.3390/biom10010026
https://doi.org/10.1093/bioinformatics/btr110
https://doi.org/10.1016/j.tips.2021.12.006
https://doi.org/10.1021/acsabm.9b00894
https://doi.org/10.1021/acs.biochem.7b00456
https://www.ncbi.nlm.nih.gov/pubmed/28731688


Antibiotics 2023, 12, 747 28 of 28

76. Mishra, B.; Lushnikova, T.; Golla, R.M.; Wang, X.; Wang, G. Design and surface immobilization of short anti-biofilm peptides.
Acta Biomater. 2017, 49, 316–328. [CrossRef] [PubMed]

77. Sidorczuk, K.; Gagat, P.; Pietluch, F.; Kala, J.; Rafacz, D.; Bakala, L.; Slowik, J.; Kolenda, R.; Rodiger, S.; Fingerhut, L.; et al.
Benchmarks in antimicrobial peptide prediction are biased due to the selection of negative data. Brief Bioinform. 2022, 23, bbac343.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.actbio.2016.11.061
https://www.ncbi.nlm.nih.gov/pubmed/27915018
https://doi.org/10.1093/bib/bbac343
https://www.ncbi.nlm.nih.gov/pubmed/35988923

	Introduction 
	Materials and Methods 
	Half-Space Proximal Network Building 
	Metadata Networks 
	Networks Similarity Cutoff Analysis 
	Network Visualization 
	Scaffold Extraction by Centrality Measures 
	Selection of the Most Representative Extracted Subset 
	Motif Discovery 
	Multiple Sequence Alignments 
	Alignment-Free (AF) Detection 
	Motif Enrichment Analysis 

	Overall Workflow Integrating Complex Networks to Next-Generation Antimicrobials Development 

	Results and Discussion 
	Half-Space Proximal Network Model 
	Network Visual Mining 
	Visual Mining of HSPNs; The Most Central and Atypical ABFPs 
	Metadata Analysis by Visual Mining 

	Representing the ABFPs with a Reduced Subset 
	The Selection of the Best Representative Subset 
	Visualizing/Analyzing the Best Representative Subset with HSPNs 
	Visualizing Mining of the METNs 

	External Representative ABFPs on the Representative Antibiofilm HSPN 
	Motif Discovery Assisted by Complex Networks 

	Conclusions 
	References

