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Abstract: Due to the emergence of microorganisms resistant to antibiotics and the failure of antibiotic
therapies, there is an urgent need to search for new therapeutic options, as well as new molecules with
antimicrobial potential. The objective of the present study was to evaluate the in vitro antibacterial
activity of Apis mellifera venom collected in the beekeeping areas of the city of Lambayeque in
northern Peru against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Bee venom
extraction was performed by electrical impulses and separated using the Amicon ultra centrifugal
filter. Subsequently, the fractions were quantified by spectrometric 280 nm and evaluated under
denaturant conditions in SDS-PAGE. The fractions were pitted against Escherichia coli ATCC 25922,
Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. A purified fraction (PF)
of the venom of A. mellifera and three low molecular weight bands of 7 KDa, 6 KDa, and 5 KDa were
identified that showed activity against E. coli with a MIC of 6.88 µg/mL, while for P. aeruginosa and
S. aureus, it did not present a MIC. No hemolytic activity at a concentration lower than 15.6 µg/mL
and no antioxidant activity. The venom of A. mellifera contains a potential presence of peptides and
a predilection of antibacterial activity against E. coli.
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1. Introduction

World Health Organization (WHO) published the first global surveillance report on
antibiotic resistance, showing that five out of six regions had more than 50% resistance to
third-generation cephalosporins and fluoroquinolones in Escherichia coli and methicillin
resistance in Staphylococcus aureus in hospital settings [1].

S. aureus is a human commensal that can cause systemic infections in the host; this
requires evading the immune response and the ability to proliferate in different niches in
the host; currently, the infection by staphylococci in the face of immune mediators and
the disease is not well known [2]. However, the main agent of bacteremia and infective
endocarditis (IE), as well as osteoarticular, skin, and soft tissue infections, pleuropulmonary
infections [3], and even the appearance of methicillin-resistant S. aureus (MRSA), which
is a therapeutic problem in patients [4]. Staphylococcal infection has also been reported
from hosts or carriers of asymptomatic nasopharyngeal bacteria, even with certain risk
factors such as passive smoking and a large family [5]. The results of certain studies
have determined that S. aureus has generated resistance against ampicillin, penicillin,
rifampicin, clindamycin, oxacillin, and erythromycin [6]. Variable susceptibility to lev-
ofloxacin, ciprofloxacin, gentamicin, tetracycline, and sulfamethoxazole-trimethoprim has
also been shown [7], and patterns have also been shown regarding the mecA, rpoB, blaZ,
ermB, tetM, and nuc genes [6,8]. This resistance has been acquired through different mech-
anisms, the most frequent being reduced membrane permeability, excessive production of
β-lactamase, and acquiring resistance genes or gene mutations [9].

Likewise, Pseudomonas aeruginosa can cause nosocomial outbreaks related to its resis-
tance and virulence properties [10], being a producer of β-lactamases and multiresistant
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to a wide range of antimicrobials such as penicillin, cephalosporin, cephamycin, and
carbapenem [11]. In addition, 35 resistomes (antimicrobial resistance genes) have been
identified that confer resistance to 18 different antibiotics (including four classes of beta-
lactams) and 214 virulence factor genes [12], in addition to the susceptibility of P. aeruginosa
to carbapenems, piperacillin-tazobactam, and amikacin has undergone alterations before
and during COVID-19 [13]. There are phenotypic studies that P. aeruginosa, as producers of
extended-spectrum beta-lactamase (ESBL) and metallo-beta-lactamases (MBL), also present
genes associated with biofilm formation and virulence, such as toxA and lasB [14]. Even
using polymerase chain reaction (PCR) techniques and molecular markers such as Random
Amplified Polymorphic DNA (RAPD), they have identified strains resistant to imipenem,
Ticarcillin + Clavulanate, Piperacillin, and Ticarcillin + Clavulanate, these strains being
isolated from swimming pools [15].

E. coli is responsible for a large number of virulent variants associated with human
diseases, such as urinary tract infection (UTI) with a resistance rate of >55% to first to
fourth-generation cephalosporins [16], neonatal and traveler’s diarrhea [17], and multire-
sistant isolates (MDRs) the most prevalent genes being CTX-M-1, followed by NDM-1
for Betalactamases and the genes ermB and aac(6′)-Ib for resistance to macrolides and
aminoglycosides [18]. E. coli is frequently discharged into the environment through feces,
including wastewater, and is considered an indicator of fecal contamination. Many strains
can carry resistance genes [19]. According to isolates, they have usually been reported
to be sensitive to netilmicin, gentamicin, chloramphenicol, pipemidic acid, nalidixic acid,
ciprofloxacin, amoxicillin/clavulanic acid, and nitrofurantoin, as well as increased suscep-
tibility to cefotaxime, ceftriaxone, and aztreonam [20]. Uncomplicated UTI isolates have
been found to have a higher susceptibility than complicated UTI isolates to amoxicillin,
amoxicillin/clavulanic acid, and ciprofloxacin [21].

Antimicrobial resistance has been reported in gram-negative and gram-positive bac-
teria, with reports of up to 96.2% for Pseudomonas spp. and 66.7% for E. coli [22], with
isolates reported in heart disease intensive care units [23] and in bloodstream infections [24]
antimicrobial-resistant bacteria are also considered the most frequent uropathogens [25].
There are reports of MRSA in up to 50% of patients [26], with resistance profiles for cefoxitin,
chloramphenicol, clindamycin, and gentamicin [27].

The failure of antibiotics, including the latest generation, to counteract superbugs
highlights the need to search for new molecules with antimicrobial potential to control the
global problem of antimicrobial resistance. One group of these new molecules are peptides
that are antimicrobial (AMP) and are promising molecules for combating antimicrobial
resistance (AMR) [28]. AMP has been found the most in the venoms of different organisms,
such as scorpions [29–31], snakes [32], spiders [33], and bees [34], among other venoms.

The composition of bee venom is very variable, having Peptides: Melitin (the main
component of the venom), Apamin, Mast Cell-Degranulating Peptide (MCD), Tertiapin,
Secapin, and Its Isoforms, Adolapin, Procamine, and Minimine; Polypeptides: Api m 6,
Cardiopep, Icarapin, and Major Royal Jelly Proteins; Enzymes: Phospholipase A2 (PLA2),
Hyaluronidase, Acid Phosphatase, and Dipeptidylpeptidase IV; Serine Proteases [35].

Bees are insects found on all continents, many of these species have yet to be described
and are an exciting source for the study and search for new molecules with antimicrobial
properties. There are experimental and clinical reports on Apis mellifera venom and its
anti-inflammatory, antimicrobial, and anticancer effects; the components present in the
venom, such as proteins, vary from a summer season compared to a winter season [36–38],
in addition, have shown different therapeutic properties against oxidative stress induced
by beta-amyloid [39–41]. For Parkinson’s disease, the neuroprotective potential of bee
venom against oxidative stress induced by rotenone (pesticide) has been demonstrated
in a mouse model, including preventing the decrease in dopamine and also restoring
locomotor activity in mice [42,43]. For Lyme disease, the melittin present in the venom
showed in vitro antibacterial effects against the causative agent Borrelia burgdorferi [44]
and even had significant antibacterial effects against E. coli, S. aureus, and Salmonella
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typhyimurium [45]. Melittin also exhibited antibacterial activity against MRSA strains [46],
with antimicrobial potential against agents that cause dental caries, with antifungal capacity
including suppression of biofilm formation [47,48]. Its significant antiviral potential has
also been demonstrated in in vitro and in vivo assays on different enveloped (Influenza A)
and non-enveloped (enterovirus-71) viruses [49]. In addition, phospholipase A2 (PLA2) can
also block the replication of the virus, being shown to be responsible for the inhibition of
HIV replication [50]. The present study aimed to evaluate the in vitro antibacterial activity
of Apis mellifera venom collected in the beekeeping areas of the city of Lambayeque in
northern Peru against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus.

2. Results

As seen in Figure 1, 15% SDS-PAGE-Tricine of the purified fraction (PF) of crude
venom from A. mellifera yielded 3 low molecular weight bands, i.e., 7 kDa, 6 kDa, and
5 kDa.
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Figure 1. SDS polyacrylamide gel electrophoresis with Tricine (SDS-PAGE-Tricine) of the purified
fraction; M denoted the marker lane (molecular weight 2–40 kDa) (molecular weight marker), PF
denotes the protein fractions, and TV denotes total venom.

The PF of A. mellifera venom had a minimum inhibitory concentration (MIC) of
6.88 µg/mL (p < 0.05) for E. coli. For the S. aureus strain, at higher concentrations, the
venom exhibited antibacterial activity. For P. aeruginosa, no antibacterial activity was
observed (Figure 2).

Concentrations of the PF of A. mellifera venom above 125 µg/mL in erythrocyte
suspension produced more than 50% hemolysis. At a concentration of 31.25 µg /mL, less
than 10% hemolysis occurred, but at 7.8 µg /mL PF, no erythrocyte lysis was evidenced
(Figure 3).

The PF of the A. mellifera venom showed no antioxidant activity was observed at the
concentrations evaluated.
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Figure 2. Microbial growth of S. aureus, E. coli, and P. aeruginosa incubated with the purified fraction
of Apis mellifera venom.
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Figure 3. Hemolytic activity of the purified fraction of Apis mellifera venom.

3. Discussion

The purified fraction (PF) of the A. mellifera venom revealed the presence of peptides
using the SDS-PAGE-Tricine technique and found three peptides of 7 kDa, 6 kDa, and
5 kDa. The chemical composition of the venom of A. mellifera is highly variable; such as
melittin (3 kDa), apamin (2 kDa), and cecropin (4 kDa), enzymes, such as phospholipase
A2 (19 kDa) and hyaluronidase (38 kDa), biologically active amines, such as histamine and
epinephrine, as well as peptides not reported [39,51,52] and this suggests that many of
these components may contribute their anti-inflammatory, antifungal, antiviral, healing
and analgesic properties [36,53–55].

Our results were coherent with other studies; the PF of A. mellifera venom collected
from Íllimo showed antibacterial activity against E. coli, but the same was not observed for
P. aeruginosa despite being a gram-negative bacterium. For S. aureus, as the concentration
of the venom fraction increased, bacterial growth was affected. Interestingly, the results
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of other studies of the antibacterial activity of the crude venom showed highly variable
MICs against E. coli and for S. aureus [56], including also demonstrating the inhibitory effect
through a viability assay at a temperature of 25 ◦C against E. coli and P. putida, causing
membrane permeability and loss of ATP, showing no effect against P. fluorescens [57], as
well as the crude bee venom extract in a region of Egypt significantly inhibited the growth
of E. coli ATCC8739 and S. aureus ATCC 6538P [58], in addition, the action of crude bee
venom from Iran demonstrated inhibition through the Kirby–Bauer method against E. coli
and S. aureus, but not against P. aeruginosa [59].

Other studies have shown the existence of antimicrobial peptides in the venom; it
follows that the interaction against the cell envelope of the bacteria is due to the attraction
between the positively charged venom peptides and the phospholipids, causing a rupture
or instability of the venom membrane, in addition to forming pores; however, this mecha-
nism requires a certain concentration threshold [60]. Direct insertion of melittin leads to
pore formation, whereas the parallel conformation is inactive and prevents other melittin
molecules from being inserted, thus, preventing pore formation [61]. However, melittin
has a molecular weight of 3 KDa; in our study, we found three peptides in the range of
5 KDa to 7 KDa; this finding demonstrates that melittin is not the only peptide present in
bee venom with antibacterial activity.

The PF of A. mellifera venom at a concentration lower than 15.6 µg/mL demonstrated
low hemolytic activity. Few studies have revealed the hemolytic activity of bee venom in
Peru; on the contrary, in other latitudes, they have revealed that melittin has not presented
significant hemolytic activity below a concentration of 0.25 µg/mL [62], the hemolytic
action was also demonstrated against erythrocytes of different species, with variable sensi-
tivity to bee venom pools, with sheep erythrocytes being the most resistant to hemolytic
action compared to equine erythrocytes, including humans erythrocytes showed good
resistance to hemolytic action, it follows that hemolysis can be increased by the action of
phospholipase 2 (PLA2) after the action of melittin [63].

The PF of the venom of A. mellifera has not shown antioxidant capacity, but in other
studies, they demonstrated antioxidant capacity. Curiously, they worked with the total
venom or apitoxin, having the capacity to inhibit the free radical DPPH (2,2-diphenyl-1-
picrylhydrazine) between 60% and 75% of antioxidant activity [64]. In the same sense,
demonstrated with the venom of A. mellifera syriaca eliminating DPPH radicals between
50 to 65% [65]. When analyzing the venom of four bee species, A. dorsata, A. mellifera,
A. florea, and A. cerena, they showed that A. dorsata contained the highest amount of melittin;
they also revealed that the extract of A. dorsata had the highest antioxidant activity from the
DPPH and ABTS (3-ethylbenzothiazoline-6-sulfonic acid) assays, including melittin alone,
revealed very poor antioxidant activity among all bee venom extracts [66], this suggests
that in our study, of the peptides present in the venom PF, melittin was not present.

The bioactive components present in the venom have generated much interest in
medicine through the different species of the Apis genus, and their application in in vitro
antimicrobial activity [67], their cytotoxic action against cancer cells [68], even the synergis-
tic effect of the venom with some antibiotics such as Cephotax, Cefepime, and Tavanic has
been revealed [69]. Through Transmission Electron Microscopy, the deformation of the cell
wall was appreciated, resulting in the destruction of the cell wall, changes in the permeabil-
ity of the membrane, leakage of cell content, inactivation of metabolic activity, and finally,
cell death [57], as the inhibitory effect on F1-F0—ATPase has also been demonstrated [70].

4. Materials and Methods
4.1. Bee Venom Samples

The venom was obtained from Africanized bees A. mellifera (Linnaeus, 1758) in hives
from the Cruz Verde town center of the Ilimo District located at latitude 6◦28′26′′ and
longitude 79◦50′34′′ (Lambayeque); an electrical impulse of 3 volts with an electrical
intensity of 0.004 A was passed through a collecting box (beeWhisper 6.0; Model 2020),
without harming the specimens (Figure 4a,b) [71].
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The venom was collected on a glass plate and allowed to dry; it was then transferred
into a 50-mL Falcon tube (Figure 4c,d). Then, the bee venom was resuspended in sterile
deionized water and centrifuged at 10,000× g at 4 ◦C for 10 min to remove insoluble
materials. The supernatant was collected and stored in 2 mL microtubes at −20 ◦C.

4.2. Fraction Concentration and Electrophoresis

The fractions were collected and quantified via absorbance at 280 nm (Navi UV/vis Nano
spectrophotometer, Seongnam-si, Republic of Korea) using the formula [mg/mL] = (1.56 × Abs
280 nm) − (0.76 × Abs 260 nm) [72].

Crude fractions of bee venom were collected and concentrated using the Amicon ultra
centrifugal filter (Merck Millipore, Cork, Ireland) with Cutoff from 3 kDa to 100 kDa [73],
quantified via absorbance, and 50 µg protein from the FP were evaluated on a gel Tricine-
SDS-PAGE (15%) under denaturing conditions [74] with a voltage of 100 volts and stained
with Coomassie blue [75].

4.3. Antimicrobial Activity Test

The MIC values of the fraction were determined using the broth microdilution method
in 96-well plates [76] against the strains of E. coli ATCC 25922, S. aureus ATCC 29213, and
P. aeruginosa ATCC 27853; 50 µL of bacterial solution containing 5 × 104 CFU/mL was
placed in each well, then 50 µL of different concentrations of the fraction (55 µg/mL to
3.44 µg/mL) were added and incubated at 37 ◦C for 24 h. The positive control was broth
plus inoculum, and the negative control was only broth. Growth of the positive control was
determined by a growth button of≥2 mm or defined turbidity. Finally, the plates were read
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by absorbance at 630 nm (SmartReader 96—Accuris) to determine the minimum inhibitory
concentration (MIC). All assays were performed in triplicate.

4.4. Evaluation of Hemolytic Activity

The hemolytic test was evaluated following the protocol described by Oddo [77], red
blood cells washed with PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4) and resuspended at a concentration of 0.5% and incubated for 1 h with different
concentrations of the fractions and then centrifuged at 10,000× g for 10 min, 60 µL of
supernatant was transferred to a 96-well polypropylene plate, and the absorbance was read
at 405 nm. The results were normalized with the positive controls of hemolysis (0.25% SDS)
and negative controls (PBS). Assays were performed in triplicate.

4.5. Evaluation of Antioxidant Activity

20 µL of different concentrations of the fraction (55 µg/mL to 3.44 µg/mL) were added
with 380 µL of ABTS radical in ethanol, incubated at room temperature protected from light
for 30 min, then the absorbance of the mixture was measured at 734 nm [66]. To calculate
the % decoloration, the following equation was used: % decoloration = [(C − S)/C] × 100,
where C is the absorbance of the control, and S is the absorbance of the problem sample.
Trolox was used as a positive control. The experiments were done in triplicate.

4.6. Statistic Analysis

The MegaStat add-in for Excel was used to determine the antibacterial activity of the
purified fraction of Apis mellifera venom. Analysis of variance (ANOVA) was performed at
a significance level of 5%.

5. Conclusions

In summary, A. mellifera bee venom contained peptides with weights of 7 kDa, 6 kDa,
and 5 kDa and exhibited antibacterial activity against E. coli ATCC 25922 at a concentration
of 6.88 µg/mL.
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