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Abstract: Two synthetic compounds, MHY1383, azo-resveratrol and MHY1387, 5-[4-hydroxy-3,5-
methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione have been reported to have an anti-
biofilm effect on Pseudomonas aeruginosa at very low concentrations (1–10 pM). Here, we investigated
the anti-biofilm effects of these compounds in various bacteria. We found that MHY1383 significantly
inhibited Escherichia coli, Bacillus subtilis, and Staphylococcus aureus biofilm formation at 1 pM, 1 nM,
and 10 nM, respectively. MHY1387 also inhibited the biofilm formation of E. coli, B. subtilis, and
S. aureus at 1 pM, 10 nM, and 100 pM, respectively. Both MHY1383 and MHY1387 showed medium-
dependent anti-biofilm effects on Salmonella enterica at high concentrations (10 µM). We also tested
the susceptibility to antibiotics by measuring the minimum inhibitory concentration (MIC) in various
bacteria. When P. aeruginosa, E. coli, B. subtilis, S. enterica, and S. aureus were treated with MHY1383 or
MHY1387 in combination with four different antibiotics, the MICs of carbenicillin against B. subtilis
and S. aureus were lowered more than two-fold by the combination with MHY1387. However, in
all other combinations, the MIC changed within two-fold. The results of this study suggest that
MHY1383 and MHY1387 are effective anti-biofilm agents and can be used at very low concentrations
against biofilms formed by various types of bacteria. We also suggest that even if a substance that
inhibits biofilm is used together with antibiotics, it does not necessarily have the effect of lowering
the MIC of the antibiotics.

Keywords: biofilm; anti-biofilm compound; synergy; Escherichia coli; Bacillus subtilis; Staphylococcus
aureus; Pseudomonas aeruginosa; Salmonella enterica

1. Introduction

Biofilms are recalcitrant to antibiotic therapy and a major cause of persistent and
recurrent infections by clinically important pathogens [1–3]. A large number of diseases
are associated with biofilms formed by pathogens. According to the US National Insti-
tutes of Health, it is estimated that biofilms account for over 80% of microbial infections
in the human body [4]. In addition, biofilms cause harmful biofouling, surface erosion,
and pathogenic contamination in the food and pharmaceutical industries [1,5,6]. There-
fore, developing anti-biofilm agents is of great importance both in the medical field and
in industry.

Anti-biofilm agents can be potentially obtained from either natural products or syn-
thetic compounds [7], and there are several categorized sources for anti-biofilm activity,
such as quorum sensing (QS) inhibitors, electro-chemicals, antimicrobial peptides or lipids,
phytochemicals, and nickel nanoparticles [2,6,8]. Among them, QS, the bacterial cell-to-
cell communication mechanism, is very important for bacterial biofilm formation and
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has been recognized as a major target for obtaining anti-biofilm activity [3]. Recently,
we discovered two promising anti-biofilm compounds, MHY1383 and MHY1387, from
the screening of anti-QS compounds [9]. MHY1383, azo-resveratrol, and MHY1387, 5-[4-
hydroxy-3,5-methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione (Figure 1), had
anti-QS, anti-virulence, and anti-biofilm activities against Pseudomonas aeruginosa [9]. These
two compounds have been previously reported for different activities: MHY1383 has an
inhibitory effect on mushroom tyrosinase, and MHY1387 inhibits the production of reactive
oxygen species and peroxynitrite in vitro [10,11]. Probably due to this antioxidant activity,
MHY1387 was reported to suppress the lipopolysaccharide-induced nuclear factor kappa B
activation and protein expression of cyclooxygenase 2 and inducible nitric oxide synthase
in macrophages [11].
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methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione) [9].

In addition to these useful activities, these compounds showed promising activity
in inhibiting biofilm formation at extremely low concentrations (1 to 10 pM) [9]. This
means that they have a useful activity that can be used in combination with antibiotics or
developed as anti-pathogens that specifically inhibit only the pathogenicity of pathogens.
However, in previous studies, the anti-biofilm activity of these compounds was intensively
studied only against P. aeruginosa. Therefore, in this study, we addressed the effects of
MHY1383 and MHY1387 on biofilm formation by various other bacteria, such as Escherichia
coli, Bacillus subtilis, Salmonella enterica, and Staphylococcus aureus. We found that both
MHY1383 and MHY1387 have the anti-biofilm effect on a broad spectrum of bacteria,
suggesting that these compounds are promising candidates for the development of anti-
biofilm agents.

2. Results
2.1. MHY1383 Had Anti-Biofilm Effects on Common Bacteria at Very Low Concentrations

For this study, we selected four bacterial species, E. coli, B. subtilis, S. enterica serovar
Typhimurium, and S. aureus. These strains cover both Gram-positive and negative bacteria
commonly found and that include important pathogenic genera [12]. We investigated the
effect of MHY1383 on biofilm formation by these bacteria in a static biofilm system. Biofilm
formations of E. coli and B. subtilis were effectively inhibited by 83% and 43% at 1 pM and
1 nM, respectively (Figure 2A,B). The biofilm formation of S. aureus was also significantly
inhibited, but to a lesser extent (15%) at higher concentrations (10 nM) (Figure 2C). In
the case of S. enterica, biofilm formation was only inhibited to a very small extent (9%)
at much higher concentrations (1 µM) (Figure 2D). In all bacterial species, the effect of
MHY1383 plateaued at the concentrations mentioned above, and treatment with higher
concentrations did not further inhibit biofilm formation.
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Figure 2. Biofilm inhibitory effect of MHY1383. E. coli (A), B. subtilis (B), S. aureus (C), and S. enterica
(D) were treated with various concentrations of MHY1383. Biofilm formations were quantified
by static biofilm assay. Data were presented relative to the sample without an inhibitor (which
corresponds to 100%). For comparison, the degree of inhibition by 5 µM SNP is indicated as open
triangles in panels.

Our previous study has shown that MHY1383 inhibited the biofilm formation of P.
aeruginosa in a very similar manner: the biofilm formation was almost maximally inhibited
by 1 pM MHY1383, and at the concentrations higher than 1 pM, the inhibition plateaued [9].
However, the strength of the effect and the concentration that showed the effect differed
depending on the bacterial species. In the case of E. coli, the concentration of MHY1383
exhibiting the maximum effect was 1 pM, which was similar to that of P. aeruginosa, but
biofilm formation was inhibited much more effectively at that concentration (Figure 2A).
In the case of B. subtilis, the inhibitory concentration was 1000 times higher than that of P.
aeruginosa, but the degree of inhibition was similar (Figure 2B). In S. aureus and S. enterica,
both the concentration and degree of inhibition of biofilm formation were not as good as
those of P. aeruginosa (Figure 2C,D).

Although the concentration of MHY1383 that inhibits the biofilm of B. subtilis, S. aureus,
and S. enterica is higher than that of P. aeruginosa, it is still very low compared to other
biofilm inhibitors. For comparison, each bacterium was treated with sodium nitroprusside
(SNP), a well-known biofilm inhibitor [13], at a concentration of 5 µM under the same
conditions, and how much biofilm formation was inhibited was investigated. The SNP
reduced the biofilm formation of E. coli, S. aureus, and S. enterica by 27%, 10%, and 28%,
respectively (Figure 2A,C,D). SNP was not able to inhibit the biofilm formation of B. subtilis,
whereas MHY1383 could inhibit it (Figure 2B). These results demonstrate that the biofilm
inhibitory effect of MHY1383 is better than SNP or at least comparable. The only exception
was S. enterica, for which SNP showed a biofilm inhibition effect of 28%, whereas MHY1383
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showed a very limited biofilm inhibition effect of 9%. However, the concentration showing
this level of inhibitory effect was 1 µM for MHY1383, which was much lower than 5 µM for
SNP.

Summarizing these results, MHY1383 has a better biofilm inhibitory effect compared
to SNP, showing much lower effective concentrations and a higher degree of inhibition to
E. coli, B. subtilis, and S. aureus than SNP (Figure 2A–C).

2.2. MHY1387 Also Effectively Inhibited the Biofilm Formation of a Wide Range of Bacteria at Very
Low Concentrations

Next, we performed the same experiment with MHY1387. Like MHY1383, MHY1387
also profoundly inhibited the biofilm formation of E. coli and B. subtilis by 60% and 39%
at 1 pM and 10 nM, respectively (Figure 3A,B). The effect on E. coli was similar to that of
MHY1383 in terms of the degree of inhibition and the effective concentration (Figure 2A),
but for B. subtilis, MHY1387 showed a similar inhibitory effect at a concentration about
10 times higher than that of MHY1383 (Figure 2B). MHY1387 also inhibited the biofilm
formation of S. aureus by 17% at 100 pM, which is a similar degree of inhibition to MHY1383,
but the inhibitory concentration is about 100 times lower (Figure 3C). Like MHY1383, the
inhibition plateaued at higher concentrations. The biofilm of S. enterica was not inhibited
even at 10 µM (Figure 3D).
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When comparing the activity of MHY1387 with 5 µM SNP, MHY1387 showed a much
better effect in both the degree of biofilm inhibition and the effective concentration in the
case of E. coli, B. subtilis, and S. aureus, showing much lower effective concentrations than
that of SNP (Figure 3A–C). Like MHY1383, MHY1387 failed to inhibit S. enterica biofilm
formation, whereas SNPs could (Figure 3D).

MHY1383 and MHY1387 showed similar effects on the type of bacteria and degree
of biofilm inhibition, but against B. subtilis, MHY1383 showed an effect at a concentration
about 10 times lower, and against S. aureus, MHY1387 showed an effect at a concentra-
tion about 100 times lower. All these results indicate that both MHY1383 and MHY1387
effectively inhibit the biofilm formation of various bacteria at very low concentrations.

2.3. The Biofilm Inhibitory Effect of MHY1383 and MHY1387 on S. enterica May Vary Depending
on the Medium

MHY1383 and MHY1387 showed good effects against various bacteria but poor effects
against S. enterica. However, our previous study showed that MHY1387 and SNP had
different biofilm inhibitory effects depending on the medium [9]. Therefore, we investigated
whether the inhibitory effect of MHY1383 and MHY1387 on S. enterica biofilm could be
seen in other media. To this end, instead of the LB used in the previous experiments, the
same biofilm formation experiment was performed in M63 minimal medium containing
glucose and casamino acid as carbon sources. The results showed that both MHY1383
and MHY1387 inhibited the biofilm formation of S. enterica by 41% and 25%, respectively,
at a high concentration of 10 µM (Figure 4A,B). Interestingly, in this medium, SNP did
not show any biofilm inhibitory effect (Figure 4A,B). This result indicates that MHY1383
and MHY1387 can have a better biofilm inhibitory effect than SNP depending on the
medium for S. enterica, although it appears at high concentrations. Taken together, it can be
concluded that MHY1383 and MHY1387 work effectively against a wide range of bacterial
species.
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Figure 4. Effects of MHY1383 and MHY1387 on biofilm formation of S. enterica in different media. In
Figures 2 and 3, S. enterica was treated with MHY1383 and MHY1387 in LB medium, whereas in this
experiment, S. enterica was treated with different concentrations of MHY1383 (A) and MHY1387 (B)
in M63 minimal medium containing 0.5% casamino acid and 0.2% glucose. All experiments were
performed in the same manner as in Figures 2 and 3, and the degree of inhibition by 5 µM SNP was
also indicated as open triangles for comparison.

2.4. MHY1383 and MHY1387 Mostly Little Affect the Minimum Inhibitory Concentration (MIC)
of Antibiotics against Bacteria

Since MHY1383 and MHY1387 significantly inhibit the biofilm formation of bacteria,
we investigated whether the MIC of antibiotics against bacteria could be lowered in the
presence of MHY1383 and MHY1387. Since our previous study had already shown that
MHY1383 and MHY1387 effectively inhibit biofilm formation of P. aeruginosa at very low



Antibiotics 2023, 12, 853 6 of 12

concentrations [9], in this experiment, we included P. aeruginosa and investigated the MIC of
four different antibiotics, carbenicillin, gentamicin, tobramycin, and polymyxin B. To sum it
up, two MHYs were co-treated with these four different antibiotics at 100 pM representing
low concentration and 5 µM representing high concentration to five bacterial species, P.
aeruginosa, E. coli, B. subtilis, S. aureus, and S. enterica. In all these cases, the MIC was
measured.

In the case of MHY1383, there was no case where the MIC was lowered more than
two-fold when used in combination with antibiotics, while there were a few cases where
the MIC was reduced more or less by less than two-fold (Table 1). However, in the case of
MHY1387, the MIC of carbenicillin against B. subtilis and S. aureus was lowered more than
two-fold (Figure 5A,B). In particular, for B. subtilis, even when MHY1387 was co-treated
with carbenicillin at a low concentration of 100 pM, the MIC of carbenicillin was reduced
2.5-fold (Figure 5A). For S. aureus, the MIC of carbenicillin was reduced two-fold when
MHY1387 was treated at 5 µM (Figure 5B). Like MHY1383, there were a few more cases
where the MIC was reduced more or less by less than two-fold (Table 2).
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Figure 5. Decrease in minimum inhibitory concentration (MIC) of carbenicillin in the presence of
MHY1387. MIC of carbenicillin to B. subtilis (A) and S. aureus (B) was determined in the presence of
MHY1387 (100 pM or 5 µM), as described in the Materials and Methods. *, p < 0.05; **, p < 0.01; ***,
p < 0.005.

Table 1. Minimum inhibitory concentration (MIC) of carbenicillin, gentamicin, tobramycin, and
polymyxin B in combination with MHY1383 against various bacteria.

MIC (µg/mL)

Strains Antibiotics MIC Alone

MIC in
Combination
with 100 pM

MHY1383

MIC in
Combination

with 5 µM
MHY1383

P. aeruginosa

Carbenicillin 13.67 ± 1.53 14.67 ± 0.58 13.67 ± 1.53
Gentamicin 2.88 ± 0.48 2.63 ± 0.25 2.63 ± 0.85
Tobramycin 3.25 ± 0.50 3.38 ± 0.63 3.25 ± 0.50
Polymyxin B 3.50 ± 1.00 4.13 ± 1.31 3.00 ± 0.00

E. coli

Carbenicillin 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00
Gentamicin 5.00 ± 1.00 6.00 ± 2.00 4.50 ± 1.32
Tobramycin 8.00 ± 0.00 8.33 ± 0.58 8.00 ± 1.00
Polymyxin B 0.83 ± 0.05 0.88 ± 0.10 0.75 ± 0.10

B. subtilis

Carbenicillin 2.25 ± 1.77 2.00 ± 1.41 1.60 ± 1.27
Gentamicin 3.83 ± 1.15 4.17 ± 1.44 4.00 ± 1.32
Tobramycin 3.63 ± 1.25 3.75 ± 1.19 3.75 ± 1.50
Polymyxin B 15.00 ± 0.00 15.00 ± 0.00 18.33 ± 5.77
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Table 1. Cont.

MIC (µg/mL)

Strains Antibiotics MIC Alone

MIC in
Combination
with 100 pM

MHY1383

MIC in
Combination

with 5 µM
MHY1383

S. enterica

Carbenicillin 4.00 ± 0.00 3.50 ± 1.00 4.00 ± 0.00
Gentamicin 9.50 ± 1.00 9.50 ± 1.00 9.00 ± 1.63
Tobramycin 14.75 ± 2.50 14.75 ± 2.50 13.75 ± 2.06
Polymyxin B 3.00 ± 0.00 3.00 ± 0.50 2.83 ± 0.29

S. aureus

Carbenicillin 1.50 ± 0.71 1.35 ± 0.92 1.00 ± 0.00
Gentamicin 5.50 ± 0.00 5.50 ± 0.00 5.50 ± 0.00
Tobramycin 11.00 ± 0.00 10.67 ± 0.58 11.00 ± 0.00
Polymyxin B 350.00 ± 0.00 400.00 ± 50.00 350.00 ± 50.00

Data are means ± SD of four independent experiments. SD, standard deviation; MIC, minimal inhibitory
concentration.

Table 2. MIC of carbenicillin, gentamicin, tobramycin, and polymyxin B in combination with
MHY1387 against various bacteria.

MIC (µg/mL)

Strains Antibiotics MIC Alone

MIC in
Combination
with 100 pM

MHY1387

MIC in
Combination

with 5 µM
MHY1387

P. aeruginosa

Carbenicillin 10.00 ± 0.00 12.00 ± 0.00 10.00 ± 0.00
Gentamicin 2.50 ± 0.00 2.63 ± 0.25 2.13 ± 0.25
Tobramycin 3.50 ± 0.00 3.13 ± 0.25 3.50 ± 0.00
Polymyxin B 5.13 ± 0.25 5.00 ± 0.00 4.13 ± 0.25

E. coli

Carbenicillin 6.50 ± 1.00 6.50 ± 1.00 6.50 ± 1.00
Gentamicin 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00
Tobramycin 10.00 ± 0.00 10.25 ± 0.50 10.25 ± 0.50
Polymyxin B 1.00 ± 0.00 1.03 ± 0.05 1.03 ± 0.05

B. subtilis

Carbenicillin 2.50 ± 1.00 1.00 ± 0.00 0.70 ± 0.00
Gentamicin 3.63 ± 0.25 3.50 ± 0.00 4.00 ± 0.00
Tobramycin 4.13 ± 0.25 4.00 ± 0.00 4.13 ± 0.25
Polymyxin B 20.00 ± 0.00 20.00 ± 0.00 20.00 ± 0.00

S. enterica

Carbenicillin 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00
Gentamicin 5.25 ± 0.50 5.00 ± 0.00 5.00 ± 0.00
Tobramycin 12.00 ± 0.00 9.25 ± 0.50 9.25 ± 0.50
Polymyxin B 3.63 ± 0.25 4.50 ± 0.00 2.50 ± 0.00

S. aureus

Carbenicillin 0.40 ± 0.00 0.48 ± 0.15 0.20 ± 0.00
Gentamicin 4.00 ± 0.00 4.63 ± 0.25 3.50 ± 0.00
Tobramycin 6.00 ± 0.00 5.25 ± 0.50 5.25 ± 0.50
Polymyxin B 212.50 ± 25.00 212.50 ± 25.00 350.00 ± 0.00

Data are means ± SD of four independent experiments. SD, standard deviation; MIC, minimal inhibitory
concentration.

However, overall, there was no noticeable change in MIC even when MHYs were
treated together, except for the case of MHY1387 and carbenicillin mentioned above. We
will discuss this below.

3. Discussion

Our previous study reported that MHY1383 and MHY1387 have both anti-QS and
anti-biofilm activities in P. aeruginosa at very low concentrations: anti-QS effect at 100 pM
and anti-biofilm effect at 1–10 pM [9]. In this study, we further investigated the effects of
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MHY1383 and MHY1387 on biofilm formation of various bacterial species and newly found
the followings: (1) MHY1383 and MHY1387 have broad-spectrum anti-biofilm activities
against E. coli, B. subtilis, and S. aureus. (2) These compounds reduce biofilm formation
of these bacteria at picomolar to nanomolar concentrations. (3) In E. coli and B. subtilis,
biofilm formation was better inhibited by MHY1383 than MHY1387, whereas MHY1387
was able to more effectively inhibit the biofilm formation of S. aureus. (4) Both MHY1383
and MHY1387 have limited anti-biofilm effect on S. enterica at high concentration (10 µM)
depending on the medium. (5) The combined treatment of antibiotics and MHYs did not
significantly change the MICs of antibiotics as a whole, but in the case of carbenicillin, the
MICs for B. subtilis and S. aureus were lowered more than two-fold.

Since the strains used in this study represent common bacterial species frequently
found in everyday life, the broad-spectrum anti-biofilm activity of MHY1383 and MHY1387
is a significant advantage as an anti-biofilm agent. In addition, MHY1383 and MHY1387
work at extremely low concentrations in the range of 1 pM to 10 nM. This advantage is also
very important. Well-known biofilm inhibitors, SNP and anthranilate, inhibited biofilm
at 5 µM and 100 µM, respectively [13,14]. Our two MHYs showed similar or much better
effects at much lower concentrations than these. These low concentrations of drugs will be
helpful in minimizing the potential toxic side effects. It has already been confirmed that
MHY1387 is not cytotoxic at a concentration of up to 50 µM [11].

Among the findings from this study, the following deserves discussion. First, despite
inhibiting bacterial biofilm formation, MHY1383 and MHY1387 did not lower the MIC of
antibiotics in many cases when used in combination with antibiotics. At first glance, this
does not seem to fit well with the general idea that bacterial biofilm formation significantly
increases resistance to antibiotics. However, recently, the concept of antibiotic resistance
has been divided into resistance, tolerance, and persistence in more detail, and it has
been argued that the reason why biofilms can protect cells from antibiotics is because
of an increase in tolerance or persistence rather than an increase in resistance [15,16].
Conventionally, antibiotic ‘resistance’ is used to describe the ability of microbes to grow in
the presence of an elevated level of an antibiotic and quantified by the MIC [15]. In contrast,
‘tolerance’ and ‘persistence’ mean the ability of microbes to survive transient exposure to
high concentrations of an antibiotic without a change in the MIC [15]. When we say that
the biofilm is resistant to antibiotics, it emphasizes that the bacterial cells in the biofilm
can survive more persistently in the presence of antibiotics [16,17]. Therefore, biofilm cells
actually have tolerance rather than resistance to antibiotics, and therefore, inhibition of
biofilm formation is also targeted at tolerance, so the MIC may not have changed. In fact,
the MIC did not change even when anthranilate, which has a biofilm inhibitory effect, was
treated in combination with antibiotics [18].

Second, MHY1383 and MHY1387 showed different effects on the biofilm formation of
S. enterica, depending on the media. Many studies showed that the nutritional conditions
in the environment can influence the formation, development, and dispersion of biofilm,
so the biofilm inhibitor activity can depend on the media composition and initial cell
density [5,19,20]. The different anti-biofilm effects of MHY1383 and MHY1387, depending
on media composition, are also considered to be one of these examples.

Third, SNP shows no effects on the biofilm formation of B. subtilis. SNP is a nitrogen
oxide (NO) donor, and NO has been known to induce biofilm dispersion in several bacterial
species, including P. aeruginosa, S. aureus, and E. coli [13,21,22]. However, it has been
reported that the effect of NO on biofilm formation appears differently in some bacterial
species: NO was found to enhance the biofilm formation of Vibrio harveyi and Shewanella
oneidensis [23,24] and had no effects on the biofilm formation of B. subtilis [25].

The findings in this study highlight the potency of MHY1383 and MHY1387 against
the biofilm formation of various bacteria. The properties of MHYs are very unique in that
they exhibit anti-biofilm effects on various types of bacteria at extremely low concentrations.
Thus, we suggest that MHY1383 and MHT1387 are promising candidate compounds to
combat bacterial biofilm-mediated infections. The general mechanism by which MHY1383
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and MHY1387 exert their inhibitory effects on biofilm formation against multiple species
of bacteria remains unclear. In our previous study [9], we found that both MHY1383 and
MHY1387 inhibit biofilm formation by reducing intracellular signaling molecule, 3′,5′-cyclic
diguanylate (c-di-GMP), in P. aeruginosa. However, while c-di-GMP plays an important role
in controlling biofilm formation in many Gram-negative bacteria [5,13,26], it has not yet
been confirmed whether MHY1383 and MHY1387 lower the intracellular c-di-GMP in other
bacterial species than P. aeruginosa. In addition, in the case of S. aureus, it is known that
a messenger molecule other than c-di-GMP is used to regulate biofilm formation [27,28].
Therefore, further studies are needed to elucidate the underlying general mechanism.

4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions

The bacterial strains used in this study are listed in Table 3. E. coli, B. subtilis, S. enterica,
S. aureus, and P. aeruginosa strains were mostly grown in Luria-Bertani (LB; tryptone 10 g/L,
yeast extract 5 g/L, and NaCl 5 g/L) medium at 37 ◦C with vigorous shaking. Bacterial
growth was measured using the optical density at 600 nm (OD600). MHY1383 and MHY1387
were dissolved in dimethyl sulfoxide (DMSO) and diluted to the indicated concentrations
in the media.

Table 3. Bacterial strains used in this study.

Name Genotype References

Escherichia coli
MG1655 A wild type strain of E. coli K-12 Lab. collection

Bacillus subtilis
ATCC6051 A wild type strain of B. subtilis Lab. collection

Salmonella enterica
SL1344 A type of S. enterica serovar Typhimurium Lab. collection

Staphylococcus aureus
RN4220 A wild type strain of S. aureus [29]

Pseudomonas aeruginosa
PAO1 A wild type strain of P. aeruginosa [30]

4.2. Biofilm Assay

Biofilm analyses were performed in the following media; 1/4-diluted LB supple-
mented with 0.1% mannitol for E. coli, and TSB medium (30 g/L of BactoTM Tryptic Soy
Broth, BD, Baltimore, MD, USA) supplemented with 0.5% glucose for B. subtilis, and LB
for S. aureus [12,31]. For S. enterica, we used two different media: LB for the experiments
in Figures 2 and 3, and M63 minimal medium (M63 salt [KH2PO4, 3 g/L; K2HPO4, 7 g/L;
(NH4)2SO4, 2 g/L], 1 mM MgSO4), supplemented with 0.5% casamino acid and 0.2% glu-
cose for the experiment in Figure 4. The biofilms were quantified using a static biofilm
assay, as described previously, with slight modification [12]. Overnight cultures of cells
were inoculated at OD600 = 0.06 into fresh media on a 96-well polystyrene plate. MHY1383
and MHY1387 were added at the indicated concentrations into these media, and the cells
were grown at 30 ◦C for 48 h without shaking. After the cell growth was measured by
OD600, planktonic cells were poured out, and the plate was washed with water and dried
for 2 min. Then, 180 µL of crystal violet (0.1%, wt/vol) was added to each well and in-
cubated for 10 min to stain the biofilms attached to the well surface. After a brief wash,
the biofilm-staining crystal violet was dissolved in 200 µL of 30% acetic acid. The biofilm
formation was quantified from the staining levels measured by absorbance at 600 nm (A600),
which was normalized by cell growth (OD600). The data were presented relative to the
sample without an inhibitor (which corresponds to 100%).

4.3. Bacterial Susceptibility to Antibiotics (MIC Measurement)

Overnight cultures of the P. aeruginosa, E. coli, B. subtilis, S. enterica, and S. aureus
strains were diluted to OD600 = 0.0001 in LB medium on 96-well plates. Two concentra-
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tions (100 pM and 5 µM) of MHY1383 or MHY1387 and serial dilutions of 4 different
antibiotics (carbenicillin, gentamicin, tobramycin, and polymyxin B) were added into each
well containing bacterial cells in all combinations and incubated at 37 ◦C for 24 h. MIC
was evaluated from the cell growth on Sensititre™ Manual Viewbox (Thermo Scientific™,
Waltham, MA, USA). The concentration ranges of the serial dilutions of antibiotics used for
MIC measurement are shown in Table 4.

Table 4. Antibiotic concentration ranges for MIC assays.

The Concentration Range for MIC Assay (µg/mL)

Strains/Antibiotics Carbenicillin Gentamicin Tobramycin Polymyxin B

P. aeruginosa

0.2–14

0.5–5.5 0.5–5.5 0.5–5.5

E. coli 0.5–5.5 1–11 0.1–1.1

B. subtilis 0.5–5.5 0.5–5.5 5–55

S. enterica 1–11 1–11 0.5–5.5

S. aureus 0.5–5.5 1–11 50–550

4.4. Statistical Analysis

The Student’s t-test (two-sample assuming equal variances) was used to determine
the significance of differences using Microsoft Office Excel 2019. p < 0.05 was considered
significant. All of the experiments were carried out in triplicate and repeated at least twice
independently.

5. Conclusions

Two synthetic compounds, MHY1383, azo-resveratrol and MHY1387, 5-[4-hydroxy-3,5-
methoxybenzy]-2-thioxodihydropyrimidine-4,6[1H,5H]-dione, which have been previously
reported to have an anti-biofilm effect on P. aeruginosa at very low concentrations (1–10 pM),
were investigated for their anti-biofilm effects on various bacteria. Both MHY1383 and
MHY1387 inhibited the biofilm formation by E. coli, B. subtilis, and S. aureus at very low
concentrations of 1 pM–10 nM. Together with the previous results from P. aeruginosa, this
result indicates that the anti-biofilm effect of these two compounds at very low concen-
trations is a common effect for various bacteria. However, when these two compounds
were used together with several antibiotics against various bacteria, the effect of lowering
the MIC of the antibiotics was not generally observed. MHY1387 significantly lowered the
MIC when used together with carbenicillin against B. subtilis and S. aureus, while the MIC
of the antibiotic was lowered only within two-fold in other combinations.
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