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Abstract: (1) Background: Acinetobacter baumannii has become the most important pathogen responsi-
ble for nosocomial infections in health systems. It expresses several resistance mechanisms, including
the production of β-lactamases, changes in the cell membrane, and the expression of efflux pumps.
(2) Methods: A. baumannii was detected by PCR amplification of the blaOXA-51-like gene. An-
timicrobial susceptibility to fluoroquinolones and aminoglycosides was assessed using the broth
microdilution technique according to 2018 CLSI guidelines. Efflux pump system activity was assessed
by the addition of a phenylalanine–arginine beta-naphthylamide (PAβN) inhibitor. (3) Results: A
total of nineteen A. baumannii clinical isolates were included in the study. In an overall analysis, in the
presence of PAβN, amikacin susceptibility rates changed from 84.2% to 100%; regarding tobramycin,
they changed from 68.4% to 84.2%; for nalidixic acid, they changed from 73.7% to 79.0%; as per
ciprofloxacin, they changed from 68.4% to 73.7%; and, for levofloxacin, they stayed as 79.0% in both
groups. (4) Conclusions: The addition of PAβN demonstrated a decrease in the rates of resistance to
antimicrobials from the family of quinolones and aminoglycosides. Efflux pumps play an important
role in the emergence of multidrug-resistant A. baumannii strains, and their inhibition may be useful
as adjunctive therapy against this pathogen.

Keywords: Acinetobacter baumannii; efflux pump inhibitors; antimicrobial resistance; multidrug resistance

1. Introduction

Acinetobacter spp. are gram-negative coccobacilli, non-fermenters, non-motile, oxidase-
negative, and catalase-positive and are classified under the Moraxellaceae family [1].
A. baumannii, Acinetobacter calcoaceticus, A. nosocomialis, A. pittii, A. seifertii, and Acinetobacter
dijkshoorniae comprise 90% to 95% of clinically significant infections [2,3].

A. baumannii is an emerging nosocomial pathogen that has developed mechanisms
to resist disinfection, desiccation, and oxidative stress [4]. Its ability to survive under a
wide range of environmental conditions and to persist for extended periods of time on
surfaces makes it a frequent cause of outbreaks and an endemic healthcare-associated
pathogen [5], whose clinical significance has been increasing in the last three decades [6].
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Institutional outbreaks caused by multidrug-resistant (MDR) strains are a growing public
health concern [1]. This bacterium has currently become the most important pathogen
responsible for nosocomial infections in the health system worldwide [7].

A. baumannii causes ventilator-associated pneumonia or central-line bloodstream
infections and, less frequently, skin and soft tissues infections, such as war wound infections,
surgical site infections, and catheter-associated urinary tract infections [5,7–11]. Risk factors
regarding colonization or infection with multidrug-resistant species include prolonged
hospitalization, admission to the intensive care unit (ICU), mechanical ventilation, long-
term exposure to broad-spectrum antibiotics, recent surgery, invasive procedures, and
underlying severe illnesses [1,5,8–13].

Several intrinsic and acquired resistance mechanisms are frequently expressed in noso-
comial strains. These mechanisms include an increased production of antibiotic efflux
pumps [14], point mutations in target proteins to inactivate antibiotic effects, enzymatic
modification, antimicrobial degradation, and a reduction in membrane permeability [15,16].
In order to cause clinical resistance in Acinetobacter, efflux pumps usually act in association
with the overexpression of Amp C β-lactamases or carbapenemases. In addition to removing
β-lactam antibiotics, efflux pumps can actively expel macrolides, quinolones, tetracyclines,
chloramphenicol, and disinfectants [13].

Regarding clinical resistance, it has been reported that the rates of resistance to multiple
drugs in A. baumannii are approximately four times higher than in other gram-negative
bacilli [17]. Added to this is a resistance to carbapenem antibiotics, whose accelerated
diffusion not only in Latin America but worldwide represents a serious clinical threat [18].
It is considered that resistance against carbapenem antibiotics is, in itself, sufficient to
define an isolate of A. baumannii as highly resistant and therefore it is important to describe
its presence. The presence of resistance in this microorganism is multifactorial and is
largely due to the production of carbapenemases (metallo-β-lactamases, oxacillinases) [19].
More than six types of metallo-β-lactamases (MBL) have been described in A. baumannii
around the world [16]. Regarding oxacillinases, five types have been described: OXA-23,
OXA-24/40, OXA-58, OXA-143, and OXA-235, all capable of hydrolyzing carbapenems [19].
Unlike enzymatic mechanisms of resistance, non-enzymatic mechanisms, such as efflux
pumps, an alteration or change in penicillin-binding protein (PUP), and the loss of outer
membrane protein (OMP), are also responsible for bacterial resistance to drugs and are little
analyzed or not analyzed in clinical microbiology laboratories. All these factors contribute
to the failure of antibiotic treatment [20,21].

In this context, the most realistic approach in recent years is to investigate resis-
tance inhibition rather than to synthesize new compounds. In this category, efflux pumps
stand out [22]. Efflux pumps usually have three components and A. baumannii may con-
tain four categories of efflux pumps, including the RND, MFS, MATE, and SMR family
transporters, which have been reported to be related to A. baumannii’s antimicrobial re-
sistance, which is capable of actively pumping out a broad range of antimicrobial and
toxic compounds from the cell [23]. Five different families of transport proteins have
been shown to include multidrug efflux systems [24]. Recently, the proteobacterial an-
timicrobial compound efflux (PACE) family has been described as the sixth family of
bacterial multidrug efflux systems [24]. RND-type transporters are known to play a dom-
inant role in the MDR of many Acinetobacter species [25]. While the overexpression of
Ade transporters is often beneficial to bacteria, this is not always the case; some Ade
transporters, such as AdeABC, AdeFGH, and AdeIJK, can be toxic to cells when overex-
pressed [26,27]. Therefore, to assess the role of the drug efflux mechanism in bacteria, efflux
pump inhibitors (EPIs) are widely used [28]. The effects of several EPIs, including carbonyl
cyanide m-chlorophenylhydrazone (CCCP), phenylalanine–arginine beta-naphthylamide
(PAβN) [29], and 1-1-napthylmethyl)-piperazine (NMP) [30–32], have been previously
assessed in a small number of in vitro studies, including CCCP, PaβN [29], and NMP, along
with other drugs that may impact efflux mechanisms (omeprazole, verapamil, reserpine,
phenothiazines) [30–32]. One of the best-studied EPIs is the peptidomimetic compound
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phenylalanine–arginine beta-naphthylamide (PAβN, also called MC207, 110), which was
originally described in 1999 and was characterized in 2001 as a broad-spectrum efflux
pump inhibitor that is capable of significantly reducing fluoroquinolone resistance [33] and
permeabilizing membranes in P. aeruginosa [34].

Hence, the aim of this study was to analyze the contribution of the active efflux system
to resistance to quinolones and aminoglycosides in selected epidemic A. baumannii clinical
isolates with the efflux pump inhibitor PAβN.

2. Results

A total of nineteen Acinetobacter baumannii strains that were identified through the
amplification of the blaOXA-51 gene were included.

The patterns of susceptibility and resistance according to each antibiotic in the absence
and presence of the efflux pump inhibitor are described in Table 1.

Table 1. Susceptibility profiles of the Acinetobacter baumannii strains included in this study a.

Strain

MIC (µg/mL) (Susceptibility Rating) for Indicated Drug

Antibiotic Antibiotic + PaβN

TOB CIP LEV NA AK TOB CIP LEV NA AK

Ac2 0.5 (S) 0.5 (S) 8 (R) 128 (R) <0.25 (S) 1 (S) 0.25 (S) 2 (S) i 32 (R) 2 (S)
Ac10 1 (S) 0.5 (S) 32 (R) 32 (R) <0.25 (S) 2 (S) 1 (S) 32 (R) 32 (R) 1 (S)
Ac20 8 (I) 2 (I) 1 (S) 1 (S) <0.25 (S) 4 (S) 0.5 (S) i 4 (I) 4 (S) <0.25 (S)
Ac21 8 (I) <0.25 (S) <0.25 (S) 1 (S) 8 (S) 4 (S) 32 (R) 0.5 (S) 2 (S) 4 (S)
Ac22 0.5 (S) 0.25 (S) 2 (S) 16 (S) 4 (S) 0.25 (S) 0.5 (S) 4 (I) 1 (S) 2 (S)
Ac23 64 (R) 8 (R) 0.25 (S) 0.5 (S) 16 (S) 64 (R) 2 (I) i 0.25 (S) 2 (S) 4 (S)
Ac24 0.5 (S) 2 (I) 0.5 (S) 1 (S) 32 (I) 1 (S) 0.25 (S) i 0.25 (S) 0.5 (S) 16 (S)
Ac25 32 (R) 0.5 (S) 1 (S) 0.25 (S) 32 (I) 16 (R) 0.25 (S) 0.25 (S) 0.5 (S) 4 (S) i

Ac26 0.25 (S) 8 (R) 0.5 (S) 64 (R) <0.25 (S) 2 (S) 16 (R) 1 (S) 32 (R) <0.25 (S)
Ac27 0.5 (S) 1 (S) 0.25 (S) 64 (R) 16 (S) 4 (S) 2 (I) 0.25 (S) 8 (S)i 4 (S)
Ac28 0.25 (S) 4 (R) 2 (S) 16 (S) <0.25 (S) 4 (S) <0.25 (S) i 0.5 (S) 16 (S) 1 (S)
Ac29 0.5 (S) 2 (I) 1 (S) 64 (R) 32 (I) 4 (S) 2 (I) 1 (S) 32 (R) 4 (S) i

Ac30 2 (S) 0.5 (S) 1 (S) 2 (S) 0.5 (S) 0.5 (S) 0.25 (S) <0.25 (S) 0.5 (S) 0.25 (S)
Ac39 <0.25 (S) <0.25 (S) 2 (S) 2 (S) 1 (S) <0.25 (S) <0.25 (S) 0.5 (S) 0.25 (S) 0.5 (S)
Ac41 16 (R) <0.25 (S) 1 (S) 4 (S) 2 (S) 16 (R) <0.25 (S) 2 (S) 2 (S) <0.25 (S)
Ac46 16 (R) <0.25 (S) 0.25 (S) 4 (S) <0.25 (S) 8 (I) 0.25 (S) <0.25 (S) 1 (S) 0.25 (S)
Ac50 1 (S) <0.25 (S) <0.25 (S) 0.25 (S) 16 (S) 0.5 (S) 4 (R) <0.25 (S) 0.25 (S) <0.25 (S)
Ac54 4 (S) 1 (S) 4 (I) 2 (S) <0.25 (S) 1 (S) 1 (S) 2 (S) 0.25 (S) 4 (S)
Ac55 4 (S) 0.5 (S) 4 (I) 2 (S) 1 (S) 4 (S) 0.5 (S) 4 (I) 2 (S) <0.25 (S)

a TOB, tobramycin; CIP, ciprofloxacin; LEV, levofloxacin; NA, nalidixic acid; AK, amikacin; R, resistant;
S, susceptible; I, intermediate. i Change in susceptibility interpretation according to CLSI 2018 MIC values.
Bold: Fourfold change in MIC.

The table describes the antimicrobial susceptibility to five antibiotics, three of them be-
longing to the quinolone family (nalidixic acid, ciprofloxacin, levofloxacin) and
two aminoglycosides (tobramycin, amikacin). Two groups were formed for each of the
nineteen strains, one group that evaluated the susceptibility in the presence of only the an-
tibiotic and the other group that evaluated the susceptibility of the microorganism against
the antibiotic plus the efflux pump inhibitor studied (PAβN).

Susceptibility was assessed according to the CLSI 2018 standards (Table 2) [35] for
MIC values, as well as to the four-fold decrease in the minimum inhibitory concentration
value. Based on CLSI 2018 guideline recommendations for disc diffusion, a maximum
of 12 discs were used in a 150 mm plate and no more than 6 discs in a 100 mm plate;
the discs were placed no less than 24 mm center to center apart. Each zone diameter
was clearly measurable, and no overlapping zones were recorded that would prevent
accurate measurement. The diameter of the complete inhibition zones was determined
by eye, including the disc diameter. The Petri dish was held a few centimeters above a
black illuminated background at the time of measurement. The margin of the zone was
determined considering the area that does not show an evident and visible growth that
can be detected with the naked eye. In the present study, the growth of tiny colonies was
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not recorded, but it was taken into account that, if the case occurs, the weak growth of tiny
colonies should be ignored since they can only be detected with a magnifying glass at the
edge of the zone of inhibited growth; therefore, the most evident margin was measured to
determine the diameter of the zone.

Table 2. Reference values of the susceptibility ranges of the antibiotics used according to the CLSI
2018 criteria.

Antimicrobial
Agent

Disk Content
Interpretive Categories and MIC Breakpoints (µg/mL)

S I R

Tobramycin 10 µg ≤4 8 ≥16
Amikacin 30 µg ≤16 32 ≥64

Ciprofloxacin 5 µg ≤1 2 ≥4
Levofloxacin 5 µg ≤2 4 ≥8
Nalidixic acid 30 µg ≤16 - ≥32

R = resistant; S = susceptible; I = intermediate.

Non-susceptibility rates in the absence of PAβN including intermediate (I) and resis-
tant (R) categories were tobramycin (31.6%, n = 6), ciprofloxacin (31.6%, n = 6), levofloxacin
(21.1%, n = 4), nalidixic acid (26.3%, n = 5), and amikacin (15.8%, n = 3).

In the first place, according to the 2018 CLSI, eight strains that were in the presence of
PAβN showed a decrease in resistance to at least one antimicrobial evaluated. From this
group, ciprofloxacin (21.1%, n = 4) was the drug that showed the highest frequency of an
increase in susceptibility (Figure 1).

On the other hand, according to the four-fold decrease in the minimum inhibitory
concentration value, a total of sixteen strains (84.2%) that were in the presence of the
inhibitor showed decreased resistance profiles in at least one of the antimicrobials as-
sessed, despite the fact that, in some cases, it did not imply that categories between
sensitive, intermediate and resistant were changed. In this case, when only the MIC reduc-
tion is taken into consideration, more strains demonstrated changes in susceptibility to
amikacin (36.8%, n = 7) and nalidixic acid (36.8%, n = 7), followed by levofloxacin (26.3%,
n = 5), ciprofloxacin (21.1%, n = 4), and tobramycin (11.0%, n = 2). The inhibitory action of
amikacin and nalidixic acid was potentiated by PAβN in seven strains, with a four-fold
reduction in MIC. In one of the cases, the decrease in the MIC for three antibiotic agents
simultaneously was described.

In an overall analysis, amikacin susceptibility rates changed from 84.2% (n = 16) to
100% (n = 19); as per tobramycin, they increased from 68.4% (n = 13) to 84.2% (n = 16),
whereas the rates for nalidixic acid changed from 73.7% (n = 14) to 79.0% (n = 15), for
ciprofloxacin, they changed from 68.4% (n = 13) to 73.7% (n = 14), and, for levofloxacin,
they stayed as 79.0% (n = 15) in both groups.

Regarding antibiotics of the quinolone family, i.e., ciprofloxacin and levofloxacin,
a paradoxical reduction in the death or inhibition of the bacteria due to antibiotics was
observed in higher concentrations than their optimal bactericidal concentration. Three
cases were recorded for ciprofloxacin and two cases for levofloxacin.
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3. Discussion

Due to Acinetobacter baumannii, it is a worldwide concern to determine the mechanisms
of resistance to antibiotics in the pathogenesis of this bacterium, and evaluating alterna-
tive treatment strategies against it has become a priority. The combined actions of outer
membrane protein A, biofilm formation on biotic and abiotic surfaces, phospholipases
C and D, the metal homeostatic system, lipopolysaccharides, and verotoxins have been
determined to be relevant to the virulence and pathogenesis of this microorganism. Added
to this is the fact that A. baumannii is resistant to broad-spectrum antibiotics due to its
multiple mechanisms, such as β-lactamases, efflux pumps, aminoglycoside-modifying
enzymes, permeability changes, and target alternation [36]. Thus, deepening the study of
efflux pumps has led to the knowledge that they can be specialized for a single substrate or
can transport a variety of structurally different molecules (including antibiotics of many
classes) for which these pumps have been related to multidrug resistance (MDR) [37]. With
this information, it can be established that the inhibition of the efflux pumps could increase
the sensitivity to several classes of antibiotics and allow for a better therapeutic clinical
response in patients with various infections caused by this microorganism [38]. Novel
antimicrobial peptides, sterilization techniques, and combination therapies with efflux
pumps are being developed to effectively treat A. baumannii infections [39]. In this context,
the present study evaluated the sensitivity of a group of five antibiotics against A. baumannii
in the presence and absence of an efflux pump inhibitor.

The results of various studies indicate that there are several types of multidrug ef-
flux pumps. Among these, the efflux pumps belonging to the resistance–nodulation–cell
division (RND) family stand out, which play an important role in the resistance to antibi-
otics of several species of Gram-negative bacteria [40,41]. Three different RND pumps
are currently recognized in A. baumannii: AdeABC [42], AdeIJK [43], and, the third de-
scribed, AdeFGH, in a mutant strain of this microorganism [44]. The AdeABC system has
been shown to expel aminoglycosides such as amikacin, gentamicin, and kanamycin, as
well as chloramphenicol, cefotaxime, erythromycin, and quinolones such as norfloxacin,
ofloxacin, pefloxacin, and sparfloxacin, as well as netilmicin, tetracycline, tobramycin,
and trimethoprim [42]. On the other hand, the AdeIJK pump expels beta-lactam drugs,
fluoroquinolones, chloramphenicol, tetracycline, erythromycin, lincosamides, fusidic acid,
novobiocin, rifampicin, trimethoprim, acridine, pyronin, safranin, and sodium dodecyl
sulfate (SDS) [43]. Similarly, the AdeFGH bomb in a mutant strain of A. baumannii in
the absence of the AdeABC and AdeIJK pumps was shown to expel chloramphenicol,
trimethoprim, quinolones such as ciprofloxacin, and clindamycin [44,45]. On the other
hand, the AdeDE pump reported in Acinetobacter group 3 confers resistance to amikacin,
ceftazidime, chloramphenicol, ciprofloxacin, erythromycin, ethidium bromide, meropenem,
rifampicin, and tetracycline [46].

Consistent with the findings of Peleg et al. [47] and Valentine et al. [48], ciprofloxacin’s
MICs for most A. baumannii isolates (7/19) did not change more than fourfold in the pres-
ence of PAβN. This was also the case for the other antimicrobial agents that were assessed
in the present study. Results from a study of 103 Acinetobacter isolates in Tehran showed
a 40% lower MIC of ciprofloxacin when PaβN was added, but only 6.10% changed to
susceptible MIC values [49]. Furthermore, Golanbar et al. also demonstrated a reduction in
MIC when using PAβN [50], while Ribera et al. did not observe an effect on ciprofloxacin’s
MIC when PaβN was added [47]. PAβN has generally and extensively been used as an
efflux pump inhibitor in previous studies [49,51–53].

According to Coyne et al., a comparison of resistance levels in clinical A. bauman-
nii MDR strains confirms that efflux is a major factor for resistance to various classes of
drugs, including β-lactams, chloramphenicol, macrolides, tetracyclines, and aminoglyco-
sides, with a high-level resistance to fluoroquinolones that requires additional mechanisms,
such as the alteration of DNA type II isomerases [27]. Cheng et al. found that the use
of fluoroquinolones predisposes a high colonization density of MDR in nasal and fecal
specimens [54]. Efflux pumps have an important role in developing Acinetobacter spp.
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antimicrobial resistance, along with an overexpression of AmpC, β-lactamases, or car-
bapenemases [13]. This was also observed in the analyzed strains, as they expressed
oxacillinases (OXA-23, OXA-24, and OXA-143) along with efflux pumps in a previous
study [55].

It has been described that A. baumannii’s resistance to aminoglycosides results from
the production of aminoglycoside-modifying enzymes (AMEs). Their action is selective, so
they affect various aminoglycoside molecules differently. Although AMEs are considered
the main mechanism of resistance to aminoglycosides in A. baumannii, these antibiotics are
also subject to the action of efflux pumps, although they are described as less efficient in
the extrusion of amikacin [56–58]. However, our results describe a significant increase in
sensitivity in the presence of the inhibitor plus amikacin.

A paradoxical effect was observed in some isolates that were subjected to ciprofloxacin
and levofloxacin and showed an increased resistance in the presence of the inhibitor. This ef-
fect has been described for both the quinolone family and the PAβN
inhibitor [59,60]. Known as the Eagle effect or paradoxical growth, it is a phenomenon
in which bacteria exposed to antibiotic concentrations that are higher than the optimal
bactericidal concentration (OBC) paradoxically increase their survival levels due to a lower
net rate of cell death. In this context, despite extensive observational reports on this effect
in different microorganisms, its underlying mode of action is still not understood [60].

It has been widely described and demonstrated in the specialized medical literature
that efflux pump inhibitors have enormous potential for use in combination therapy by
increasing the efficacy of existing antimicrobials against multi-resistant pathogens such as
A. baumannii. However, as can be seen in the results of the present study, which evaluated
the sensitivity of clinical strains against an antibiotic together with a general efflux pump
inhibitor, the main challenge is to recognize that the pathogen can express multiple efflux
pumps with overlapping substrate profiles. It is for this reason that the search for a specific
inhibitor of a particular pump is not very feasible due to the very nature of the expression
of bacterial proteins, which allows for the expression of other simultaneous active pumps
in the same strain. In this context, confirming the specificity of the inhibitor would require
the silencing or elimination of other expressed pumps with simultaneous overlapping
substrate profiles. Added to this is the fact that RND efflux pumps are under very strict
regulatory control; not all strains express the desired pump to be examined in inhibition
studies, which represents a limitation of these studies [41]. Despite the existence of these
limitations, in controlled laboratory situations, it was possible to demonstrate that efflux
pump inhibitors such as PAβN are active against the AdeFGH pump of A. baumannii. This
efflux pump inhibitor analysis is given on clinical isolates of A. baumannii and underscores
the importance of silencing or eliminating other efflux pumps with overlapping substrate
profiles to characterize the inhibitor. At the same time, it highlights the importance of the
search for specific inhibitors of the RND pumps in A. baumannii, although the clinical utility
of this requires complementary studies [41].

Although the efflux pump inhibitor does not show intrinsic antimicrobial activity, it
can potentiate the activity of the drugs evaluated against clinical strains of A. baumannii,
which shows that it could be useful as an adjuvant to some antibiotics in the treatment of
infections caused by multiresistant A. baumannii. This was demonstrated in a study that
used norfloxacin [61] and that presented results like those obtained in the present work
with the quinolones and aminoglycosides evaluated.

The results of this study indicate that efflux pumps have a role in conferring resistance
to A. baumannii clinical isolates. Thus, efforts should be aimed at effectively detecting
this pathogen and its resistance mechanisms to improve healthcare standards and guide
antimicrobial therapy. Moreover, further research is needed to find more suitable, new
compounds, as well as effective therapies [15], against A. baumannii. Updated available data
particularly support the development of efflux pump inhibitors to be used in combination
with antibiotics [33]. Moreover, further studies are required to assess the efficacy and safety
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of such compounds alongside current therapy to decrease the burden of disease that is
attributable to this successful pathogen.

4. Materials and Methods
4.1. Samples

This study included nineteen non-duplicate clinical samples that were identified as
Acinetobacter baumannii by PCR and collected from inpatients at the National Institute
of Neoplastic Diseases (INEN, Instituto Nacional de Enfermedades Neoplásicas) over a
24-month period (January 2014–December 2016) in Lima, Peru.

Isolates were obtained from blood, bronchial aspirate, soft tissues, cerebrospinal fluid,
and urine. Samples were collected as part of the hospital’s infection surveillance and control
program. They were then stored and frozen at −80 ◦C.

Strains were recovered as part of an outbreak study [55], and selected strains were in-
cluded and further assessed by microbiological and molecular techniques at the biomedical
laboratory, Universidad Peruana de Ciencias Aplicadas (UPC), and Instituto de Investi-
gación Nutricional (IIN).

4.2. Bacterial Culture Conditions and Identification

The different clinical samples collected were cultured in petri dishes with tryptic soy
agar (TSA), which is a general nutrient medium for the growth and isolation of aerobic
and anaerobic bacteria, and incubated at 37 ◦C for approximately 24 h under aerobic
conditions [62]. Molecular identification was carried out by amplification of the blaOXA-
51-like gene by real-time polymerase chain reaction (real-time PCR). Before carrying out
the amplification of the DNA fragment, the extraction of the bacterial genetic material
was carried out using the protocol described by Oh et al. [63]. Then, for DNA amplifica-
tion, previously described primers and probes directed to the blaOXA-51-like gene were
used [64,65]. A commercial strain of A. baumannii (ATCC 19606) was used as a positive
control. Amplified products were gel-recovered, purified (SpinPrepTM Gel DNA Kit, San
Diego, CA, USA), and sent to be sequenced (Macrogen, Seoul, Korea).

The LightCycler 2.0 (Roche Diagnostic, Basel, Switzerland) was used for the detection
and amplification of genetic material by real-time PCR. Conditions were initial 10 min at
95 ◦C, followed by 55 cycles of denaturation at 95 ◦C for 5 s, annealing at 60 ◦C for 5 s,
and elongation at 72 ◦C for 15 s. Then, the melting curve protocol was applied under the
conditions of 95 ◦C for 20 s and then increments of 0.2 ◦C/s executed between 40 ◦C and
85 ◦C. Data acquisition was obtained during hybridization.

All the bacteria isolated and included in the study are disposable for scientific non-
commercial purposes.

4.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility to quinolones (levofloxacin, ciprofloxacin) and aminogly-
cosides (tobramycin, amikacin) was assessed by broth microdilution technique according to
the 2018 Clinical and Laboratory Standards Institute (CLSI) guidelines [35] and as Gholami
et al. described for nalidixic acid [33,66]. The susceptibility test for the antimicrobials
studied was performed using the Kirby–Bauer disk diffusion method. A bacterial suspen-
sion was obtained from cultures after evidencing growth. The turbidity of each bacterial
suspension was adjusted to a value of 0.5 McFarland standard and then inoculated onto
Müller–Hinton agar (Merck, Darmstadt, Germany). MIC concentrations were evaluated
from 0.25 µg/mL up to 256 µg/mL in a 96-well microtiter plate with 100 µL of the antibiotic
dilution and Müller–Hinton broth. The correct density of samples was standardized at
625 nm spectrophotometry, and samples were then incubated at 37 ◦C for 24 h. The MIC
was the lowest concentration without detection of bacterial growth [33,35], and Escherichia
coli ATCC 25922 was used as a quality control strain. Furthermore, information from the
2020 CLSI M100 guidelines [28] was used to determine the cut-off values, between sensitive,
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intermediate, and resistant, that were taken into consideration for the antimicrobials used
in this study.

4.4. Phenylalanine–Arginine beta-Naphthylamide (PAβN)

The activity of the efflux pumps system was assessed through the addition of
phenylalanine–arginine β-naphthylamide (inhibitor to the broth microdilution, as pre-
viously assessed in Gholami et al.’s study) according to the 2018 Clinical and Laboratory
Standards Institute (CLSI) guidelines [33,35]. Likewise, the susceptibility to antibiotics
was assessed in the presence and absence of the PAβN inhibitor (Sigma-Aldrich, St. Louis,
MO, USA). The minimum inhibitory concentration for each antibiotic was calculated in the
presence and absence of the PAβN inhibitor. A 4-fold or greater reduction in MIC values
after inhibitor addition was considered as a criterion of significance [31,48].

4.5. Ethics Statement

The study protocol was approved by the Research Ethics Board of the Instituto de
Investigación Nutricional (IIN). The samples of isolates were obtained at the clinical labo-
ratory within the context of an infection surveillance that the Committee for the Control
and Prevention of Intrahospital Infections of the National Institute of Neoplastic Diseases
regulated in accordance with the Technical Standard No. 753-2004/Ministry of Health of
Peru, as well as the International Ethical Guidelines for Health-Related Research Involving
Humans. Hospital-acquired infections (HAIs), also called health-care-associated infections
(HCAIs), are a public health problem and, under these provisions, the collection of samples
was exempted from informed consent. Patient information was coded when collected to
ensure anonymity and confidentiality, and their characteristics were evaluated from their
clinical records.

5. Conclusions

Our results demonstrate that the use of PAβN can improve the in vitro susceptibility
of A. baumannii against the antibiotics that were evaluated. The study is relevant as it
provides evidence that this efflux pump inhibitor can be used in combination with antibi-
otic therapy. Efflux pumps are still an important mechanism of antimicrobial resistance in
Acinetobacter baumannii strains, and the focus on the inhibitory effects of some substances, in-
cluding PAβN, could provide insight as a complementary therapy or new antimicrobials in
future research.
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