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Abstract: The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the
various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play
a noteworthy role because they export extraneous and noxious substrates from the inside to the out-
side environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently,
to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the
control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism
by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating
the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In
this review, we describe the influence of TCS on multidrug efflux pump expression and activity in
some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between
TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with
already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the
fight against growing antibiotic resistance.
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1. Introduction

Multidrug resistance (MDR) is increasingly becoming a serious problem due to the
capacity of numerous bacteria to develop mechanisms of defense against antimicrobial
chemotherapy [1–3]. From a biochemical point of view, resistance to antibiotics often
consists of the inability of an antibiotic to reach the microbial targets at a satisfactory
concentration to completely inhibit their biological functions. Bacteria showing resistance to
single or multiple drugs are considered as “superbugs” [4,5]. Causes related to this growing
phenomenon are usually associated with the ability of pathogenic bacteria to transfer genes
conferring drug resistance among different bacterial species, but also with the inappropriate
prescription of antimicrobial therapies in medical treatments, which provides resistant
bacteria with a selective advantage [6,7]. Mechanisms of bacterial antibiotic resistance
can involve (i) inactivation of the antibiotic by enzymatic modification, (ii) reduction in
antibiotic affinity for its molecular bacterial targets, (iii) transfer of plasmids carrying MDR-
related genes from one species to another; (iv) alterations in the permeability of the bacterial
cell surface, (v) overexpression of active efflux pumps recognizing various antibiotics with
different mechanisms of action, and (vi) the presence of polymorphisms or insertions in
the bacterial genome at the level of DNA sequence encoding for transcriptional regulators
(Figure 1) [8,9].
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Figure 1. Mechanisms of antibiotic resistance. A simplified bacterium is depicted in which various
mechanisms for resistance to antimicrobial substances are highlighted. A generic antibiotic is repre-
sented as a blue ball and its fate, after having contact with the bacterium, is analyzed in six potential
occasions: (1) drug inactivation by enzymes; (2) drug target modification; (3) plasmid-carrying
genes conferring antibiotic resistance; (4) changes in drug permeability following cell wall and cell
membrane modifications; (5) expression of efflux pumps that expel drugs outside the bacterial cell;
(6) selective DNA mutations altering the bacterial genome expression.

Efflux pumps are transporters playing important roles in bacterial pathogenesis,
metabolism, and multidrug resistance by decreasing the concentrations of intracellular
extraneous substances (i.e., antibiotics, disinfectants, detergents, etc.) and preventing
them from reaching their biological targets [10–13]. For this reason, efflux transporters
represent attractive targets for the development of new inhibitors that can help clinicians
fight against MDR-linked infectious diseases. On the basis of their sequence similarity,
substrate affinity, structure, and energy source, efflux transporters are mainly grouped
into five superfamilies: the multidrug and toxic compound extrusion (MATE) superfamily,
small multidrug resistance (SMR) superfamily, ATP-binding cassette (ABC) superfam-
ily, proteobacterial antimicrobial compound efflux (PACE) superfamily, major facilitator
superfamily (MFS), and resistance nodulation and cell division (RND) superfamily [14,15].
While transporters of the MATE, MFS, RND, and SMR superfamilies take advantage of the
motive force provided by H+ or Na+ ion gradients to obtain the energy to extrude various
compounds [16–20], the ABC pumps function by the hydrolysis of ATP to transport their
substrates across bacterial membranes [21,22]. In addition, the structural composition of
efflux pumps is different among the superfamilies (Figure 2).

1.1. MATE Efflux Pumps

Members of the MATE family consist of twelve α-helical transmembrane helices
(TMHs) exploiting electrochemical ion gradients to drive the efflux of cationic and pol-
yaromatic drugs [23]. Structurally, MATE pumps have a V-shaped central cavity facing
toward the extracellular space located halfway along the lipidic bilayer by maintaining
an outward-open state [14]. The principal substrates recognized by MATE transporters are
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fluoroquinolones [19]. NorM is, for example, a MATE efflux pump that protects pathogens
from the damage induced by reactive oxygen species and exports antimicrobial cationic
compounds or antibiotics, as demonstrated in Neisseria gonorrhoeae [24–26]. NorM inter-
action with substrates depends on ionic and hydrogen bonds with the involvement of
some conserved amino acid residues [25]. The drug-binding pocket is near the periplasmic
side and does not function in an inward-open state, pointing out the importance of the
conformational state of this pump [14]. Moreover, DinF (DNA damage-inducible protein
F), another MATE member, confers pneumococci resistance to moxifloxacin, ciprofloxacin,
and levofloxacin [27].
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Figure 2. Schematic representations of the main families of multidrug efflux pumps. Each transport
system is depicted with a different shape and color. The source of energy needed for substrate trans-
port is further indicated. A generic antibiotic is represented as a pill. The transporters indicated in the
figure are the multidrug and toxic compound extrusion (MATE) family, the small multidrug resistance
(SMR) family, the ATP-binding cassette (ABC) family, the proteobacterial antimicrobial compound
efflux (PACE) family, the major facilitator superfamily (MFS), and the resistance-nodulation-division
(RND) family. The principal sites where efflux pumps may be found located in Gram-negative
or Gram-positive bacteria are the outer membrane or the inner membrane that, in the figure, are
indicated with the acronyms OM and IM, respectively.

1.2. SMR Efflux Pumps

The SMR family members are composed of four trans-membrane helices (TMHs) span-
ning the cytoplasmic membrane, and they function as homodimers or heterodimers [28].
While three TMHs form a substrate-binding chamber, the fourth one contributes to inter-
actions involved in the dimerization process of the pump [28,29]. This transport system
alternates between inward and outward states following conformational changes that
happen in opposite orientations in the membrane [14]. The SMR pumps promote the solu-
bilization of a broad range of drugs such as disinfecting agents, toxic lipophilic molecules,
or toxic metabolites [28,29]. Genes encoding SMR proteins can be horizontally transferred
through plasmids or mobile genetic elements by conferring multidrug resistance [29].

1.3. ABC Efflux Pumps

ABC transporters are composed of trans-membrane domains (TMDs) containing
substrate-binding pockets and nucleotide-binding domains (NBDs) that bind and hy-
drolyze ATP to promote substrate transport [30–32]. The translocation of substrates across
the cell membrane is due to conformational changes happening by NBD dimerization
and dissociation, a process mediated by ATP. In this way, an ABC transporter alternates
an inward-open and outward-open conformation [33–35]. ABC transporters can be ho-
modimeric and heterodimeric but, sometimes, they can associate with an outer membrane
protein, increasing bacterial virulence and drug resistance. The tripartite complex MacAB-
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TolC efflux pump is, for example, a widely studied ABC-type transporter in Gram-negative
bacteria [36]. This complex is composed of the inner membrane protein MacB, the periplas-
mic protein MacA, and the outer membrane protein TolC. While the protein MacB contains
a C-terminal cytoplasmic tail and an N-terminal domain involved in the binding to ATP,
the protein MacA binds to the lipopolysaccharide core and is activated by ATPase [37,38].
It has been shown that the absence of the MacAB efflux pump makes Serratia marcescens
susceptible to aminoglycosides and polymyxins or that MacAB confers resistance to antibi-
otics in Agrobacterium tumefaciens [39,40]. Various examples of ABC transporters have been
described in Gram-positive microorganisms such as LmrA in Lactococcus lactis, EfrAB in
Enterococcus faecalis, or PatA/B in Streptococcus pneumoniae. LmrA recognizes and transports
macrolides and lincosamides [41,42], EfrAB primarily extrudes gentamicin, streptomycin,
and chloramphenicol [43], while PatA/B promotes defense against ciprofloxacin and nor-
floxacin [44].

1.4. PACE Efflux Pumps

PACE transporters are encoded by highly conserved genes among bacterial species
and contribute to the extrusion of biocides, such as chlorhexidine [45]. The PACE family
transporters share similar sizes and secondary structures with SMR transporters. The
best-described PACE transporter is the Acinetobacter chrlorhexidine efflux protein I (or
AceI) in Acinetobacter baumannii [46]. The structure of AceI depends on the pH and is the
result of an equilibrium between a monomeric and dimeric form. Glutamic acid residue
was revealed to be useful for its dimerization [47]. Moreover, AceI transcription has been
shown to be augmented in the presence of increasing levels of chlorhexidine that binds
to the transcriptional protein AceR, allowing bacteria to extrude chlorhexidine itself [47].
Recently, a new PACE transporter, named PA2889, has been characterized in Pseudomonas
aeruginosa. Similar to AceI, PA2880 transports chlorhexidine and forms dimers in a solution,
regardless of pH [48].

1.5. MFS Efflux Pumps

Compared to the other transporters, those belonging to the MFS family are the most
characterized and show 12–14 TMHs, organized as two main domains, each of them consist-
ing of bundles of six helices [23]. In this family of transporters, it is possible to distinguish
three subgroups: (i) uniporters that transport the substrate across the lipid bilayer without
using ions; (ii) symporters that transfer the substrate and ions in the same direction; and
(iii) antiporters that favor the translocation of the substrate and ions but in opposite direc-
tions [14]. Similar to ABC transporters, but under the control of the electrochemical proton
gradients, the two domains of MFS pumps alternate between inward-open and outward-
open conformational states during a transport cycle. MFS pumps that are associated with
multidrug resistance can be further identified as Drug: H+ antiporters 1 (DHA1) and
2 (DHA2) based on the conformation of their crystal structure. Some DHA1 transporters
have been, for example, characterized by their specific conformation (i.e., YajR, EmrD,
and MdfA in Escherichia coli), revealing the main helices that are preferentially targeted by
drugs [49–51]. Moreover, several studies focused on the differences, among MFS members,
in terms of drug–proton exchanges [52–54]. While members of DHA1 (i.e., MdfA) exchange
a single H+ ion with a single substrate by favoring the transport of neutral or monovalent
cationic drugs, members of DHA2 transfer two H+ ions for each substrate, regardless of its
charge [14]. The extrusion of hydrophilic fluoroquinolones is, for example, mediated by the
pump Lde in Listeria monocytogenes and NorA in Staphylococcus aureus, while macrolides
are eliminated by the pump Mef in S. pneumoniae [55–57]. Moreover, MFS transporters
may play relevant roles in other biological processes, such as microbial pathogenesis. For
example, A. baumannii uses the AbaQ MFS transporter for its motility, while S. aureus uses
the Tet38 MFS efflux pump in the adherence, internalization, and trafficking processes both
in epithelial cells and in phagolysosomes [58–60].
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1.6. RND Efflux Pumps

The RND pumps are composed of an outer membrane protein (OMP), an inner membrane
protein (IMP), and a periplasmic adapter protein (PAP) that mediates connections between
the OMP and IMP [20]. The TMDs of the RND transporters contain an internal structural
repeat that facilitates proton movement, whereas the folding of the periplasmic domain can
differ among the RND homologs. The site where the drug enters is called the pore domain
and consists of four subdomains (PN1, PN2, PC1, and PC2). Altogether, these subdomains
form two cavities responsible for drug recognition: the proximal and distal pockets. Both
pockets have specific amino acids that confer to each of them the ability to specifically bind to
a particular substrate rather than another one [14,61–64]. Examples of RND efflux pumps are
AcrAB-TolC in E. coli, AdeABC in A. baumannii, MexAB-OprM in P. aeruginosa, and SmeABC
in Stenotrophomonas maltophilia [65–68]. The RND efflux pumps are extensively involved in the
elimination of huge categories of antibiotics and toxic compounds. RND transporters play, for
example, an important role in mediating bacterial resistance to antibiotics and heavy metals.
Furthermore, a mutation in specific amino acid residues in strategic domains of these efflux
pumps may represent a mechanism to reduce or inhibit efflux pump affinity for their usual
substrates, enhancing MDR [69].

2. Efflux Pump Genetic Regulation

Expression of the different efflux pumps is under the control of numerous regulatory
pathways that seem to be triggered once the intracellular concentrations of toxic compounds
reach high levels [70]. There are two main pathways described in terms of efflux pump
genetic regulation: (i) the regulation mediated by transcriptional activators or repressors
with DNA-binding motifs and (ii) the activation of two-component systems (TCS) that
differently regulate gene expression. TetR is, for instance, a transcriptional regulator that
controls the expression of the efflux-linked tet genes, which, in turn, confer resistance to
tetracyclines, while the repressor FepR regulates the expression of the MATE efflux pump
FepA, which makes L. monocytogenes resistant to fluoroquinolones [71,72]. TCS are, instead,
composed of a sensor histidine protein kinase (HK) and a cognate response regulator
(RR) [73,74]. The structure of an HK is composed of four domains: a sensor domain,
an intracellular transduction domain, a cytoplasmic sensor domain, and a well-conserved
intracellular kinase domain responsible for HK autophosphorylation and the subsequent
transfer of a phosphoryl group to the RR. The sensor domains of HK can be intramembrane
or placed on the cell surface and can have several structural foldings [75,76]. The structure of
a RR is attributable to two main domains, indicated as the receiver domain and the effector
domain. The receiver domain contains conserved aspartate residues that are commonly
phosphorylated by the HK, whereas the effector domain has DNA-binding properties
that are useful for its interaction with target sequences in the bacterial genome in order to
regulate their expression [77–79]. TCS can be activated by different environmental signals,
such as host receptors, antimicrobials, bivalent ions, organic solvents, pH, and oxidative
stress. For several pathogens, a strict association between TCS and antibiotic resistance
has been described [80,81]. In light of this, the main goal of this review is to sum up all
information about the importance of TCS in regulating multidrug efflux pump expression,
one of the better-identified mechanisms of antibiotic resistance. In Table 1, examples of
TCS-mediated antibiotic resistance, including those mediated by mechanisms other than
efflux pumps, are reported for the pathogens cited in this paper. The multifactorial roles
played by TCS on MDR should be taken into consideration when developing targeted
therapies against infectious diseases.
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Table 1. Examples of antibiotic resistance mediated by TCS.

TCS Antibiotic Resistance Microorganism Refs.

PhoQ/PhoP *
Resistance to aminoglycosides
Resistance to cationic peptides

Modification of lipid A

P. aeruginosa; Klebsiella pneumoniae;
Salmonella enterica [82–85]

GacS/GacA Increased biofilm formation P. aeruginosa [86]

PmrA/PmrB
Resistance to cationic peptides

LPS modification
Modification of lipid A

P. aeruginosa; K. pneumoniae;
A. baumannii [87–90]

CprS/CprR Resistance to cationic peptides P. aeruginosa [91,92]

CrrA/CrrB Resistance to colistin K. pneumoniae [93]

ColS/ColR Resistance to polymyxin P. aeruginosa [94]

PprA/PprB Resistance to aminoglycosides P. aeruginosa [95,96]

CbrA/CbrB Resistance to polymyxin, ciprofloxacin,
and tobramycin P. aeruginosa [97]

BfmS/BfmR Resistance to meropenem and colistin A. baumannii [98,99]

CreC/CreB Resistance to β-lactams P. aeruginosa [100]

CopS/CopR Resistance to imipenem P. aeruginosa [101]

RcsBCS LPS modification S.enterica [102,103]

GraS/GraR Resistance to cationic peptides S. aureus [104]

VraS/VraR * Resistance to vancomycyn and oxacillin S. aureus [105,106]

CesR/CesK Increased expression of cell envelope genes L. monocytogenes [107,108]

ZraPR/ZraPS Resistance to fluoroquinolones, aminoglycosides,
aminonucleosides, cyclines, and β-lactams E. coli [109]

BasR/BasS * Resistance to class IIa bacteriocins E. coli [110]

CpxA/CpxR * Resistance to β-lactams and aminoglycosides E. coli [111]

* TCS are involved in efflux pump-dependent antibiotic resistance and are described in this paper.

3. Gram-Negative Bacteria
3.1. Acinetobacter baumannii

Acinetobacter baumannii (phylum: Proteobacteria; class: Gammaproteobacteria; order:
Pseudomonadales; family: Moraxeaceae) is a Gram-negative bacterium that is responsible
for a variety of diseases such as bacteremia, meningitis, urinary tract infections, pneu-
monia, soft tissue, and skin infections [112]. Among the multidrug-resistant pathogens,
A. baumannii behaves as an opportunistic microorganism by playing a significant role in
hospital-acquired infections [113]. Epidemiological estimations revealed that carbapenem-
resistant A. baumannii strains are isolated in a high percentage of intensive care unit patients
and can cause serious infections [114,115]. Due to its ability to resist multiple antimicrobials,
A. baumannii has been included among the most serious ESKAPE pathogens (E. faecium,
S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, and Enterobacter species) [116–118].
As an MDR microorganism, A. baumannii has the capacity of using several mechanisms
to escape antibiotic-mediated killing, including the production of modifying enzymes
(e.g., β-lactamases), the alteration of membrane permeability, target modification, and the
expression of multidrug efflux pumps [119–121].

To date, among the efflux transporter families, three RND efflux pumps have been
fully described and associated with intrinsic antibiotic resistance in A. baumannii: Ade-
FGH, AdeIJK, and AdeABC [122–126]. Their expression is tightly regulated by transcrip-
tional regulators. For example, the expression of the AdeFGH pump is controlled by the
LysR-type regulator AdeL, while AdeIJK is by the TetR family transcriptional regulator
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AdeN [119,127]. The RND-type efflux pump AdeABC has been greatly studied in A. bau-
mannii pathogenesis and is linked to multidrug resistance. The AdeB protein contains
twelve transmembrane domains, whereas AdeC is similar to the outer membrane protein
OmprM from P. aeruginosa. The AdeABC efflux pump confers resistance to various classes
of antibiotics such as aminoglycosides, tigecycline, gentamicin, and fluoroquinolones [128].
The genes encoding for the three elements of this efflux pump (namely adeA, adeB, and adeC)
are contiguous, co-transcribed, and preceded by two genes, which encode the AdeR and
AdeS (a response regulator and a histidine kinase, respectively) and are transcribed in the
opposite direction [129]. The absence of AdeR and AdeS renders A. baumannii susceptible to
aminoglycosides or phleomycin [129,130], while adeAB transcription is undetectable in sus-
ceptible strains. On the contrary, analyses of spontaneous gentamicin-resistant A. baumannii
mutants revealed major expression of adeAB genes. Moreover, the presence of specific
mutations in the sensor kinase domain and in the response regulator (Thr153→Met and
Pro116→Leu, respectively) promotes constitutive resistance. These point mutations reside
in important regions of the components of the AdeRS regulatory system. The Thr153→Met
substitution is close to the putative amino acid residue of autophosphorylation and is
seemingly involved in the inhibition of the phosphorylase activity of AdeS, whereas the
Pro116→Met mutation involves the output domain of the response regulator and enhances
AdeR affinity for its DNA sequence target [129]. Several observations have been performed
in clinical isolates of A. baumannii, revealing how functional mutations were mainly present
in the conserved domains of the AdeRS TCS and were associated with the overexpression
of the AdeABC pump and the loss of antibiotic susceptibility [131–134]. Some insertional
sequences in adeS have been further described in A. baumannii and associated with over-
expression of the AdeABC efflux pump and decreased susceptibility to tigecycline due
to constitutive activation of AdeR. By analyzing the adeR sequences of clinical tigecycline
resistant A. baumannii isolates, some researchers noted the presence of point mutations in
the DNA-binding domain of the response regulator of bacteria, showing a high minimal
inhibitory concentration (MIC) of tigecycline. This can be referred to as the AdeR reduced
binding affinity to the intercistronic spacer, thus enabling a major expression of the efflux
pump and the consequent raising of MIC values of tigecycline [135].

An RND efflux pump is typically formed by three proteins that together render the
whole complex functional. Interestingly, the adeC gene is not always present in all the
A. baumannii strains but, despite this, they continue to show antibiotic resistance, sug-
gesting that the complex AdeAB can function alone. In the ATCC 17978 strain, naturally
devoid of adeC, it has been shown that the deletion of adeRS determined susceptibility to
a limited group of antimicrobial substances, such as chlorhexidine and pentamidine, and
that resistance to these dicationic compounds was due to the AdeRS-dependent expression
of adeAB in ATCC 17978 [136]. However, rather than resistance to antimicrobial substances,
the overexpression of AdeABC is particularly linked to increased virulence in vivo justify-
ing, in this way, the onset of so many single-point mutations in the AdeRS TCS. The AdeRS
TCS is, indeed, involved in biofilm formation, epithelial cell killing, and the regulation
of genes related to motility, DNA uptake channels, and virulence in a Galleria mellonella
infection model [136,137].

In A. baumannii, the BaeSR TCS has also been found to be involved in antibiotic-
resistant phenotypes and was proposed as a regulator of several efflux pumps: AdeABC,
AdeIJK, and MacAB-TolC. Some authors showed that the BaeSR TCS responds to high os-
motic stress and influences the susceptibility of A. baumannii to tigecycline by the regulation
of adeA and adeB expression [138]. Furthermore, baeR deletion determines a reduction, in
terms of expression, of AdeIJK and MacAB-TolC levels, whereas tannic acid, which shows
potential properties as an antibiotic adjuvant, induces gene expression of the AdeABC,
AdeIJK, and MacAB-TolC efflux pumps [139]. Despite these phenotypical characterizations,
no protein DNA complexes have been observed between recombinant BaeR and adeA, adeI,
and macA promoters.
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3.2. Escherichia coli

Escherichia coli (phylum: Pseudomonadota; class: Gammaproteobacteria; order: Enterobac-
teriales; family: Enterobacteriaceae) is a significant component of the human microbiota,
but it can cause intestinal or extra-intestinal infections and represents a great reservoir of
resistance genes [140]. A large spectrum of virulence factors has been investigated and
associated with specific E. coli phenotypes [141]. Several papers focused on the role played
by TCS in multidrug efflux pump expression in E. coli. The EvgA/EvgS TCS of E. coli
shows high structural similarity to the BvgA/BvgS TCS of Bordetella pertussis [142]. The
N-terminal region of the sensor EvgS is localized in the periplasm, while the C-terminal
one is cytoplasmic and contains the typical four domains of an HK. The EvgS protein
responds to environmental stimuli through its periplasmic domain and transduces signals
into the response regulator EvgA via a series of phosphorylation reactions. Mutations in
the linker region of EvgS have been described and associated with constitutive activation
of this TCS that induces emrKY expression, an MFS-type exporter, and confers resistance to
sodium deoxycholate [143]. The linkage between emrKY and multidrug antibiotic resistance
has been confirmed by using several drugs and toxic compounds, such as doxorubicin,
novobiocin, crystal violet, rhodamine 6G, and others, showing that the EvgA regulator is
mainly responsible for the MDR mediated by the whole TCS [144]. Afterward, the rele-
vance of EvgA/EvgS TCS in E. coli antibiotic resistance has been confirmed and extended
by revealing that the EvgA promotes the expression of another MDR RND-type efflux
pump, called YhiUV, and confirming the requirement of a phosphorylated response regula-
tor [144]. Furthermore, in the presence of a deletion in the yhiUV gene, evgA up-regulation
does not determine resistance to oxacillin, cloxacillin, or nafcillin, confirming the strict
correlation between drug resistance, YhiUV, and EvgA overexpression [145]. Additionally,
several authors showed that the expression of different drug efflux genes is controlled by
a multifaceted regulatory network that involves both phosphorylated EvgA as the leading
regulator and the Mg2+-responsive PhoPQ TCS, which cooperates with the activated EvgS
sensor to promote expression of the outer-membrane channel TolC [146].

In two papers, published at almost the same time, the expression of the efflux pump
MdtABC has been attributed to the overexpression of the BaeR response regulator. The
MdtABC is an RND-type drug efflux transporter composed of three subunits that reduce
bacterial susceptibility to novobiocin and bile salt derivates. In addition, BaeR confers
low-level resistance to carbenicillin, aztreonam, carumonam, cefamandole, ceftazidime,
cefmetazole, cefuroxime, and cefotaxime [145]. In contrast to the organization of the genetic
loci of the EvgAS TCS and emrKY, the baeSR genes are located downstream of the mdtABC
genes and are not transcribed in the opposite direction [147,148].

E. coli K-12 has at least 20 MDR efflux pump genes that confer resistance, once over-
expressed [149]. In this strain, several genes associated with metal-induced modifications
of the membrane structure and functions have been described as regulated by the BasSR
TCS. Moreover, basR mutation confers E. coli resistance to polymyxin B and sensitivity to
deoxycholic acid. Deletion of basSR genes causes a loss of resistance to several antimicrobial
agents (such as norfloxacin, tetracycline, erythromycin, and others) in E. coli and reduces
the expression of the multidrug efflux pump emrD gene since BasR directly binds to its
promoter [150].

3.3. Pseudomonas aeruginosa and Pseudomonas fluorescens

Pseudomonas aeruginosa (phylum: Pseudomonadota; class: Gammaproteobacteria; order:
Pseudomonadales; family: Pseudomonadaceae) is a Gram-negative bacillus representing one of
the main causes of nosocomial infections, including ventilator-associated pneumonia (VAP)
and surgical, bloodstream and urinary tract infections (UTIs) [151]. It causes also high mor-
tality in people affected by cystic fibrosis, severe burns, or cancer. P. aeruginosa has the ability
to evade immune responses by producing numerous virulence factors, adhering to the host
surfaces and assembling biofilms [151–153]. The ability to form biofilms, together with low
membrane permeability and intrinsic mechanisms of resistance, makes P. aeruginosa less
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susceptible to antibiotics [151,154,155]. Particularly, the overexpression of multidrug efflux
pumps in P. aeruginosa is associated with the ineffectiveness of anti-pseudomonal drugs.
Examples of well-characterized efflux pumps in P. aeruginosa are the RND superfamily
members MexAB-OprM, MexCD-OprJ, and MexEF-OprN. MexAB-OprM expression is
controlled by the repressor genes mexR, nalC, and nalD and is constitutively expressed in
P. aeruginosa strains [156–158]. Mutations found in these genes are associated with MexAB-
OprM overexpression and MDR in both lab and clinical isolates [159–162]. MexAB-OprM
can pump several antibiotics, such as quinolones, macrolides, and chloramphenicol, and is
highly expressed in carbapenemase-producing P. aeruginosa strains [163,164]. MexCD-OprJ
is, instead, associated with resistance to fluoroquinolones, macrolides, novobiocin, tetra-
cyclines, chloramphenicol, and zwitterionic cephalosporins, and its expression is mainly
regulated by the repressor nfxB [163,165–170]. MexEF-OprN expression is regulated by
MexT, a LysR-like transcriptional regulator, and MexS [171,172]. Overexpression of this
efflux pump arises principally following the onset of revertant mutations that activate
MexT, since inactivating mexT mutations prevail in wild type P. aeruginosa strains [173].
The presence of mutations in mexS has been also observed in clinical isolates and linked to
the overexpression of MexEF-OprN [174–176]. In the context of biofilm assembly, efflux
pumps play a substantial role in P. aeruginosa pathogenesis for different reasons: (i) sev-
eral molecules are transported to the extracellular environment in the course of biofilm
formation; (2) specific substances are used in quorum sensing signaling pathways me-
diating intercellular communications; and (3) antibiotics are expelled by efflux pumps,
contributing to the preservation of the microbial community [177–179]. The MexAB-OprM
efflux pump, for example, delivers acyl-homoserine lactones (AHL) to the extracellular
compartments, whereas the MexEF-OprN efflux pump promotes the outflow of 4-hydroxy-
2-heptylquinoline in P. aeruginosa quorum sensing [177,180].

The MexXY-OprM pump is known to confer resistance to the aminoglycosides, which
are mainly chosen in the treatment of patients suffering from lung infections, such as cystic
fibrosis [181,182]. The mexX and mexY genes are part of the same operon under the control
of the repressor MexZ, while the OprM protein is encoded by another gene that belongs
to mexAB-oprM, a multidrug efflux pump, as mentioned above [183–185]. Expression
of the mexXY operon is induced by antimicrobials targeting the ribosomes or following
alterations in the translational machinery [186–188]. The AmgRS TCS has been linked
to the acquisition of aminoglycoside resistance in P. aeruginosa by mexXY overexpression
as a result of gain-of-function mutations in the amgS sensor kinase gene and exposure
to aminoglycosides themselves, resulting in protection from membrane damage [189].
Similar observations were made for mexAB-oprM overexpression, underlining the fact that
membrane-perturbing agents, such as diamide, favor the AmgRS-dependent mexAB-oprM
expression, even though this efflux pump does not seem to play a role in resistance to
aminoglycosides and diamide. In light of this, the authors speculate on the possibility
that aminoglycosides can induce the expression of OprM, an outer membrane protein that
primarily cooperates with the MexXY pump, which, instead, contributes to aminoglycoside
resistance since the oprM gene has its own promoter and can be transcribed independently
from mexAB [190]. Furthermore, a comparative genomic analysis has highlighted the direct
role played by the CpxRS TCS in mediating mexAB-oprM expression and the consequent
multidrug resistance in the mexR-defective nalB-type P. aeruginosa strain with a phenotype
detectable in clinical isolates during antibiotic therapy [191].

Strains isolated from patients with cystic fibrosis often exhibit mutations in the mexZ
gene resulting in marked mexXY expression [184,192,193]. Moreover, clinical P. aeruginosa
isolates overexpressing MexXY with an intact mexZ gene have sometimes been reported,
suggesting additional regulatory pathways [181,193]. A genomic analysis of polymor-
phisms revealed the presence of a point mutation in the receiver domain of the response
regulator ParR that is part of the ParRS TCS (standing for peptide-adaptive resistance
regulator and sensor). The ParRS TCS has been described as a regulatory system responsi-
ble for the P. aeruginosa adaptive resistance to polycationic peptides, such as colistin, by
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the lipopolysaccharide (LPS) modification operon arnBCADTEF-ugd [194]. Inactivation of
parS and paRS genes deletes multidrug resistance of the tested strains in the presence of
colistin, and a single mutation in the first transmembrane domain of the sensor ParS confers
an MDR phenotype due to an up-regulation of the mexY gene and down-regulation of the
OprD porin. Even in the case of this TCS, several nucleotide substitutions in parS or in parR
have been found in P. aeruginosa clinical isolates [195].

Few ABC transporters are known for P. aeruginosa. In a paper, several authors showed
that the PA4456-4451 efflux pump increases bacterial resistance to tetracycline and that
the PhoQP TCS negatively controls its expression in a wild type strain under low Mg2+

conditions, suggesting its role in P. aeruginosa intrinsic resistance [82].
Another efflux pump, called CzcCBA, has been associated with P. aeruginosa resistance

to heavy metals such as zinc, cadmium, and cobalt [196,197]. A central role in czcCBA
expression has been attributed to CzcRS (standing for cobalt/zinc/cadmum regulator
and sensor) TCS, whose transcription is further enhanced upon exposure to heavy metals.
The same resistance profile has been found for carbapenem-resistant strains that show
a reduced quantity of the OprD protein. Interestingly, a single point mutation in the residue
Val-194, in correspondence with the second transmembrane segment of the CzcS sensor,
greatly contributes to a decrease in the levels of OprD expression, whereas it augments
resistance to imipenem [197]. On the contrary, the overexpression of the CzcR response
regulator does not determine a major resistance to heavy metals, rendering bacteria more
susceptible to them because it does not up-regulate the oprD gene, suggesting that this type
of regulation does not require the phosphorylation of CzcR compared to the role played by
the phosphorylated CzcR in triggering the transcription of the CzcCBA [197]. In light of
these evaluations, the authors remark on the possibility that both the overexpression of the
CzcCBA efflux pump and the down-regulation of the OprD porin can represent defense
mechanisms to avoid the increase in dangerous molecules inside the bacterial cell [197].
Furthermore, the Zinc Uptake Regulator (also known as Zur protein) has been shown to
be involved in the control of intracellular zinc by the activation of CzcR. Indeed, in the
presence of high quantities of Zn inside the bacterial cell, Zur dimerizes with zinc and
enhances the expression of the regulator CzcR that, in turn, promotes the up-regulation
of the zinc-extruding efflux pump CzcCBA [198]. CzcRS-dependent zinc induction plays
a relevant role in P. aeruginosa since urine can release zinc upon contact with siliconized latex
urinary catheters favoring carbepenem-resistance mediated by OprD expression [199,200].
These observations are in line with those performed with the TCS of uropathogens during
the onset and progression of urinary tract infections [201].

Additionally, in P. fluorescens, the RND superfamily efflux pump EmhABS has been
found to induce resistance to antibiotics such as ampicillin, chloramphenicol, and tetracy-
cline [202,203]. Antibiotic resistance associated with the RstA/RstB TCS has been linked to
increased expression of EmhABS and the MexCD-OprJ efflux pump, as demonstrated by
the reduction in transcriptional levels of emhA and mexC after deletion of the rstA gene [204].
Similar to other studies performed on TCS regulation, even in this case, direct binding of
the response regulator RstA to the emhA promoter was shown, underlying the role of the
conserved aspartate residue 52 (D52) in the phosphorylation process since the substitution
of this amino acid residue with a non-functional alanine residue increased bacterial sus-
ceptibility to numerous antibiotics such as chloramphenicol, gentamicin, kanamycin, and
lomefloxacin [204]. Deletion of the sensor domain RstB did not have any effect in terms of
antibiotic resistance. It seems that TCS RstA/RstB can function as a sensor for nitrosative
stress, as suggested by the up-regulation of pyoverdine biosynthesis [204].

3.4. Salmonella enterica

Salmonella enterica (phylum: Pseudomonadota; class: Gammaproteobacteria; order: En-
terobacteriales; family: Enterobacteriaceae) is a Gram-negative bacterium associated with
foodborne disease and is the cause of Salmonellosis. It is the main cause of diarrhea, and
more than 500 million humans are annually infected. After gaining access to the host,
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Salmonella overcomes the acid defenses of the stomach causing damage to the gastroin-
testinal tract [205]. For example, S. enterica behaves as an intracellular pathogen because
of its capacity to enter the M cells, and it consequently crosses the epithelial barrier of
the gut, causing a variety of diseases ranging from gastroenteritis to typhoid fever [206].
The host cells that are infected by Salmonella undergo cytoskeletal alterations that facili-
tate Salmonella internalization. This is made possible thanks to the expression of different
Pathogenicity Islands (PIs) by several virulent Salmonella strains. PIs, for example, promote
the production of a type of secretion system (T3SS) that mediates the injection of effector
proteins inside the host cells with the effect of facilitating the invasion of epithelial cells
and intracellular survival [207]. Moreover, Salmonella species invade the gallbladder, form
biofilms in gallstones, and may cause irritable bowel syndrome and reinfection of the
gastrointestinal tract [208,209].

Nowadays, multidrug resistance is increasingly becoming a relevant problem in the
case of Salmonella species, and several clinical isolates were found to be resistant to fluo-
roquinolones [210–215]. Ceftriaxone and azithromycin currently represent the secondary
drugs of choice for treating patients suffering from typhus when fluoroquinolone-resistant
strains are detected. Furthermore, although carbapenems and colistin are taken into con-
sideration as antimicrobial agents against multidrug-resistant Salmonella isolates, cases of
carbapenemase- and colistin-resistance phenotypes are beginning to prevail. Even for this
pathogen, efflux pumps represent an important mechanism to subvert the anti-bacterial
effects mediated by drugs [216]. The RND efflux pump AcrAB-TolC is, for instance,
overexpressed during S. enterica exposure to antimicrobial agents through a series of tran-
scriptional activators [217]. Moreover, in S. enterica serovar typhimurium, the MATE type
efflux pump MdtK was found to be responsible for extruding drugs, such as aminogly-
cosides and fluoroquinolones, from the bacterial cell [218]. Among the MFS-type efflux
transporters in S. enterica, the EmrAB is an important pump because it has been reported as
a way to develop resistance to different antimicrobial drugs such as novobiocin, sodium
deoxycholate, and nalidixic acid [219].

Several efflux pumps have been discovered in S. enterica serovar typhimurium, and
each of them can confer specific antibiotic resistance. For example, the overexpression of
the transporter MdsABC determines resistance to novobiocin, acriflavine, crystal violet,
and other antimicrobial agents, while the up-regulation of the efflux pump emrAB genes
does not render bacteria susceptible to novobiocin, nalidixic acid, or rhodamine 6G [220].
Remarkably, the overexpression of macAB drug exporter genes is induced by the PhoP-PhoQ
TCS, which is known for preserving bacteria from bile salts [221]. Specifically, this TCS has
been identified as a direct repressor of macAB genes since the latter are down-regulated in
a phoP mutant compared to the wild type strain. Moreover, Mg2+ ions have been proposed
as the main signal activating the PhoPQ TCS that, in turn, enhances the expression of macAB
ABC-transporter genes [220]. Transposon mutagenesis experiments revealed the role played
by the BaeRS TCS in the acquisition of S. enterica resistance to antibiotics, showing that
the response regulator BaeR confers more resistance to broad-spectrum cephalosporins
(i.e., ceftriaxone) than narrow-spectrum and expanded-spectrum drugs (i.e., cephalothim
and cefamandole, respectively). Moreover, the expression of BaeR regulates the synthesis
of two outer membrane proteins, named OmpW and STM3031 [222]. In another paper, it
has been reported that the multidrug efflux pump mdtABC and acrD genes are positively
regulated by the BaeSR TCS. The overexpression of baeR increases S. enterica serovar
typhimurium resistance to several β-lactams, such as oxacillin, cloxacillin, and nafcillin, an
effect that is also dependent on the expression of the TolC exporter, as demonstrated by
using mutant strains for the TCS and/or the components of the efflux pumps [223]. In
addition, copper and zinc have been indicated as signals capable of triggering the activation
of the BaeSR TCS for the induction of mdtA and acrD gene expression, contributing to
metal adaptation and resistance in S. enterica [223]. S. enterica resistance to aminoglycosides
and β-lactams in both susceptible and clinical isolates has been studied in the context of
CpxAR TCS activation. The absence of cpxR decreases the MICs of gentamicin, apramycin,
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neomycin, ceftriaxone, amikacin, ceftiofur, and cefquinome, compared to the wild type
strains [224]. Moreover, complementation of a ∆cpxR S. enterica serovar typhimurium strain
with a plasmid encoding for CpxR significantly reduces the expression of various porins
(i.e OmpF, OmpC, OmpD, and OmpW) and up-regulates STM301 and STM1530 proteins in
association with ceftriaxone [224]. A high incidence of antibiotic resistance has been further
reported for S. enterica serovar Enteritidis isolates with the ACSSuT resistance profile
(standing for resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole,
and tetracycline) [225,226]. The analysis of several TCS showed that the absence of PhoP
and CpxR response regulators increases susceptibility to cephalosporins and quinolones
by improving the expression of membrane porins (OmpC, OmpD, and OmpF) and by
reducing efflux pump genes, such as acrA, macB, and mdtK [227].

3.5. Stenotrophomonas maltophilia

Stenotrophomonas maltophilia (phylum: Pseudomonadota; class: Gammaproteobacteria;
order: Xanthomonadales; family: Xanthomonadaceae) is a Gram-negative opportunistic bac-
terium that shows high-level intrinsic resistance to several antimicrobial drugs [228]. Dif-
ferent RND-type efflux pumps have been identified in S. maltophilia: SmeABC, SmeDEF,
SmeOP, SmeIJK, SmeVWX, and SmeYZ [229–234]. SmeDEF and SmeOP are under the con-
trol of the TetR-type transcriptional repressors, SmeT and smeRo, whereas the expression
of the SmeVWX pump is regulated by a LysR-type transcription regulator [231,234,235].
Numerous antibiotics are extruded by these efflux pumps. While SmeDEF, for example,
recognizes chloramphenicol, quinolone, tetracycline, and macrolides, SmeOP pumps out
doxycycline, nalidixic acid, aminoglycosides and macrolides [229,234]. A sequence analysis
of the genetic organization around the smeYZ genes revealed the presence of two genes
encoding for an RR and HK that were named smeRy and smeSy, respectively. The deletion
of the whole smeRySy TCS results in enhanced susceptibility to SmeYZ substrates and the
reduction in smeYZ expression [236]. It is surprising that the inactivation of SmeRySy TCS
increases the resistance to antimicrobial drugs that are not commonly recognized by the
SmeYZ efflux pump but by the SmeDEF pump, whose operon is, instead, up-regulated in a
strain deleted for this TCS [236]. In this case, S. maltophilia acquires resistance to chloram-
phenicol, ciprofloxacin, tetracycline, and macrolides. Furthermore, ∆smeRy bacteria show
an increased susceptibility against aminoglycosides, which are substrates of SmeYZ, but
do not exhibit susceptibility against the substrates of the SmeDEF efflux pump. Altogether,
these evaluations highlight that the inverse expression of both pumps may cooperate to
sustain bacterial survival [236].

Cationic antimicrobial polypeptides (CAPs) are frequently used to treat MDR bacte-
ria, and it has been shown that the PhoQP TCS plays a role played in resistance against
them in S. maltophilia. Under low concentrations of Mg2+, the response regulator PhoP
mediates the expression of the SmeZ efflux transporter, determining aminoglycoside re-
sistance. Moreover, bacteria devoid of the phoP gene show a major permeability in the
cell membrane compared to wild type bacteria [237]. The MacABCsm is an ABC-type
efflux pump that is able to extrude macrolides, aminoglycosides, and polymyxins [238].
Upstream of the macABCsm cluster, two genes encoding for the components of the MacRS
TCS are placed. In contrast to other TCS, this MacRS TCS is divergently transcribed from
the macABCsm operon, suggesting its critical role in the expression of this efflux pump [238].
The MacABCsm pump is different from the MacAB homologs of other microorganisms
because it has its own outer membrane channel, is intrinsically expressed, and is involved
in several physiological functions, such as oxidative stress tolerance and biofilm assem-
bly [238].

3.6. Klebsiella pneumoniae

Klebsiella pneumoniae (phylum: Proteobacteria; class: Gammaproteobacteria; order: Enter-
obacteriales; family: Enterobacteriaceae) is a Gram-negative facultative bacterium belonging
to the Enterobacteriaceae family. It causes severe diseases such as urinary tract infections,
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soft tissue infections, septicemia, and pneumonia [239]. The main reservoir for K. pneu-
moniae is the gastrointestinal tract, whose colonization depends on the capacity of this
pathogen to interact with host surfaces, assemble biofilms, and survive against stressful
responses [240–242]. K. pneumoniae is responsible for both nosocomial and community-
acquired infections and is frequently isolated from liver abscesses [243–246]. For this
microorganism, antimicrobial resistance was particularly linked to therapeutic failures of
antibiotics such as quinolones, aminoglycosides, and β-lactams. Among TCS involved
in sensing stressing responses, the CpxAR has been investigated in numerous bacteria,
such as E. coli and S. enterica [247–251]. It has been demonstrated that the sensor kinase
CpxA is induced by physical, chemical, and biological stresses, incorrectly folded proteins,
detergents, etc. The hyper-virulent K. pneumoniae NTUH-K2044 strain has been used to
investigate the role of the CpxAR in antimicrobial resistance [252]. The deletion of cpxAR in
this strain resulted in sensitivity to cefepime, cefotaxime, ceftazidime, and chloramphenicol
and in the relative inability to express efflux pump-encoding genes, such as acrB, acrD,
and eefB, highlighting the important contribution of CpxR to MDR [252]. Interestingly, the
deletion of the whole TCS enhances the expression of three proteins in the outer mem-
brane, suggesting that proteins resembling E. coli porins are involved. A DNA-protein
binding assay showed that CpxR binds near the gene encoding for a homolog of E. coli
OmpC, called OmpCKP (known also as kpnO) [252]. In another study, the role of the kpnO
porin in MDR has been investigated in relation to its regulation by the PhoBR TCS. The
deletion of phoB renders K. pneumoniae sensitive to antibiotics (i.e., ceftazidime, cefepime,
ceftriazone, ertapenem, carbenicillin, and quinolones) by decreasing kpnO expression [253].
Tigecycline is currently one of the most frequently used drugs against carbapenem-resistant
pathogens. Despite this, numerous carbapenem-resistant clinical strains are becoming
more and more resistant to tigecycline [254–256]. For several microorganisms, resistance to
this antimicrobial compound has been reported to be mediated by the overexpression and
activity of RND transporters, such as the AcrAB-TolC efflux pumps [257]. Additionally,
there are few papers focused on the correlation between antibiotic resistance and metal
detoxification, suggesting that the presence of heavy metals can sometimes up-regulate
resistance to antibiotics, such as β-lactams [258,259]. In K. pneumoniae, the CusSR TCS was
responsive to copper and silver ions that induced the phosphorylation of the regulator
CusR. This, in turn, promoted the positive regulation of CusCFBA efflux pumps, rendering
bacteria resistant to the inducing ions. Based on these observations, the role of the CusSR
TCS was further studied in carbapenem-resistant K. pneumoniae (CRKP) strains by showing
that this TCS also regulates tigecycline susceptibility [260].

4. Gram-Positive Bacteria
4.1. Staphylococcus aureus

Staphylococci (phylum: Firmicutes; class: Bacilli; order: Bacillales; family: Staphylo-
coccaceae) are Gram-positive bacteria and are considered commensals or opportunistic
microorganisms [261]. Staphylococci are differentiated into two main groups: coagulase-
negative (CoNS) and coagulase-positive staphylococci (CoPS) on the basis of their capacity
to use the coagulase enzyme to favor plasma coagulation. CoNS are considered less
pathogenic than CoPS because they have fewer virulence factors, even though they have
been also observed, for example, in pets, wild animals, and poultry meat, rather than hu-
mans [262–266]. Among CoNS, Staphylococcus epidermidis, Staphylococcus haemolyticus, and
Staphylococcus saprophyticus are mainly involved in human infections, particularly in people
suffering from immune system deficiencies or with implantable medical devices, as well as
in oncologic patients and newborns [267,268]. Several cases of antibiotic resistance have
been reported for CoNS because they were found resistant to methicillin because of the
expression of the mecC gene located on a mobile genetic element [269–271]. S. epidermidis
is, indeed, considered an important reservoir of resistance genes and is responsible for
their transfer to other staphylococci. Among CoPS, S. aureus is the main representative
human pathogen responsible for a wide-ranging spectrum of frequent diseases such as
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superficial skin abscesses, endocarditis, toxic shock syndrome, pneumonia, meningitis,
and septicemia [272–274]. Staphylococcal infections are becoming increasingly difficult to
treat because of multidrug resistance against β-lactams, quinolones, and aminoglycosides.
Furthermore, the diffusion of methicillin-resistant S. aureus (MRSA) strains is stimulating
researchers to find novel therapeutic targets and technologies [273,275]. Efflux pumps in
S. aureus represent a noteworthy theme because hospital-acquired S. aureus often uses this
mechanism to acquire antibiotic resistance [276–278]. Different from CoNS, in S. aureus, var-
ious MDR efflux pumps have been characterized and found to be chromosomal or plasmid
encoded. For instance, NorA and QacA belong to the MFS multidrug efflux family. NorA,
together with NorB and NorC, confers resistance to hydrophilic fluoroquinolones, biocides,
dyes, and chloramphenicol, and is expressed in a wide number of MRSA strains [279–282].
A plasmid-encoded efflux pump, the QacA transporter, is able to extrude a large spectrum
of cationic lipophilic antimicrobial agents, such as diamidines and biguanidines [283–285].

As for other pathogens, TCS play important roles in the regulation of S. aureus re-
sponses to environmental stimuli, such as antibiotics. There are several examples regarding
TCS that do not necessarily affect efflux pumps or transport systems. The WalKR TCS
is, for example, highly conserved in Gram-positive bacteria and is involved in cell wall
synthesis by regulating the expression of several gene encodings for autolysins and pepti-
doglycan hydrolases. Activation of this system results in the shortening of cell wall sugar
chains and a reduction in the dense network of peptidoglycan cross bonds [286,287]. By
modulating these processes, bacteria can reduce or suppress the effect of antibiotics acting
on cell wall synthesis, such as vancomycin, which has D-alanyl-D-alanine as the main
target [288]. Vancomycin-intermediate resistance in S. aureus strains (indicated as VISA) is
associated with a high frequency of walKR mutations [287]. The single point A96T mutation
affects WalKR TCS function by inhibiting the phosphorylation cascade and impairing cell
wall modifications. This results, in turn, in decreased bacterial sensitivity to antimicrobial
drugs [289]. Moreover, the histidine kinase of the WalKR TCS is physiologically inhib-
ited by the protein YyccHI. A higher frequency of mutations in the yyccHI gene has been
found in VISA clinical strains compared to vancomycin-sensitive S. aureus [290]. A similar
mechanism has been described for the AirSR TCS, whose mutations down-regulate the
expression of proteins involved in cell wall synthesis, thereby increasing resistance against
vancomycin [291]. In addition, the VraRS TCS positively regulates the synthesis of several
proteins promoting resistance to vancomycin [292]. The LytRS TCS has, instead, a double
role because on the one hand, it regulates the secretion of extracellular DNA during biofilm
formation, and on the other hand, it protects S. aureus from the action of CAPs. As far as the
second aspect is concerned, the LytRS TCS acts when CAPs try to destroy the integrity of
the cell membrane, leading to the death of bacteria through a series of lithic events. When
the bacteria cell surface is altered by CAPs, the authophoshorylation of the sensor LytS is
followed by the activation of the regulator LytR that increases the expression of the irgAB
gene, which inhibits, in turn, programmed cell death [293,294].

Numerous studies focused on the mechanisms used by VISA strains to augment
vancomycin resistance. These include increased peptidoglycan synthesis, decreased cell
wall turnover, reduced cross-linking, decreased muropetide amidation and/or penicillin-
binding protein levels, and efflux pumps [295–299]. Bacteria protect themselves not only
from synthetic antibiotics but also from bacteriocins, antimicrobial molecules that are
secreted by other bacteria to predominate other species. ATP-binding cassette (ABC)
transporters are usually involved in bacterial self-immunity against secreted bacteriocins,
and many gene encodings for ABC transporters are close to TCS genes [300,301]. In
light of this, the GraRS TCS up-regulates the expression of the VraFG ATP-transporter,
improving S. aureus resistance against both vancomycin and polymyxin B. Furthermore,
alterations of the GraRS TCS have been found in association with increased bacterial
lysis and negative surface charge, suggesting that this TCS might be a relevant target
in the therapy of clinically resistant staphylococcal infections [302]. The BraS/BraR TCS
has been investigated for its role in S. aureus resistance to bacitracin and nisin. “Bra”
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stands for bacitracin resistance-associated, where bacitracin is an antibiotic that inhibits
peptidoglycan synthesis after binding to undecaprenyl pyrophosphate (UPP), the lipid
carrier responsible for the translocation of cell envelope precursors to the extracellular
side of the cell membrane [303]. Despite this, Gram-positive bacteria have developed
resistance to this drug [304–306]. In B. subtilis, a TCS similar to BraS/BraR has been found
to control the expression of an ABC transporter that confers resistance to bacitracin [305,307].
Structurally, BraS belongs to the intramembrane-sensing kinase subfamily because of the
presence of a short sensing domain composed of two TMHs separated by a small peptide
loop. This conformation seems to be involved in the cell envelope stress that is usually
generated by antibiotics. Hiron A. et al. showed that absence of the whole BraS/BraR TCS
makes staphylococci highly sensitive to bacitracin, and this regulatory system controls
the synthesis of the BraDE and VraDE ABC transporters, which play different roles in
antibiotic resistance. Unusually, while the BraDE transporter is required for activating
the phosphorylated conformational state of BraR and has no relevant role in the antibiotic
resistance, VraDE is sufficient to render bacteria resistant to bacitracin and nisin [308].

Based on their amino acid composition, bacteriocins can be classified into Class I and
II. Class I bacteriocins, also known as lantibiotics, are further distinguished into type A
and type B subgroups [309]. Among type A lantibiotics, nisin A plays an important role.
Nisin A binds to lipid II, inhibits cell wall synthesis, and produces bactericidal effects
by causing pore-formation [310,311], while Nukacin ISK I acts as a bacteriostatic agent
by inhibiting cell wall synthesis [312]. The role played by GraRS, BraRS, and VraSR TCS
in S. aureus has been investigated by observing the effects of TCS deletions in bacterial
co-culture experiments [313]. Genetic inactivation in any of the three TCS causes increased
susceptibility to nisin A and/or nukacin ISK I. BraRS TCS activity is associated with
resistance to nisin A and nukacin ISK-1, whereas GraRS is involved in the regulation of cell
surface charge. Indeed, the inactivation of graRS genes caused an increase in the attraction
of the cationic peptides nisin A and nukacin ISK-1 to the cell surface. Lastly, the inactivation
of the VraSR TCS led to an increase in S. aureus susceptibility to nukacin ISK-1, rather than
nisin A [313]. In addition, nukacin ISK-1 and nisin A function as activating stimuli of the
BraRS TCS in terms of vraD and braA gene up-expression, whereas vraF expression, under
the GraRS control, is not induced by the same antibacterial agents [313].

Fosfomycin is another bactericidal antibiotic that behaves as a phosphoenolpyruvate
(PEP) analog, which inhibits the protein MurA, altering the first steps in peptidoglycan
biosynthesis [314,315]. Fosfomycin is useful for the treatment of numerous multidrug-
resistant S. aureus-linked diseases, such as endocarditis [316]. An association between
resistance to fosfomycin and the HptRS TCS has been found. This TCS is part of a novel
hexose phosphate transport (HPT) system that includes the HptA protein (a putative
phosphate sensor) and the UhpT protein (a hexose phosphate transporter). The authors
suggest that HptA can sense extracellular phosphates and fosfomycin and activates HptRS
that contribute to the expression of the UhpT protein that is not only the transporter for
glucose-6-phosphate (G6P) but also fosfomycin, with the consequence that alterations
involving HptA, HptRS, and/or UhpT can increase S. aureus resistance [317].

4.2. Streptococcus pneumoniae, Streptococcus agalactiae, and Streptococcus suis

Streptococcus pneumoniae (or pneumococcus) (phylum: Firmicutes; class: Bacilli; order:
Lactobacillales; family: Staphylococcaceae) is a Gram-positive microorganism that colonizes
the human nasopharynx [318]. However, it can become pathogenic and reach distant sites
in the host, causing several types of infections such as otitis media, sinusitis, meningi-
tis, community-acquired pneumonia, and septicemia [318]. The switch from a harmless
commensal to a pathogen depends on pneumococcal dynamic interactions with the host,
including the ability to evade immune responses [319–324]. All these pathogenic features
are associated with the capacity of modulating the expression of virulence genes that are
often under the control of numerous TCS [325]. The majority of TCS play important roles
in pneumococcal virulence and a new one, the SirRH (standing for stress-induced response,
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also known as TCS01), has been recently characterized. In particular, the SirRH TCS has
been shown to regulate the expression of bceAB genes that encode for an ABC transporter.
Both the TCS and BceAB cooperate to provide resistance to a huge range of antimicrobial
agents having, as molecular targets, the UPP or lipid II. Moreover, experimental data
suggest that antimicrobial peptides can stimulate the ATPase activity of BceAB, inducing
phosphorylation of the response regulator that, in turn, results in an up-regulation of
bceAB genes [326]. Streptococcus agalactiae (group B streptococcus or GBS) is one of the
main causes of neonatal death and clinical isolates are often associated with antibiotic
resistance [327–329]. Numerous virulence factors facilitate host colonization, and the influx
of neutrophils to GBS sites of infection, particularly, represents a fundamental step in the
immune responses against this pathogen [330–332]. In GBS, a bceRS TCS operon has also
been studied by demonstrating that antimicrobial peptides (AMPs), such as bacitracin,
bind to the sensor BceS and enhance phosphorylation of the cognate regulator BceR, which
results in an up-regulation of the transporter BceAB to pump out bacitracin and increase
bacterial resistance, in association with an induced decrease in the negative charge of the
bacterial cell membrane [73].

A comparative genomic analysis, performed in Streptococcus suis, has led several au-
thors to find and characterize a novel bacitracin efflux pump that is under the control of
the BceRS TCS [333]. Interestingly, the expression of the newly discovered SstFEG pump
mediates tolerance to bacitracin independently of the BceAB transporter but is enhanced
by the BceRS TCS. Furthermore, the deletion of bceAB determines the down-regulation of
bceRS, which decreases SstFEG-mediated bacitracin resistance. Contrarily, the absence of
sstFEG cannot regulate the BceAB and BceSR system in terms of bacitracin recognition [333].
This type of cross-activation between different TCS and efflux pumps has been also found in
the genus Bacillus. In particular, it has been shown that high extracellular concentrations of
bacitracin induce BceS to activate the non-cognate RR YvcP, which positively regulates the
ABC transporter yvcRS operon involved in the subsequent detoxification of bacitracin [334].
Fluoroquinolones (FQs) are useful antibiotics for treating streptococcal infections and func-
tion by interacting with DNA gyrase and topoisomerase IV to inhibit bacterial replication.
The abuse of these antibiotics has caused increased bacterial resistance to them, mainly
due to single substitutions in the quinolone resistance-determining regions (QRSR) of
gyrase and topoisomerase IV [335–337]. Moreover, the overexpression of efflux pumps
can also confer fluoroquinolone resistance [338,339]. In the S. suis strain BB1013, the efflux
pump SatAB has been, for example, linked to fluoroquinolone resistance, and its expression
is regulated by the CiaRH TCS that, once deleted, significantly reduces susceptibility to
norfloxacin and ciprofloxacin by means of the overexpression of SatA and SatB [340].

4.3. Listeria monocytogenes

Listeria monocytogenes (phylum: Firmicutes; class: Bacilli; order: Bacillales; family: Lis-
teriaceae) is a facultative intracellular Gram-positive pathogen that can cause infection in
humans after the ingestion of contaminated foods, leading to listeriosis. L. monocytogenes
can reach distal organs, such as the placenta or the brain, causing abortion or menin-
goencephalitis [341]. The virulence pathways of L. monocytogenes are characterized by the
expression of numerous genes involved in motility, host cell invasion, and intracellular
replication [342,343]. The transcriptional control of virulence in L. monocytogenes has been
described for several regulators such as PrfA, σB, CodY, and VirR. While PrfA controls the
expression of the pore-forming cytolysin listeriolysin (LLO) and the actin motility-inducing
surface protein ActA, σB is interested in L. monocytogenes response to stress [344,345]. CodY
is, instead, a transcriptional regulator the promotes the expression of PrfA and other
genes when the quantity of branched-chain amino acids (BCACs) inside the host cells is
low [346]. Interestingly, VirR is the response regulator of the VirRS TCS that has been
studied in L. monocytogenes in terms of antibiotic resistance mediated by several systems of
transport [347,348]. As described for the BceRS TCS in Bacillus subtilis, the sensor kinase
VirS lacks an extracellular domain that can be able to recognize a particular ligand, but
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this property seems to be accomplished by an ABC transporter whose genes are usually
placed close to the associated TCS genes. In this manner, the ABC transporter activates
the sensor kinase, favoring the phosphorylation of the response regulator, thus forming
a TCS/ABS transporter module [307,349,350]. Understanding this molecular crosstalk may
be extremely useful in order to counteract antibiotic resistance even in the case of L. mono-
cytogenes, which is becoming more nisin-resistant than other Gram-positive bacteria. It has
been shown that VirR highly regulates the expression of the dltABCD operon that encodes
the increase in the overall cell surface charge after incorporating D-alanine into lipoteichoic
acid and controls the regulation of the protein MprF that protects L. monocytogenes from
CAMP binding [351,352]. Moreover, the VirR regulates the production of an ATP-binding
cassette (ABC) transporter, called AnrAB, whose role is involved in the detoxification of
antimicrobial agents such as nisin, β-lactams, lantibiotics, and bacitracin [353]. A recently
discovered ABC transporter, called VirAB, has been additionally associated with the VirR
contribution to resistance against antimicrobial agents by showing that the deletion of
virR and virAB significantly reduces the MIC of nisin, compared to the parental wild type
L. monocytogenes strain. Furthermore, the VirR and AnrB proteins were found important
for L. monocytogenes resistance to bacitracin, contrary to VirAB, suggesting that, under
bacitracin stressing conditions, AnrAB may be involved in VirR signaling independently
of the VirAB transporter. On the contrary, VirAB acts as the direct sensor of antimicrobial
agents, such as nisin, potentially interacting with the VirS sensor kinase that, consequently,
allows the expression of genes under the regulatory control of VirR [354]. The role played
by the VirAB transporter has been further clarified in a recent paper by showing that in
L. monocytogenes the VirSR TCS, in association to VirAB and AnrAB, creates a system that
not only mediates nisin and bacitracin resistance, but also cephalosporins, ethidium bro-
mide (EtBr), and benzalkonium chloride [355]. These conclusions were made after having
seen that the deletion of virAB weakens the bacterial response to extracellular cefotaxim,
suggesting that VirAB can modulate VirS HK activation. On the other hand, AnrAB is
under the transcriptional control of VirAB and is involved in the detoxification process,
even though the direction of drug transport is not completely clear. In addition, VirAB
confers to L. monocytogenes kanamycin and tetracycline resistance, whereas the same feature
is not detectable in VirSR and AnrAB main functions. In light of this, the VirAB-VirSR-
AnrAB system mediates resistance to nisin, bacitracin, cephalosporins, EtBr, and BC by
using VirAB for antimicrobial sensing and activation of VirSR and AnrAB for the transport
of antimicrobials [355].

5. TCS Inhibitors: An Overview

In the last years, TCS are acquiring continuous attention because of their relevance in
the various aspects of bacterial pathogenesis and antibiotic resistance [81]. The usefulness
of predictive software is essential to identify, among the different species, common features,
such as conserved domains of HKs and RRs, to develop new broad-spectrum antimicrobial
agents, given the numerous cases of TCS-induced resistance mechanisms across some
Gram-negative and Gram-positive bacteria [356,357]. The functional activities of TCS that
might be targeted include (i) the inhibition of the binding properties of the sensor kinase or
(ii) the response regulator, (iii) interruption of the triggering signal, and (iv) blockade of
intracellular signaling or (v) HK dimerization (Figure 3) [358]. Furthermore, inhibition of
the HK may be specifically enhanced based on the precise role played by TCS in physio-
logical or pathogenic conditions since each TCS inhibitor can be used as a bacteriostatic,
bactericidal, or anti-biofilm agent. An additional interesting feature is the absence of HK
proteins in mammalian cells, which have other types of kinases, such as serine/threonine
kinases [359]. Inhibition of the sensor kinase may be obtained, for example, by targeting
the auto-phosphorylation site and/or the phosphorylation of the cognate regulator as
in the case of the ATP-competitor Thienopyridine (TEP), used against some sensors in
S. pneumoniae or other inhibitors used against several Gram-positive and Gram-negative
bacteria such as S. aureus, E. faecalis, S. mutans, E. coli, and S. enterica [360–364]. Inhibitors
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of the phosphorylation state of a response regulator are, for example, Lactoferricin B,
which has been tested against the BasR and CreB response regulators in E. coli [365], and
an anthraquinone compound that targets the conserved phosphorylation site of the PhoP
regulator [366].
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Figure 3. Representation of the potentially targetable components of a two-component system (TCS)
for preventing MDR. The histidine kinase (HK) sensor senses a generic signal (dark red thunderbolt)
via the signal peptide linker (SPL), which links two transmembrane (TM) domains. The other
elements forming the HK are a signal transduction domain (STD), a cytoplasmic sensor domain
(CSD), an ATP catalytic domain (ATP), and a dimerization histidine phosphotransfer domain (DHp).
The response regulator (RR) is composed of the receiver domain (RD) and the effector domain (ED).
The phosphorylation (P) of the HK is followed by the transfer of the phosphoryl-group (P) to the
RD that induces the ED to bind to its target genes (row structure) and regulate their expression. The
tipless arrows indicate the sites of action of the TCS inhibitors: (A) an inhibitor that can avoid TCS
activation by its usual stimulus; (B) an inhibitor that can block HK dimerization; (C) an inhibitor
targeting the site for ATP binding; (D) an inhibitor that can prevent the ATP from binding to the RD;
(E) an inhibitor that can reduce or avoid the RR binding to antibiotic resistance-mediated genes.

6. Efflux Pumps Inhibitors: An Overview

Several efforts have been made and should be further improved to discover new
molecules that can directly fight against antibiotic resistance-mediating efflux pumps (com-
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monly known as efflux pump inhibitors, or EPIs). The possible inactivation of an efflux
pump may be gained by (i) developing antibiotics that are not recognized as substrates, (ii)
inhibiting the functional association of each component of the efflux pump, (iii) avoiding
substrate binding to the active site of the pump, (iv) altering the source of energy responsi-
ble for pump activation and, lastly, (v) promoting the down-regulation of the efflux pump
following the alteration of the genetic regulatory systems (Figure 4) [367]. Efflux pump
inhibition should have the following features: (i) the inhibitor must not be an antibiotic,
(ii) the inhibiting molecule should not target the efflux pump of the host, (iii) the inhibitor
compound should comply with the safety indices of ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) [368]. Among the inhibitors that promote the de-
coupling of energy and efflux processes, the synthetic inhibitor IITR08027, for example,
was reported to deactivate the resistance of A. baumannii overexpressing the MATE efflux
pump by making the proton gradient not functional [368]. The PAβN (Phenylala-nine-
Arginine-β-Naphtylamide) is, instead, a synthetic inhibitor of the RND family pumps and
has been shown to be useful in strengthening the effect of levofloxacin against P. aeruginosa
overexpressing MexAB, MexCD, and MexEF pumps by reducing their capacity to directly
bind to their substrates [369]. The small molecule Verapamil, instead, is effective against
Mycobacterium tuberculosis that up-regulates MATE pumps [370,371], while similar mecha-
nisms of action have been seen with the molecule 1-(1-napthylmethyl)-piperazine (NMP)
used together with levofloxacin against efflux pumps AcrAB and AcrEF overexpressing
E. coli strains [372].
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represented as an orange rectangle crossing the bacterial membrane. A generic antimicrobial agent
is represented as a grey dot. The flux of the pump substrate is depicted as an arrow. The red
cross represents the inhibition of the substrate transfer along the pump or of a constituent of
the transporter or the source of energy. (Top left) Intracellular accumulation of an antimicrobial
drug with a conformation different (green square) from that for which the pump is able to expel;
(top right) increased presence of the drug inside the cells due to the blockage of the efflux pump
assembly; (middle) inhibition of the proton force mediating the efflux pump functions; (lower left)
intracellular increase in the antimicrobial drug following the selective inhibition of some of the efflux
pump components that can be in the outer membrane, the inner membrane, or the cytoplasmic
side; (lower right) intracellular accumulation of the antimicrobial drug following the passage of
a competitive inhibitor across the efflux pump channel.

In in vitro studies performed with A. baumannii multiresistant strains showing efflux
pump-mediated resistance, Riparin-B (Rip-B) was able to positively modulate norfloxacin’s
effects [373]. Natural compounds have been also shown to be interesting inhibitors of the
activity of efflux pumps with the aim of reducing the MIC of antimicrobial drugs [374,375].
Berberine (BBR), as a natural compound, has been, for example, proposed as an inhibitor
of the MFS efflux pump MdfA in E. coli since it succeed in the significant increase in
intracellular ciprofloxacin in resistant bacteria [376].

7. Conclusions and Outlook

Efflux pumps, overexpressed by resistant isolates, are continuously found and de-
scribed as active ejectors of numerous antibiotics, commonly administrated in clinical
practice. Efflux pump expression is under the fine genetic control of different regulatory
systems; among them, TCS play a significant role. TCS are widely distributed in the mi-
crobial world and, in the future, their selective inhibition may be advantageous since they
represent targets that are structurally different from those of the current antibiotics to which
bacteria are not susceptible. The discovery of these new compounds and their screening
have been mainly analyzed in vitro and/or in silico. For this reason, the relevance of the
proposed TCS inhibitors and the new ones may be better investigated in vitro in order to
carefully verify their behavior in terms of pharmacokinetic properties. Furthermore, it
may be important, for example, to analyze, in antibiotic-resistant isolates with sequencing
technologies, the gene encodings for HKs and RRs with the aim of creating a comprehensive
antibiotic resistance database focused on TCS since the onset of point mutations in those
genes may be involved in their abnormal activation associated with multidrug resistance.
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