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Abstract: The extent of similarity between E. faecium strains found in healthy feedlot beef cattle and
those causing extraintestinal infections in humans is not yet fully understood. This study used whole-
genome sequencing to analyse the antimicrobial resistance profile of E. faecium isolated from beef cattle
(n = 59) at a single feedlot and compared them to previously reported Australian isolates obtained
from pig (n = 60) and meat chicken caecal samples (n = 8), as well as human sepsis cases (n = 302).
The E. faecium isolated from beef cattle and other food animal sources neither carried vanA/vanB
responsible for vancomycin nor possessed gyrA/parC and liaR/liaS gene mutations associated with
high-level fluoroquinolone and daptomycin resistance, respectively. A small proportion (7.6%) of
human isolates clustered with beef cattle and pig isolates, including a few isolates belonging to the
same sequence types ST22 (one beef cattle, one pig, and two human isolates), ST32 (eight beef cattle
and one human isolate), and ST327 (two beef cattle and one human isolate), suggesting common
origins. This provides further evidence that these clonal lineages may have broader host range but are
unrelated to the typical hospital-adapted human strains belonging to clonal complex 17, significant
proportions of which contain vanA/vanB and liaR/liaS. Additionally, none of the human isolates
belonging to these STs contained resistance genes to WHO critically important antimicrobials. The
results confirm that most E. faecium isolated from beef cattle in this study do not pose a significant
risk for resistance to critically important antimicrobials and are not associated with current human
septic infections.

Keywords: phylogeny; multidrug resistance; vancomycin; virulence factor

1. Introduction

Enterococci are ubiquitous Gram-positive commensal bacteria that encompass more
than 50 species found in various environments, such as the gastrointestinal tract of animals
and humans, as well as the hospital environment [1]. Some Enterococcus spp. such as
Enterococcus faecalis strain Symbioflor 1 are used as probiotics to treat diarrhoea, improve
immunity, and provide other health benefits [2,3]. However, other Enterococcus spp. such as
Enterococcus faecium are among the most important causes of hospital-acquired infections in
humans, including endocarditis, sepsis, urinary tract, and central nervous system infec-
tion [1,4]. More than 90% of enterococcal infections identified in patients with bacteraemia
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are caused by either E. faecium or Enterococcus faecalis [5]. In additional to their ability to
form biofilms, E. faecium and E. faecalis possess additional virulence factors that have con-
tributed to their pathogenesis and clinical significance [6]. Some of these virulence factors
include the production of enzymes and toxins which allow the bacteria to adhere to and
colonize host tissues, modulate host immunity, and increase the severity of infection [7].

E. faecium are also intrinsically resistant to various antimicrobial classes, including
aminoglycosides, cephalosporins, and trimethoprim-sulfamethoxazole [1,8,9]. E. faecium is
known for its efficiency in recruiting and exchanging AMR determinants through mutation
or horizontal transfer of ARGs located on mobile genetic elements (MGEs), which can be
readily transferred between E. faecium lineages [10]. E. faecium is also capable of acquiring
plasmid-mediated resistance determinants from other Enterococcus species [11]. Moreover,
the transfer of vancomycin resistance from E. faecium to methicillin-resistant Staphylococcus
aureus (MRSA) via broad host range plasmids is a major concern [12]. Plasmids found
in enterococci are categorized based on their rep (replication) families, which have either
narrow or broad host ranges. Rep-family plasmids such as rep2, rep3, rep5, rep8, rep9,
rep11, rep12, rep14, rep15, rep16, rep18, and rep19 are narrow host range, whereas others,
like rep1, rep4, rep6, rep7, rep10, and rep13 are considered broad host range [13]. The
presence of plasmids in enterococci is extensive, as demonstrated by the detection of at least
one and up to seven plasmids in 94.6% of E. faecium isolates [14]. Multidrug-resistant E.
faecium is the most common cause of hospital-acquired infections compared to other species
of enterococci [15]. In addition, many human E. faecium isolates have developed resistance
to last-resort antimicrobials, such as daptomycin, linezolid, tigecycline, and vancomycin,
which could have dire consequences for public health in the future [8,9,16–18]. Among
clinical E. faecium isolates worldwide, the vanA and vanB vancomycin resistance genotypes
are the most prevalent ARG variants [19].

Whilst some genetic similarity has been found among enterococci isolated from an-
imals and those causing human infections [20], other studies have reported that animal-
derived and human-derived enterococci are genetically distinct populations [21,22]. How-
ever, there is limited information on the host-species specificity of individual E. faecium se-
quence types (STs), together with their correlation with specific hospital-infection-associated
AMR determinants and virulence factors. Australia represents a unique study site to ex-
plore the host specificity of animal-origin E. faecium isolates given its isolation, quarantine
restrictions including a ban on importation of live food-producing animals, and conserva-
tive regulation of antimicrobial use in both human and animal health [23]. As a case in
point, the use of antimicrobials in livestock production is highly regulated in Australia.
For example, Australian legislation prohibits the use of fourth-generation cephalosporins,
colistin, fluoroquinolones, and gentamicin in food-producing animals [24,25]. As a re-
sult, a low prevalence of AMR has been reported in enterococci isolated from different
food-producing animals in Australia compared to other countries [26–28].

In our previous study, we investigated the frequency of AMR in enterococci from fae-
cal samples collected at the entrance to and exit from a beef feedlot in South Australia [29].
While the prevalence of AMR to individual antimicrobials remained largely static between
entry and exit, there was a dramatic shift in Enterococcus spp. prevalence, with E. faecium
infrequently isolated from entry samples (9/104; 8.7%), but then becoming the most preva-
lent species in exit samples (117/144; 81.3%). The interplay between diet, management
practices, and microbial ecology is a potential factor that could contribute to the observed
shift in Enterococcus spp. [30,31]. This shift in Enterococcus prevalence is noteworthy as it
highlights the importance of monitoring alterations in microbial communities, where these
changes can have implications for both animal health and food safety. Further genomic
interrogation is now required to determine the genetic similarity of these cattle-origin E.
faecium isolates compared to those detected in other food animals and humans in Australia
as well as to examine capacity for cross-host species transmission and potential spread via
the food chain or the environment. Therefore, this study aimed to conduct further genetic
analysis on the beef cattle E. faecium isolates through comparing them to isolates obtained
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from healthy meat chickens and pigs at slaughter as well as human clinical blood sepsis
isolates in Australia described in previous studies [5,29].

2. Results
2.1. Distribution of MLST Genotypes and Virulence Factors

Overall, 59 strains of E. faecium from beef cattle were analysed via WGS and compared
with commensal isolates from healthy slaughter age pigs (n = 60), meat chickens (n = 8), and
a large collection of human clinical sepsis isolates (n = 302). SNP analysis of the beef cattle,
chicken, and pig isolates confirmed that they formed two main clades (Clade 1 and Clade
2). Clade 2 was subsequently divided into two subclades (Clade 2a and Clade 2b). Clade
2b contained a notable monophyletic subclade (Clade 2ba) that was composed entirely of
more closely related human isolates (Figure 1). The predominant animal isolate clades also
contained a small proportion of human isolates (23/302; 7.3%) including five isolates each
located within the beef-cattle-isolate-dominated Clade 1 and the pig-isolate-dominated
Clade 2a (Table S1). Among beef cattle isolates, 15 distinct sequence types (STs) were
identified via MLST, the most common being ST798 in Clade 1 (9/59; 15.2%), followed
by ST32 in Clade 2b and ST1036 in Clade 1 (8/59; 13.5% each). By comparison, the most
common STs among pig and human isolates were ST5 in Clade 2a (6/60; 10.0%) and ST796
in Clade 2ba (47/302; 15.6%), respectively. Three E. faecium STs contained both animal
and human isolates. These included ST32, which comprised eight beef cattle isolates and
one human isolate; ST22, which comprised one beef cattle isolate, one pig isolate, and two
human isolates; and ST327, which comprised two beef cattle isolates and one human isolate.
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Figure 1. A mid-point rooted, maximum-likelihood phylogenetic tree constructed based on analysis of single-nucleotide polymorphisms (SNPs) of the core SNPs 
of 429 Enterococcus faecium genomes isolated from beef cattle (n = 59), meat chicken (n = 8), pig (n = 60), and human (n = 302) sources. The branch colour indicates 
the source of the isolates. Clades are coloured according to the legend. The sequence type of the isolates (inner ring) and type of virulence gene (outer rings) are 
annotated according to the legend. 

Figure 1. A mid-point rooted, maximum-likelihood phylogenetic tree constructed based on analysis
of single-nucleotide polymorphisms (SNPs) of the core SNPs of 429 Enterococcus faecium genomes
isolated from beef cattle (n = 59), meat chicken (n = 8), pig (n = 60), and human (n = 302) sources.
The branch colour indicates the source of the isolates. Clades are coloured according to the legend.
The sequence type of the isolates (inner ring) and type of virulence gene (outer rings) are annotated
according to the legend.
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Out of the eight E. faecium virulence genes identified in this study, acm (collagen-
binding) and efaAfm (adherence) were most prevalent across all sources of isolates. Among
the beef cattle isolates, acm was found in 56/59 (95.0%) and efaAfm in 58/59 (98.3%)
(Figure 1). The remaining E. faecium virulence genes were exclusively found in human-
source isolates in Clade 2ba. These included agg (adherence, 2/302; 0.7%), cylA (cytolysin,
1/302; 0.3%), cylL (cytolysin, 2/302; 0.7%), cylM (cytolysin, 1/302; 0.3%), espfm (surface
protein, 55/302; 18.2%), and hylEfm (hyaluronidase 82/302; 27.1%). The human E. faecium
isolates located in STs 32, 22, and 372 also did not contain espfm and hylEfm markers typically
exclusive to hospital-associated strains, but carried both acm and efaAfm.

2.2. Antimicrobial Resistance Genes Including Those Encoding Resistance to Critically
Important Antimicrobials

Heat maps were generated based on the identification of genes from the ResFinder
and CARD databases (Figure 2). Overall, 38 ARGs responsible for encoding resistance
to aminoglycosides (aadA5, aadD, aph(2”)-Ia, aph(2”)-Ie, aph(3’)-III, aac(6’)-aph(2”), aac(6’)-
Ii, ant(6)-Ia, ant(9)-Ia), ß-lactams (blaZ, pbp5), fluoroquinolones (efmA, gyrA, parC), fo-
late pathway inhibitor (dfrG), glycopeptides (vanA, vanB), lipopeptides (cls, liaR, liaS),
macrolides/lincosamides, and/or streptogramins (MLS) (eatAv, erm(A), erm(B), erm(T),
lnu(B), lnu(G), lsa(E), msr(C), vatE), phenicols (cat, fexB, poxtA), and tetracyclines (tet(45),
tet(L), tet(M), tet(O), tet(S), tet(W)) were identified in the entire collection of 429 isolates
(Figure S1). Among these, eatAv, efmA, msrC, tetL, and tet(45) are associated with multidrug
efflux pumps and other transporters, which may potentially lead to resistance against
multiple antimicrobials. The number of ARGs identified in each isolate ranged from one to
ten. Human E. faecium isolates possessed the highest mean number of ARGs per isolate
(n = 8) compared to pig and chicken (n = 5, each) and beef cattle isolates (n = 3).

A total of 13 ARGs were identified in the beef cattle E. faecium isolate collection, includ-
ing those imparting resistance to aminoglycosides (aac(6′)Ii, and ant(6)-Ia), ß-lactams (pbp5),
fluoroquinolones (efmA), MLS (eatAv, lnu(G), vat(E), msr(C), and erm(B)), and tetracyclines
(tet(45), tet(L), tet(M), and tet(S)) (Figure 2). The most common ARGs observed in beef
cattle isolates were plasmid-mediated aac (6’)-Ii (extremely high 59/59; 100.0%) and the
chromosomally encoded msr(C) (extremely high 58/59; 98.3%), eatAv (extremely high 45/59;
76.3%), pbp5 (very high 30/59; 50.8%), and efmA (high 21/59; 35.6%), which are responsible
for resistance to aminoglycosides, MLS, β-lactams, and fluoroquinolones, respectively.

Similar to the results obtained for the pig- and chicken-origin E. faecium isolates, none
of the E. faecium isolates from beef cattle were found to possess gyrA or parC mutations
associated with high-level fluoroquinolone resistance. However, some did possess the ABC
transporter gene efmA, which potentially confers low-level resistance as a fluoroquinolone
efflux pump (Figures 2 and 3, Table 1). Similarly, none of the cattle isolates possessed
vanA/vanB genes encoding resistance to vancomycin (Figure 4) or liaR/liaS genes mutations
to daptomycin (Figure 5). By comparison, significant proportions of the human sepsis
isolates carried a chromosomal quinolone resistance determining region (QRDR) and
daptomycin resistance mutations together with vancomycin ARGs (Table 1).
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Figure 2. Antimicrobial resistance gene (ARG) profiles clustered on the basis of Figure 1’s SNP-based phylogenetic tree composed of 429 Enterococcus faecium 
genomes isolated from beef cattle (n = 59), chicken (n = 8), pig (n = 60), and human (n = 302) sources. Branches are coloured based on source followed by clade 
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magenta), and tetracyclines (6 ARGs shown in light brown). 

Figure 2. Antimicrobial resistance gene (ARG) profiles clustered on the basis of Figure 1’s SNP-based
phylogenetic tree composed of 429 Enterococcus faecium genomes isolated from beef cattle (n = 59),
chicken (n = 8), pig (n = 60), and human (n = 302) sources. Branches are coloured based on source
followed by clade according to the legend. The remaining columns indicate (1) isolate sequence type,
(2) ARGs detected in the isolate, and (3) multidrug resistance profile of the isolate. The detected
ARGs are clustered according to their respective antimicrobial classes as follows: aminoglycoside
(9 ARGs shown in dark green), amphenicols (3 ARGs shown in light green), β-lactams (2 ARGs
shown in red), fluoroquinolones (3 ARGs shown in purple), folate synthesis inhibitors (1 ARG shown
in light blue), glycopeptides (2 ARGs shown in dark brown), lipopeptides (3 ARGs shown in dark
blue), macrolide/lincosamide and/or streptogramins (8 ARGs shown in magenta), and tetracyclines
(6 ARGs shown in light brown).

Table 1. Prevalence of antimicrobial resistance genes identified in E. faecium isolated from beef cattle,
meat chickens, pigs, and humans in Australia.

Antimicrobial
Classes ARGs

Prevalence (%)

Beef (n = 59) Chicken (n = 8) Human (n = 302) Pig (n = 60)

Fluoroquinolones
efmA 21 (35.6) 8 (100) 279 (92.4) 34 (56.7%)
gyrA - - 273 (90.4) -
parC - - 273 (90.4) -

Glycopeptides vanA - - 65 (21.5) -
vanB - - 86 (28.5) -

Lipopeptides
cls - - 1 (0.3) -

liaR - - 23 (7.6) -
liaS - - 23 (7.6) -

Streptogramin A
eatAv 45 (76.3) 7 (87.5) 67(22.2) 48 (80.0)
lsa(E) - - 17 (5.6) 19 (31.7)
VatE 1 (1.7) 4 (50) - 1 (1.7)

Streptogramins B

ermA - - 63 (20.9) 4 (6.7)
ermB 3 (5.1) - 226 (74.8) 50 (83.3)
ermT - - 25 (8.3) 4 (6.7)
msrC 58 (98.3) 6(75.0) 298(98.7) 59 (98.3)
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(blue branches, n = 60), and humans (red branches, n = 302). Purple stars indicate the isolates shown to contain the efmA efflux pump gene (imparting resistance 
to fluoroquinolones), whereas the blue circles indicate the isolates shown to contain gyrA and parC point mutations (imparting high-level resistance to fluoroquin-
olones). All beef, meat chicken, and pig isolates (encompassed within the square box) contained the efflux pump gene only. 

Figure 3. SNP-based phylogeny of 429 Enterococcus faecium isolates isolated from beef cattle (green
branches, n = 59), meat chickens (orange branches, n = 8), pigs (blue branches, n = 60), and humans
(red branches, n = 302). Purple stars indicate the isolates shown to contain the efmA efflux pump gene
(imparting resistance to fluoroquinolones), whereas the blue circles indicate the isolates shown to
contain gyrA and parC point mutations (imparting high-level resistance to fluoroquinolones). All
beef, meat chicken, and pig isolates (encompassed within the square box) contained the efflux pump
gene only.Antibiotics 2023, 12, 1122 9 of 23 

 

 

 
Figure 4. SNP-based phylogeny of 429 Enterococcus faecium isolates obtained from beef cattle (green branches, n = 59), meat chickens (orange branches, n = 8), pigs 
(blue branches, n = 60), and humans (red branches, n = 302). Purple stars indicate the isolates shown to contain vanA and blue stars indicate the isolates shown to 
contain vanB (both genes imparting resistance to vancomycin). None of the beef cattle, meat chicken, and pig isolates (encompassed within the square box) pos-
sessed vanA or vanB vancomycin resistance genes. 

Figure 4. SNP-based phylogeny of 429 Enterococcus faecium isolates obtained from beef cattle (green
branches, n = 59), meat chickens (orange branches, n = 8), pigs (blue branches, n = 60), and humans
(red branches, n = 302). Purple stars indicate the isolates shown to contain vanA and blue stars
indicate the isolates shown to contain vanB (both genes imparting resistance to vancomycin). None of
the beef cattle, meat chicken, and pig isolates (encompassed within the square box) possessed vanA
or vanB vancomycin resistance genes.
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(blue branches, n = 60), and humans (red branches, n = 302). The green circle indicates the isolate shown to contain cls, the purple stars indicate the isolates shown 
to contain liaR, and the blue stars indicate the isolates shown to contain liaS mutations imparting resistance to daptomycin. None of the beef cattle, meat chicken, 
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Figure 5. SNP-based phylogeny of 429 Enterococcus faecium isolates obtained from beef cattle (green
branches, n = 59), meat chickens (orange branches, n = 8), pigs (blue branches, n = 60), and humans
(red branches, n = 302). The green circle indicates the isolate shown to contain cls, the purple stars
indicate the isolates shown to contain liaR, and the blue stars indicate the isolates shown to contain
liaS mutations imparting resistance to daptomycin. None of the beef cattle, meat chicken, and pig
isolates (encompassed within the square box) possessed these gene mutations.

2.3. Plasmid Replicons

Overall, 21 plasmid replicon families were observed in the isolate collection. The
number of plasmids observed in each isolate ranged from zero to eight, with the highest
number of plasmids found in three human isolates (1.0%). Overall, 43 (72.9%) of beef cattle
isolates contained at least one plasmid, and 2 isolates harboured six plasmids. A significant
number of beef cattle isolates (16/59; 27.1%) did not possess any plasmids compared to
human (7/302, 2.3%) and pig isolates (1/60, 1.7%). Plasmid replicon rep1 (broad host range)
was predominantly found in beef cattle (33/59; 55.9%) and pig isolates (30/60; 50.0%), but
of comparatively lower prevalence in human isolates (15/302; 5.0%), while rep2 (narrow
host range) was more commonly found in human (238/302 78.8%) and pig isolates (24/60;
40%) but was present in a much smaller proportion (5/59; 8.5%) of beef cattle isolates.
Highly diverse sets of plasmids were identified among the E. faecium isolates from human
sepsis cases (Figures 6 and S2).

2.4. Agreement between Plasmid Replicons and ARG Content

The presence of vanA (found only in isolates from humans) was mostly linked to
three plasmid replicons: rep2 (98.5%; 64/65), repUS15 (95.4%; 62/65), and rep11a (81.5%;
53/65). Most E. faecium isolates carrying the streptogramin resistance gene vatE (found
only in isolates from animals) were associated with the plasmid replicons rep2 (80%; 4/5)
and rep17 (60%; 3/5) (Figure 7). When plasmid replicons and E. faecium ARGs known
to be plasmid-mediated were cross tabulated and compared according to isolate source
(beef cattle vs. human), clear differences in matches were apparent between the two host
sources, apart from repUS15, which was highly prevalent in both groups of isolates and
often associated with aac(6’)-Ii, erm(B), and tet(M) ARGs (Figure 8).
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Figure 6. Plasmid replicon profiles clustered on the basis of Figure 1’s SNP-based phylogenetic
tree composed of 429 Enterococcus faecium genomes isolated from beef cattle (n = 59), meat chickens
(n = 8), pigs (n = 60), and humans (n = 302). Branches are coloured based on source followed by
clade according to the legend. The remaining columns indicate isolate sequence type and plasmid
replicon detected in the isolate. The detected plasmids are clustered according to their respective
types as follows: broad host range (2 plasmid replicons shown in dark brown) and narrow host range
(19 plasmid replicons shown in light brown).
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Figure 7. Cross-tabulation heat map showing the degree of correlation between plasmid replicon
types and the presence of an antimicrobial resistance gene (ARG) for 429 isolates of Enterococcus
faecium isolated from beef cattle (n = 59), meat chickens (n = 8), pigs (n = 60), and humans (n = 302).
Plasmid replicons are listed horizontally (total number identified in the 429 isolates is also indicated),
whereas the ARGs are listed vertically in their classes. The colour strips indicate the number of
isolates (in multiples of 34) exhibiting each particular plasmid/ARG match.



Antibiotics 2023, 12, 1122 10 of 19

Table 2. Prevalence of antimicrobial resistance genes, plasmid replicons, and virulence genes in beef cattle, pig, and human Enterococcus faecium isolates belonging to
the same STs.

Clade MLST Isolate (n = 16) Source of
Isolate No of SNPs WGS Coverage Antimicrobial Resistance

Genes Plasmid Replicons Virulence Genes

2b

22

19MLAP075 Beef cattle 4579 62.1 aac(6’)-Ii, efmA, msr(C), pbp5 rep18b, repUS15 acm, efaAfm

SRR10041104 Human 4332 33.5 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm
SRR10041117 3627 28.5 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm

SRR12031114 Pig 2076 26.8
aac(6’)-Ii, efmA, erm(B), lnu(G),

msr(C), pbp5, tet(L), tet(M)
rep1, rep2, repUS1,

repUS41

19MLAP293 Beef cattle 4048 55.5 aac(6’)-Ii, efmA, msr(C), pbp5 repUS15 acm, efaAfm
32 19MLAP294 3954 55.6 aac(6’)-Ii, efmA, msr(C), pbp5 repUS15 acm, efaAfm

19MLAP303 4495 71.8 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm
19MLAP357 4221 50.4 aac(6’)-Ii, efmA, msr(C), pbp5 repUS15 acm, efaAfm
19MLAP364 4452 68.0 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm
19MLAP366 4201 81.5 aac(6’)-Ii, efmA, msr(C), pbp5 repUS15 acm, efaAfm
19MLAP382 5123 77.7 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm
19MLAP385 4366 50.7 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm

SRR10040901 Human 4544 28.5 aac(6’)-Ii, efmA, msr(C), pbp5 acm, efaAfm

1 327 19MLAP257
Beef cattle

57,889 44.1 aac(6’)-Ii, eatAv, msr(C) acm, efaAfm
19MLAP391 59,188 64.1 aac(6’)-Ii, eatAv, msr(C) acm, efaAfm

SRR10041173 Human 56,950 32.0 aac(6’)-Ii, eatAv, msr(C) acm, efaAfm
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Figure 8. Cross-tabulation of plasmid-mediated antimicrobial resistance genes and plasmid replicons
in Enterococcus faecium isolated from beef cattle (n = 59) and humans (n = 302). rep1—broad host range
shown in pink; rep2 and repUS15—narrow host range shown in green and blue. The ST22 and ST32
isolates, which were detected in beef cattle, pigs, and humans, were clustered together in the same
clade. The analysis of ARGs showed that the ST22 and ST32 isolates had similar chromosomal genes
for antimicrobial resistance, such as efmA, msr(C), and pbp5, in addition to aac(6’)-I, which is more
likely to be plasmid-mediated. The pig isolate possessed additional ARGs linked to macrolide and
tetracycline resistance. The ST327 isolate obtained from humans and beef cattle were clustered within
Clade 1 and carried the chromosomal eatAv gene, conferring resistance to lincosamides, streptogramin
As, and pleuromutilins in addition to msr(C). Regardless of the presence of the plasmid replicon
repUS15, the ARG content in the beef isolates of ST22 and ST32 remained unchanged (Table 2).

3. Discussion

Enterococci are commonly found as commensals in the gastrointestinal tract of animals
and humans, but some species, such as E. faecium, can cause serious nosocomial infections,
including endocarditis, sepsis, and urinary tract infections in humans [20,32]. Regular
monitoring and testing of AMR in E. faecium isolated from both animal production and
human hospital settings can provide important information about the evolution and spread
of resistance and the relative impact of food and/or environmental transmission compared
to direct human-to-human contact. Through detailed whole bacterial genome bioinformatic
analyses, this study focused on AMR, plasmid, and virulence factor profiles identified in E.
faecium isolated from the gastrointestinal tracts of healthy slaughter-age beef cattle from a
single feedlot in Australia and compared these with previous data established for similar
pig [33] and meat chicken isolates [28] together with a large collection of clinical isolates
from cases of sepsis in humans in Australia [5].

The study had three major findings. First, phylogenetic analysis confirmed that the
E. faecium isolates from healthy slaughter-age beef cattle, pig, and meat chicken sources
(found in Clades 1–2b) were genetically distinct from most human clinical isolates, which
formed a monophyletic clade (Clade 2ba). Second, none of the animal-origin isolates
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from beef cattle, pig, and meat chicken sources possessed ARGs or mutations responsible
for high-MIC-level resistance to three critically important antimicrobials (ciprofloxacin,
vancomycin, and daptomycin) typically present in human isolates. Third, a small pro-
portion (23/302; 7.6%) of human clinical isolates were found clustered with some of the
animal isolates (including some belonging to the same ST) within Clades 1–2b, but none
of these human isolates possessed ARGs to critically important antimicrobials. These
results confirm that, as previously determined for Australian pig and poultry E. faecium
isolates [33], beef cattle from this particular feedlot also represent an extremely low risk of
introducing resistant E. faecium (or their ARGs) to humans via the food chain or through
the environment with corresponding minimal impact to human health. Evidence for this
conclusion can be found in the limited crossover of animal vs. human STs (the majority of
beef cattle isolates were located in Clade 1) and the differences in virulence genes and ARG
arrays observed, particularly to the critically important antimicrobials (fluoroquinolones,
daptomycin, vancomycin). Furthermore, far more plasmid replicons were observed in the
E. faecium isolated from humans compared to beef cattle isolates.

The MLST analysis of E. faecium isolates from beef cattle in this study revealed signifi-
cant diversity in their STs with most located in Clade 1. Only three primarily beef-cattle-
origin STs (ST22, ST32, and ST327) contained either one or two E. faecium isolates obtained
from human sepsis cases. This is in agreement with a previous report that clinical E. faecium
isolates causing infections in humans tend to belong to different sub-lineages than those
found in animals, food, and the environment [20]. For example, E. faecium ST17, a clonal lin-
eage responsible for hospital-acquired infections throughout the globe, was only identified
among human isolates in the present study (where it represented 12.6% of the Australian
human E. faecium isolate collection). Compared to other strains in the collection, ST17 E.
faecium were more likely to exhibit high-level resistance to aminoglycosides, beta-lactams,
fluoroquinolones, and tetracycline, which correlated with the possession of aac (6’)-Ii, tet (L),
and tet (M) genes, as well as mutations in gyrA, parC, and pbp5, as documented in a previous
international study [34]. Additionally, the vancomycin resistance gene vanB was detected
in the hospital-derived ST17 human isolates (3/38; 7.9%). This study found that the human
isolates carrying the van operon were not clustered in the same evolutionary clade as the
beef, chicken, and pig isolates. However, the ST22 and ST32 isolates shared the same ARG
types, including plasmid-mediated genes responsible for resistance to aminoglycosides
(aac(6’)-I); the chromosomally encoded ampicillin resistance mutation (pbp5); low-level
fluoroquinolone resistance (efmA); and macrolide, lincosamide, and streptogramin ARGs
(msr(C) and eatAv in ST327 isolates). It has been previously reported that ST32 and ST22
share the same ARG profiles, yet they are not typical clones associated with vancomycin
resistance nor do they have point mutations in gyrA and parC responsible for high-level
fluoroquinolone resistance, indicating a limited human health risk [35–37]. Both ST22 and
ST32 are categorized as commensal isolates and are part of CC328, which is not associated
to any of the established clonal complexes of colonizing or hospital-adapted strains [37].

Enterococci are rapidly evolving to become resistant to various classes of antimicro-
bials, including fluoroquinolones, glycopeptides, lipopeptides, oxazolidinones, and strep-
togramins [38–40]. Within Australia, the streptogramin pristinamycin is also rated of critical
importance and grouped with the aforementioned antimicrobial classes in the ASTAG im-
portance ratings [41]. The use of virginiamycin as a feed additive in food-producing animals
is believed to contribute to the development of quinupristin/dalfopristin resistance, which
are sometimes used as a last resort treatment for vancomycin-resistant E. faecium infections
in humans [42]. The current study showed that resistance to streptogramins in beef cattle
E. faecium isolates was comparatively lower compared to human and pig isolates. Some
beef E. faecium isolates carried the ermB gene (3/59; 5.1%), which encodes an enzyme re-
sponsible for methylating the 23S rRNA component of the bacterial ribosome, whilst nearly
all contained the msr(C) gene (58/59; 98.3%), which encodes an efflux pump, resulting
in resistance to macrolides and streptogramin B (i.e., quinupristin), and most contained
the eatAV gene which encodes an ABC transporter and encodes resistance to lincosamide,
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pleuromutlins, and streptogramin A [43]. Furthermore, one isolate (1.7%) from beef and
pig samples and four isolates from meat chickens (50%) were found to harbor the vatE gene
responsible for streptogramin A (i.e., dalfopristin) resistance. Possession of either ermB
or eatAV with msr(C) genes is associated with resistance to quinupristin–dalfopristin, a
combination of streptogramin A and B [44]. Whilst a recent survey found that 19.5% of
Australian feedlots reported using virginiamycin [45], the present study found that chicken
and pig isolates had higher levels of streptogramin resistance genes compared to beef
cattle isolates. High prevalence of msr(C) in the beef cattle isolates may also be related to
the common use of macrolides as first-line treatments for bovine respiratory disease in
Australian feedlots [46]. As virginiamycin has not been used in the Australian pig and
poultry industries for many years, the higher prevalence of resistance could be related
to the co-selection of enterococci resistant to quinupristin–dalfopristin as a result of the
historic use of virginiamycin in poultry and current use of tylosin in pigs [33,47].

In recent decades, the vancomycin resistance gene vanA has been reported in E. faecium
isolated from animals and animal-derived food products [48]. VanA-positive enterococci
were isolated from food animals in England in 1993 [49]. Since then, it has been found
among food animals worldwide, causing significant public health concerns [50–52]. The
detection of vancomycin-resistant E. faecium has been shown to be associated with the use
of avoparcin for growth promotion in food animals [53,54]. However, after vancomycin-
resistant enterococci emerged, avoparcin was withdrawn from the market in various
countries [55]. In this study, the vancomycin resistance genes vanA and vanB were found
in 21.5% and 28.5% of human isolates, respectively. However, no vancomycin ARGs
were found in any of the beef, chicken, and pig isolates. In another study in Australia
using phenotypic methods, enterococci isolated from cattle were sensitive to a number
of medically important antimicrobials, such as daptomycin, linezolid, tigecycline, and
vancomycin [27]. The findings of this study provide evidence that E. faecium isolated from
Australian healthy slaughter-age beef cattle, pigs, and meat chickens are mutually exclusive
from the source of the circulating vancomycin-resistant strains of clinical significance in the
public health sector [5].

Daptomycin is another antimicrobial used as a last-resort antimicrobial to treat
vancomycin-resistant enterococci [40]. However, there have been increasing reports of
vancomycin-resistant enterococci (VRE) developing resistance to daptomycin [56]. In this
study, none of the E. faecium isolated from food-producing animals harboured known
resistance genes for daptomycin. However, 23 (7.6%) of the human isolates showed mu-
tations in the genes responsible for daptomycin resistance (liaR and liaS). Contrary to
this, some studies have shown that daptomycin resistance does not always result from
liaFSR mutations. Mutations in chromosomal genes cls and gdpD, which encode cardiolipin
synthase and glycerophosphoryl diester phosphodiesterase, respectively, have been linked
to daptomycin resistance [40]. In this study, it was found that only one human isolate had
a mutation in the cls gene. In our previously published study, we detected daptomycin
resistance in E. faecium isolates obtained from both entry (1/9; 11.1%) and exit (21/117;
17.9%) beef cattle faecal samples using a phenotypic method, but the underlying mech-
anism behind this resistance could not be determined [29]. These findings suggest that
there may be other, as yet unknown, pathways responsible for daptomycin resistance in
animal-origin enterococci [57,58], including within Australia [28].

The prevalence of fluoroquinolone resistance among E. faecium isolates is increasing
globally, posing a significant threat to public health. In recent years, efflux pumps have
played a crucial role in the MDR status of various bacteria [59]. In this study, the efmA
gene efflux pump, which encodes resistance to fluoroquinolones and macrolides, was
observed in E. faecium isolated from beef (35.6%), chicken (100%), human (92.4%), and
pig (56.7%) samples. Efflux pumps are known to contribute to intrinsic and acquired
resistance to antimicrobials used to treat infectious diseases [60]. However, fluoroquinolone
resistance characterized by high MIC values is commonly associated with mutations in
topoisomerase IV (parC) and DNA gyrase (gyrA), as previously reported [61]. In this study,
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no fluoroquinolone-resistance-causing mutations were identified in E. faecium isolates
obtained from beef cattle.

The potential for AMR to be transferred to other bacteria exists through several means,
with plasmids serving as one of the primary mechanisms for this transfer to occur [62].
Plasmids that contain AMR determinants play an important role in horizontal gene transfer
as they often harbour other mobile genetic elements such a transposons, integrons and
insertional sequences within their structures [63]. In this study, a previously published
plasmid classification scheme was utilized to investigate the possible contribution of specific
plasmid families to AMR in Enterococcus spp. [13]. Among the human sepsis isolates, vanA
and vatE genes, responsible for resistance to vancomycin and quinupristin-dalfopristin,
respectively, were mostly associated with narrow host range rep-2 plasmid replicons. By
comparison, the most commonly observed plasmids in E. faecium isolates from beef cattle
were repUS15 (67.8%) and broad host range rep1 (55.9%), with only a relatively minor
proportion carrying rep2 (8.5%). Other international studies have also shown the strong
association between carriage of rep2 plasmid replicons and resistance to glycopeptides in
enterococci isolated from both humans and food-producing animals [64,65]. In summary,
plasmid replicon identification and their associations with critically important ARGs has
also shown that Australian beef cattle E. faecium isolates (together with pig and meat
chicken isolates) pose limited risk to human health from horizontal gene transfer.

Enterococci can carry various virulence genes, including those involved in biofilm
formation, adhesion, and invasion of host cells [66]. This study identified a number of
virulence genes in the genomes of sequenced E. faecium isolates, with the acm and efaAfm
genes being the most commonly detected among all isolates regardless of source and espfm
only detected in human isolates. Both acm and efaAfm were prevalent in over 95% of E.
faecium isolates from Australian beef cattle, similar to the results obtained for chicken
and pig isolates. In human E. faecium isolates, the virulence genes espfm (18.2%) and
hylEfm (27.1%) were also commonly observed in addition to acm and efaAfm. The hylEfm
gene, which is responsible for intestinal colonization, has been detected in ampicillin-
resistant E. faecium ST17 and vancomycin-resistant E. faecium (VREF) strains in hospitals
worldwide [67–69]. This study shows that the type, resistance, and virulence characteristics
of E. faecium found in food-producing animals differ from those found in human isolates.

This study has some limitations that should be taken into account. One major limi-
tation is that the E. faecium isolates from meat chickens, pigs, and humans were obtained
from a universal database as secondary data. Second, the beef cattle isolates were obtained
as part of longitudinal study comparing entry and exit samples from a single feedlot, which
may not be sufficient to generalize the results to the wider population. Ideally, this study
could now be replicated in a wider range of feedlots. Third, the E. faecium isolates from
food animals obtained during surveillance were compared with pathogenic isolates from
human sepsis cases, and future studies could also examine human carriage isolates. Finally,
due to the use of short-read sequencing data, it was not possible to determine the AMR
profile and virulence factor composition of each plasmid replicon. In the future, the scope
of this study could be expanded to include a range of farms and geographical locations.

4. Materials and Methods
4.1. Genomic Analysis

The E. faecium isolates from beef cattle were whole-genome sequenced and assembled
using a previously described method (BioProject PRJNA879912) [29]. The obtained data
were subsequently compared to three previous studies that reported WGS of gastrointesti-
nal E. faecium isolates from healthy pigs (accession number PRJNA639902) [33] and meat
chickens (accession number PRJNA524396) [28] from slaughterhouses as well as isolates
from human sepsis cases (accession number PRJNA562414) [5] from Australia. Assembled
sequences with less than 30× coverage and less than 25,000 SNPs were excluded from fur-
ther analysis. The isolates that met the criteria were from beef cattle (n = 59), pigs (n = 60),
meat chickens (n = 8), and human sepsis cases (n = 302). The genetic relationships between
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isolates were examined using single-nucleotide polymorphisms (SNPs) from cleaned WGS
reads that were mapped to an E. faecium complete genome (NCBI Assembly Accession:
CP003583.1). The software Snippy v4.6.0 (https://github.com/tseemann/snippy, (ac-
cessed on 21 September 2022) was used to call core SNPs, i.e., SNPs that can be determined
in all isolates. A maximum likelihood (ML) tree was constructed with RAxML v8.2.10
using the model GTRCAT, and a rapid bootstrap analysis with 100 bootstraps for the
best-scoring ML tree was undertaken [70]. This was followed by recombination removal
using ClonalFrameML v1.12 [71]. Multilocus sequence typing (MLST) was undertaken
using MLST 2.0 [72]. The final phylogenetic tree and heat map were manipulated with
iTOL (https://itol.embl.de/, accessed on 23 October 2022) for display [73]. A heat map
illustrating the presence or absence of each trait for each isolate was created to assess all
data elements for all isolates.

4.2. Comparative Analysis of Virulence Genes, AMR Genes and Plasmids

The detection of virulence genes was carried out using VirulenceFinder 2.0 [74,75]. To
identify antimicrobial resistance genes (ARGs), we used ResFinder 4.0 [76] and, to further
pinpoint the chromosomal point mutations associated with AMR, we used PointFinder [77].
The ResFinder web server (www.genomicepidemiology.org, accessed on 12 October 2022)
was used to identify acquired ARGs in the WGS data, using a threshold of 98.0% identity
(ID). ARGs were also predicted using the Antibiotic Resistance Genes Database (ARDB) and
the Comprehensive Antibiotic Resistance Database (CARD) in addition to ResFinder [78].
To detect plasmid replicons, PlasmidFinder was used, with minimum identity and coverage
of 95% and 60% parameters, respectively [79].

4.3. Statistical Analysis

Categorical measured traits including ARGs, the presence of plasmid replicons, and
virulence factors were converted into a numerical code, with 1 indicating presence and
0 indicating absence. Proportions of AMR, MDR, ARGs, plasmid replicons or virulence
factors were calculated using R Statistical Package version 4.0.0. Resistance profiles were
categorised as MDR if the isolate exhibited resistance to one or more antimicrobials in
three or more antimicrobial classes [80]. AMR and ARG frequencies were described as rare:
<0.1%; very low: 0.1 to 1.0%; low: >1 to 10.0%; moderate: >10.0 to 20.0%; high: >20.0 to
50.0%; very high: >50.0 to 70.0%; and extremely high: >70.0% [81].

5. Conclusions

The continued use of antimicrobial agents in health care and agriculture settings
inevitably leads to the emergence of AMR. This study compared the prevalence of virulence
genes, ARGs, and plasmid replicon types identified among E. faecium isolates obtained
from beef cattle at a single feedlot with those obtained from different animal hosts (pigs
and meat chickens) and humans within Australia. Beef cattle, meat chicken, and pig-source
E. faecium isolates were found to be of limited risk and largely unrelated to human-source
isolates. The strict regulation of antimicrobials used in food animals is likely the reason
for the low level of AMR found in food animals in Australia. The higher levels of AMR
observed in human isolates may be because they are clinical isolates exposed to more
antimicrobials than the surveillance isolates from food animals included in this study. This
research approach helps understand the general trend and spread of AMR E. faecium in
different sectors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12071122/s1, Figure S1. The frequency of antimicrobial
resistance gene in E. faecium isolated from beef (n = 59), pig (n = 60), chicken (n = 8) and human
(n = 302); Figure S2. The frequency of plasmid replicons in E. faecium isolated from beef (n = 59),
pig (n = 60), chicken (n = 8) and human (n = 302); Table S1. Prevalence of antimicrobial resistance
genes, plasmid replicons, and virulence genes in E. faecium (n = 23) human Isolates mixed in animal
isolate-dominated clades.
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