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Abstract: Different factors, including antimicrobial resistance, may diminish the effectiveness of
antibiotic therapy, challenging the management of post-transplant urinary tract infection (UTI).
The association of acidic urine pH with microbiological and clinical outcomes was evaluated after
fosfomycin or ciprofloxacin therapy in 184 kidney transplant recipients (KTRs) with UTI episodes by
Escherichia coli (N = 115) and Klebsiella pneumoniae (N = 69). Initial urine pH, antimicrobial therapy, and
clinical and microbiological outcomes, and one- and six-month follow-up were assessed. Fosfomycin
was prescribed in 88 (76.5%) E. coli and 46 (66.7%) K. pneumoniae UTI episodes in the total cohort.
When the urine pH ≤ 6, fosfomycin was prescribed in 60 (52.2%) E. coli and 29 (42.0%) K. pneumoniae.
Initial urine pH ≤ 6 in E. coli UTI was associated with symptomatic episodes (8/60 vs. 0/55, p = 0.04)
at one-month follow-up, with a similar trend in those patients receiving fosfomycin (7/47 vs. 0/41,
p = 0.09). Acidic urine pH was not associated with microbiological or clinical cure in K. pneumoniae
UTI. At pH 5, the ciprofloxacin MIC90 increased from 8 to >8 mg/L in E. coli and from 4 to >8 mg/L
in K. pneumoniae. At pH 5, the fosfomycin MIC90 decreased from 8 to 4 mg/L in E. coli and from
512 to 128 mg/L in K. pneumoniae. Acidic urine is not associated with the microbiological efficacy of
fosfomycin and ciprofloxacin in KTRs with UTI, but it is associated with symptomatic UTI episodes
at one-month follow-up in E. coli episodes.

Keywords: urinary tract infections; urine pH; ciprofloxacin; fosfomycin; kidney transplant recipients;
Escherichia coli; Klebsiella pneumoniae

1. Introduction

Urinary tract infections (UTIs) remain a major issue in kidney transplant recipients
(KTRs), with an incidence of 7.3% and increased mortality in the first year [1,2]. The
incidence of UTIs is even higher in the six months (36.5–47%) after transplantation, being the
most frequent etiologies Escherichia coli, Klebsiella spp., and Pseudomonas aeruginosa [1,3,4].
In addition to its clinical impact, the treatment of UTI in KTRs poses a serious problem
owing to the antimicrobial resistance of the most frequent Gram-negative bacilli [1,3]. In a
multicenter European study, the resistance rates among 775 E. coli isolates were 15.1% and
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1.3% for ciprofloxacin and fosfomycin, respectively, with multidrug resistance (MDR) in
13.9% [5]. In two multicenter studies from China and South Korea, the fosfomycin resistance
rates among E. coli urine isolates were 3.9% and 5% [6,7]. For K. pneumoniae, fosfomycin
resistance rates in urine isolates in two Spanish cohorts of KTRs were 22%–25% [8].

A retrospective, multicenter, cohort study evaluated the efficacy of oral fosfomycin
in KTRs with cystitis, caused mainly by E. coli and K. pneumoniae [9]; the clinical and
microbiological cure was achieved in 83.9% and 70.2% of cases, respectively. In three
clinical trials performed in KTRs, the screening and treatment with different antimicrobials
for asymptomatic bacteriuria (AB) caused mostly by E. coli and Klebsiella spp. did not reduce
the occurrence of later symptomatic UTI [10] or acute pyelonephritis [11,12] compared with
no treatment and seemed to promote the emergence of resistant organisms [10,12]. In this
context, the 2023 EAU Guidelines consider fosfomycin trometamol among the first-line
treatments for uncomplicated cystitis and recommend against the screening and treatment
of asymptomatic bacteriuria, including in KTRs [13]. Moreover, the EMA recommends
avoiding the use of quinolones for mild/moderate bacterial infections and considering
patients with organ transplantation at a higher risk [14].

Low-level resistance to ciprofloxacin (LLQR) has been described in E. coli, with a
frequency of 17% to 39% [15,16]. In LLQR E. coli strains, either isogenic derivatives of
ATCC 25922, carrying combinations of the most prevalent chromosomal mutations, or
uropathogenic LLQR E. coli clinical isolates, the acidic pH of the medium increases the
ciprofloxacin minimum inhibitory concentration (MIC) against E. coli between 32-fold and
256-fold at pH 5 [17]. The same effect has been reported in E. oli ATCC 25922 derivatives
harboring the qnrA1, qnrB1, qnrC, qnrD1, and qnrS1 genes and in nine E. coli clinical
strains harboring well-characterized Qnr determinants, with an increase in MIC from 16-
to 128-fold when urine pH decreased from 7 to 5 [18]. Other studies using E. coli 25922
and Klebsiella oxytoca showed that the acidification of urine led to a major impairment of
the antimicrobial activity of all tested fluoroquinolones, with near-total neutralization of
activity in time-kill experiments [19].

In contrast to ciprofloxacin, the acidic pH of the culture medium seems to increase
the activity of fosfomycin [20,21]. Using E. coli BW25113 and 10 isogenic strains carrying
fosfomycin chromosomal mutations and five fosfomycin-resistant E. coli urine isolates,
the MIC decreased steadily from pH 7 to pH 5 in most cases; at pH 8, a 2-fold to 16-fold
increase in the MIC was observed [20]. Another study showed that the fosfomycin MIC90
against 158 E. coli urine isolates was lower at pH 6 compared with pH 7, although the pH
conditions did not affect the activity against Klebsiella spp. [21].

Nevertheless, the impact of physiological urine pH changes on the clinical and mi-
crobiological efficacy of the therapy in E. coli and K. pneumoniae lower UTIs has not been
analyzed in patients, including KTRs. Thus, in this study, we aimed to evaluate the micro-
biological and clinical outcomes, during a six-month follow-up period, of the treatment of
E. coli and K. pneumoniae UTIs with fosfomycin and ciprofloxacin in KTRs and determine
associations with the urine pH, and also to assess the changes produced at different pH
in the MIC distribution of fosfomycin and ciprofloxacin in the urine isolates of E. coli and
K. pneumoniae and in their bactericidal activity.

2. Results
2.1. Characteristics of KTRs with E. coli and K. pneumoniae UTI Episodes

We included E. coli and K. pneumoniae UTI episodes in 115 and 69 KTRs, respectively.
Among the E. coli episodes, 19 (16.5%) and 96 (83.5%) were cystitis and AB, respectively,
and among the K. pneumoniae episodes, 33 (47.8%) and 36 (52.2%) were cystitis and AB.
The most common immunosuppressive drug combination in the two etiologies was my-
cophenolate (MMF), prednisone, and tacrolimus. Demographics, Charlson comorbidity
index, characteristics of the transplantation, data on underlying end-stage renal disease,
previous allograft rejection, plasma creatinine and urine pH at inclusion, antimicrobial
susceptibilities of E. coli and K. pneumoniae isolates from the episodes, and antimicrobial
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therapy are detailed in Table 1. No differences regarding cystitis or AB episodes were found
for any variables (Supplementary Tables S1–S6).

Table 1. Demographics and characteristics of the kidney transplant recipients with urinary tract
infection by Escherichia coli and Klebsiella pneumoniae.

Variables
E. coli

115 Episodes
N (%)

K. pneumoniae
69 Episodes

N (%)

Age (years; median [IQR]) 58 (50–67) 61 (50–69)
Female patients 71 (61.7) 42 (60.9)
Charlson Comorbidity Index (median [IQR]) 3 (3–5) 5 (3–5)
Months from transplantation (median [IQR]) 14 (4–77) 6 (1–77)
<2 months from transplantation 21 (18.3) 41 (59.4)
Previous kidney transplantation 10 (8.7) 8 (11.6)
Living donor 11 (9.5) 6 (8.7)
Induction therapy within 3 previous months:

- Thymoglobulin
- Basiliximab
- Daclizumab

73 (63.5)
26 (22.6)
41 (35.7)
6 (5.2)

28 (40.6)
12 (17.4)
14 (20.3)
2 (2.9)

Current immunosuppression:

- Corticosteroids
- Tacrolimus
- MMF
- mTOR inhibitors
- Cyclosporine

107 (93.0)
107 (93.0)
90 (78.3)

8 (6.9)
4 (3.4)

58 (84.1)
64 (92.8)
54 (78.3)

4 (5.8)
3 (4.3)

Acute rejection within the previous 6 months 11 (9.6) 0 (0.0)
Rejection treatment in the previous 6 months:

- Corticosteroid’s bolus
- Plasmapheresis
- Thymoglobulin

9 (7.9)
1 (0.9)
1 (0.9)

-
-
-

Creatinine (mg/dL; median [IQR]) 1.57 (1.21–1.95) 1.56 (1.25–1.99)
Bacteriuria within the previous 6 months 57 (49.6) 49 (71.0)
Antibiotic use within the previous 3 months

- Quinolones *
- Amoxicillin-clavulanate
- Fosfomycin
- Cephalosporins **
- Others ***

48 (41.7)
11 (9.6)
6 (5.2)

14 (12.2)
15 (13.0)
2 (1.7)

30 (43.5)
3 (4.3)
8 (11.6)

10 (14.5)
7 (10.1)
2 (2.9)

Cystitis 19 (16.5) 33 (47.8)
Asymptomatic bacteriuria 96 (83.5) 36 (52.2)
Urinary pH (median [IQR]) 6 (6–6.5) 6.5 (6–6.5)
Baseline antibiotic resistance:

- Cotrimoxazole
- Ciprofloxacin
- Amoxicillin-clavulanate
- Fosfomycin
- Cephalosporins ****
- ESBL-production

66 (57.4)
30 (26.1)
24 (20.9)
10 (8.7)
2 (1.7)
2 (1.7)

42 (60.9)
20 (29.0)
15 (21.7)
8 (11.6)

21 (30.4)
20 (29.0)

Antibiotic therapy of the UTI episodes

- Fosfomycin
- Ciprofloxacin

88 (76.5)
27 (23.5)

46 (66.7)
23 (33.3)

IQR: Interquartile range; MMF: Mycophenolate mofetil; mTOR inhibitors: Sirolimus, everolimus; ESBL: Extended
spectrum beta-lactamases; * Quinolones: ciprofloxacin or levofloxacin; ** Cephalosporins: cefixime or cefuroxime;
*** Others: Ertapenem, cloxacillin and rifaximine; **** Cephalosporins: cefuroxime, cefotaxime, ceftazidime,
cefixime or cefepime.
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2.2. Association of Urine pH with Microbiological and Clinical Outcomes of E. coli and
K. pneumoniae UTI Episodes

The 115 patients with E. coli UTI episodes were treated with fosfomycin and ciprofloxacin
in 88 (76.5%) and 27 (23.5%) cases, respectively. At inclusion, urine pH was acidic (≤6) in
60 (52.1%) episodes. Acidic urine, compared to neutral or alkaline urine, was not associated
with microbiological cure one month after therapy (61.7% vs. 69.1%) in all episodes, nor in
episodes treated with fosfomycin or ciprofloxacin (Table 2). Regarding clinical outcome,
acidic urine at inclusion was associated with more symptomatic events at one-month
follow-up (13.3% vs. 0%, p = 0.045) in all episodes and in those treated with fosfomycin
(14.9% vs. 0%, p = 0.013). By the six-month follow-up, renal function had worsened in
fourteen (12.3%) patients, one (0.8%) patient lost the graft, and one (0.8%) patient died in
the fourth month with acute pyelonephritis by E. coli and renal failure.

Table 2. Microbiological and clinical outcomes, in patients with acidic vs. non-acidic urine, after fos-
fomycin or ciprofloxacin therapy of urinary tract infection by Escherichia coli and Klebsiella pneumoniae.

Variable
Urinary pH ≤ 6 Urinary pH > 6 p

N (%) N (%)

Escherichia coli UTI Episodes (N = 115)
Microbiological cure
during one-month
follow-up

Total 37/60 (61.7) 38/55 (69.1) 0.41
Episodes treated with fosfomycin 29/47 (61.7) 27/41 (65.9) 0.69
Episodes treated with ciprofloxacin 8/13 (61.5) 11/14 (78.6) 0.42

Symptomatic UTI
during one-month
follow-up

Total 8/60 (13.3) 0/55 (0.0) 0.006
Episodes treated with fosfomycin 7/47 (14.9) 0/41 (0.0) 0.013
Episodes treated with ciprofloxacin 1/13 (7.7) 0/14 (0.0) 0.48

Symptomatic UTI during
six-month follow-up

Total 11/60 (18.3) 9/55 (16.4) 0.78
Episodes treated with fosfomycin 10/47 (21.3) 9/41 (22.0) 0.94
Episodes treated with ciprofloxacin 1/13 (7.7) 0/14 (0.0) 0.48

Klebsiella pneumoniae UTI episodes (N = 69)
Microbiological cure
during one-month
follow-up

Total 10/29 (34.5) 15/40 (37.5) 0.69
Episodes treated with fosfomycin 4/16 (25.0) 8/30 (26.7) 1.00
Episodes treated with ciprofloxacin 6/13 (46.2) 7/10 (70.0) 0.16

Symptomatic UTI
during one-month
follow-up

Total 4/29 (13.8) 4/40 (10.0) 0.71
Episodes treated with fosfomycin 3/16 (18.8) 4/30 (13.3) 0.69
Episodes treated with ciprofloxacin 1/13 (7.7) 0/10 (0.0) 1.00

Symptomatic UTI during
six-month follow-up

Total 3/29 (10.3) 6/40 (15.0) 0.75
Episodes treated with fosfomycin 1/16 (6.3) 4/30 (13.3) 1.00
Episodes treated with ciprofloxacin 2/13 (15.4) 2/10 (20.0) 1.00

p: Chi-square or Fisher exact tests.

Among the 69 patients with K. pneumoniae UTI episodes, 46 (66.7%) and 23 (33.3%)
were treated with fosfomycin and ciprofloxacin, respectively. At inclusion, urine pH was
acidic (≤6) in 29 (42.0%) episodes. Acidic urine, compared to neutral or alkaline urine,
was not associated with microbiological cure at one month in all episodes, nor in episodes
treated with fosfomycin or ciprofloxacin, nor were there differences in symptomatic UTI
episodes at one- and six-month follow-up (Table 2). By the six-month follow-up, renal
function worsened in seven (10.1%) patients, one (1.4%) patient lost the graft, and four
(5.8%) patients died in the second month of follow-up, in the context of bloodstream
infections by K. pneumoniae in two patients.

As a sensitivity analysis, in the 184 E. coli and K. pneumoniae UTI episodes, the
urine pH was acidic (≤6) at inclusion in 89 (48.4%) cases, which was associated with
more symptomatic events by the one-month follow-up (13.5% vs. 4.2%, p = 0.052)
(Supplementary Tables S7–S10).
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2.3. Antimicrobial and Bactericidal Activities of Ciprofloxacin and Fosfomycin against E. coli and
K. pneumoniae Clinical Isolates at Neutral, Acidic, and Alkaline pH

Among the 115 E. coli initial isolates, 32 (27.8%) were resistant to ciprofloxacin, and
10 (8.7%) were LLQR. When the MIC of ciprofloxacin was determined at pH 5, the resistance
and LLQR rates increased to 40.9%; minimal changes in the MIC occurred at pH 8. Nine
(7.8%) isolates were resistant to fosfomycin and three (2.6%) were LLFR. In the MIC
determination of fosfomycin at pH 5, there were no appreciable changes; at pH 8, the
resistance increased to 15.7%, and 12.2% had LLQR. Regarding the 69 initial K. pneumoniae
isolates, 23 (33.3%) were resistant to ciprofloxacin, and 13 (18.8%) were LLQR. The MIC
determination of ciprofloxacin at pH 5 increased resistance to 49.3%, and 47.8% exhibited
LLQR; at pH 8, the MIC50 and MIC90 values decreased from 0.25 and 4 to 0.03 and 2 mg/L,
respectively. Fifty-five (79.7%) isolates were resistant to fosfomycin. When the MIC of
fosfomycin was determined at pH 5 and pH 8, the resistance increased to 97.1% and 98.6%,
respectively. Details on the MIC distributions of ciprofloxacin and fosfomycin at different
pH are in Figure 1 and Supplementary Tables S11–S15.
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24 h against the four strains in MHB and urine, and fosfomycin at six hours, with regrowth 
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alkaline pH, it also showed a 20% mutant resistance in MHB.  

Figure 1. Ciprofloxacin and fosfomycin MIC values distributions determined at pH 5 (pink bars),
pH 7 (white bars), and pH 8 (blue bars) against Escherichia coli (N = 115) and Klebsiella pneumoniae
(N = 69) urine clinical isolates. S: susceptible; LLQR: Low-level quinolone resistance; LLFR: Low-level
fosfomycin resistance; R: resistant; EUCAST: European Committee on Antimicrobial Susceptibility
Testing interpretative criteria 2023 (ciprofloxacin resistant: MIC > 0.5 g/L; fosfomycin resistant:
MIC > 8 g/L).

The growth of the E. coli and K. pneumoniae strains in Müller-Hinton Broth (MHB) or
urine was not different depending on the pH, but it was approximately 1 log10 CFU/mL
lower in urine. Against the E. coli strains at neutral pH, ciprofloxacin was bactericidal
at 24 h against three and four strains in MHB and urine, respectively; fosfomycin was
bactericidal at six hours, with regrowth at 24 h, against three strains in MHB. At acidic pH,
ciprofloxacin at 24 h and fosfomycin at 6 h, with regrowth at 24 h, were bactericidal only
against one strain, respectively. Finally, at alkaline pH, ciprofloxacin was bactericidal at
24 h against the four strains in MHB and urine, and fosfomycin at six hours, with regrowth
at 24 h, against two strains in MHB (Figure 2, Supplementary Tables S16 and S17). In the
experiments with regrowth at 24 h, E. coli Nu14, at neutral pH, developed resistant mutants
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to fosfomycin in 60% and 20% of strains, respectively, in MHB and urine, and at alkaline
pH, it also showed a 20% mutant resistance in MHB.
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strains, at neutral, acidic, and alkaline pH, in both MHB and urine. Fosfomycin, at neutral 
pH, was bactericidal at 24 h against one strain in both MHB and urine. At acidic pH, 
fosfomycin was bactericidal at 24 h against one and two strains in MHB and urine, respec-
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Figure 2. Bactericidal activity of ciprofloxacin and fosfomycin at MIC concentrations in MHB and
urine, determined at pH 5 (pink bars), pH 7 (white bars), and pH 8 (blue bars) (dark grey bars)
against Escherichia coli strains. Panels (A,B) E. coli NU14 wild-type strain, susceptible to ciprofloxacin
(MIC 0.03 mg/L) and fosfomycin (MIC 2 mg/L). Panels (C,D) E. coli HUVR94 clinical strain, suscepti-
ble to ciprofloxacin (MIC 0.03 mg/L) and fosfomycin (MIC 0.5 mg/L). Panels (E,F) E. coli Nu79 gyrA
(D87G) strain with low-level quinolone resistance (MIC 0.12 mg/L) and susceptible to fosfomycin
(MIC 0.5 mg/L). Panels (G,H) E. coli Nu14 glpT missense mutation strains with low-level fosfomycin
resistance (MIC 32 mg/L) and susceptible to ciprofloxacin (MIC 0.01 mg/L). Results are represented
as differences (log10 CFU/mL) relative to the initial time-point (0 h).

Regarding K. pneumoniae strains, ciprofloxacin was bactericidal at 24 h against two
strains, at neutral, acidic, and alkaline pH, in both MHB and urine. Fosfomycin, at neutral
pH, was bactericidal at 24 h against one strain in both MHB and urine. At acidic pH, fos-
fomycin was bactericidal at 24 h against one and two strains in MHB and urine, respectively,
and at 2 h against one strain in urine, with regrowth at 24 h, without developing resistance
to fosfomycin. At alkaline pH, fosfomycin was bactericidal at 24 h against one strain in
MHB (Figure 3, Supplementary Tables S18 and S19).
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and urine, determined at pH 5 (pink bars), pH 7 (white bars), and pH 8 (blue bars) against
Klebsiella pneumoniae strains. Panels (A,B) K. pneumoniae HUVR42 susceptible to ciprofloxacin
(MIC 0.007 mg/L) and fosfomycin (4 mg/L). Panels (C,D) K. pneumoniae HUVR5 resistant to
ciprofloxacin (MIC 8 mg/L) and fosfomycin (128 mg/L. Panels (E,F) K. pneumoniae HUVR110
resistant to ciprofloxacin (MIC 8 mg/L) and susceptible to fosfomycin (MIC 4 mg/L). Panels
(G,H) K. pneumoniae HUVR91 resistant fosfomycin (MIC 64 mg/L) and susceptible to ciprofloxacin
(MIC 0.06 mg/L). Results are represented as differences (log10 CFU/mL) relative to the initial time-
point (0 h).

3. Discussion

The present study shows that in KTRs with UTI caused by E. coli, cystitis, and asymp-
tomatic bacteriuria, the acidic urine pH (≤6) at diagnosis, although physiological, is associ-
ated with a higher frequency of symptomatic UTI at one month of follow-up, particularly
in those treated with oral fosfomycin. The acidic urine was not associated with the microbi-
ological and clinical cure at one and six months after therapy, respectively, in patients with
E. coli UTI, nor with the microbiological and clinical outcomes in KTRs with UTI caused
by K. pneumoniae. At pH 5, the ciprofloxacin MIC90 increased in E. coli and K. pneumoniae.
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Fosfomycin MIC90 increased at pH 8 in E. coli and decreased at pH 5 in K. pneumoniae.
The bactericidal in vitro activity of ciprofloxacin and fosfomycin against the E. coli strains
decreased at acidic pH. At acidic pH, there was a slight increase of the bactericidal activity
in fosfomycin against K. pneumoniae without changes with ciprofloxacin.

The clinical outcome of fosfomycin in the present study is inconsistent with its re-
ported pharmacodynamics, including urine acidification. Using a Monte Carlo simulation
of the urinary fosfomycin area under the concentration–time curve, after a single oral
dose of 3 g, fosfomycin was effective against E. coli (MIC90 ≤ 16 mg/L) but not against
Klebsiella spp. Acidification increased the susceptibility of 71% of the bacterial isolates,
and the cumulative fractions of the bacterial responses were 99% and 55% against E. coli
and Klebsiella spp., respectively, based on simulated drug exposure in urine with an acidic
pH of 6 [21]. However, a retrospective study, including 48 cases of asymptomatic bacteri-
uria (AB) and cystitis, found fosfomycin resistance after treatment in six (12.5%) episodes
caused by Enterobacterales [22], as we have observed against one E. coli strain after ex-
position to fosfomycin in the time-kill assays. In addition, a multicenter study showed
9.1% heteroresistance to fosfomycin among 66 E. coli urine isolates, with overexpression of
metabolic genes increasing their survival rate [23], which may play a role in the failure of
antibiotic treatments.

The clinical outcomes in the present study did not confirm the in vitro studies show-
ing that the acidic pH of the medium increased the ciprofloxacin MIC against E. coli in
LLQR [17], strains harboring well-characterized Qnr determinants [18], or E. coli 25922 [19].
Although our in vitro studies showed an increase in the MIC90 and a decrease in the suscep-
tibility rate to ciprofloxacin in E. coli at diagnosis, the clinical and microbiological outcomes
in patients treated with ciprofloxacin did not differ depending on the pH (acidic vs. neutral
or alkaline).

The time-kill results were in accordance with those previously published [17–19], showing
that the growth of E. coli and K. pneumoniae strains was similar, independent of pH conditions,
and that E. coli growth was lower in urine than in MHB [18–20]. As reported [17–19], the present
study shows less bactericidal in vitro activity of ciprofloxacin against E. coli in acidic pH
conditions, independent of the medium. Likewise, at acidic pH conditions, fosfomycin
activity against E. coli and K. pneumoniae was found to be marginal. Burian et al. [24]
also found that pH acidification decreases the activity of different antibiotics, including
fosfomycin. Martín-Gutiérrez et al. [20] found reduced fosfomycin activity in MHB at
alkaline pH with an increase in the fosfomycin MIC against susceptible E. coli strains and
those with LLFR. Nevertheless, in our in vitro studies, fosfomycin was bactericidal against
three and two out of four isolates at neutral and alkaline pH, respectively, and at acidic pH
only against one isolate.

Our study had several limitations. It was not a controlled study, although it re-
flected the results obtained in daily clinical practice. The number of patients treated with
ciprofloxacin was limited following the EMA recommendation [14]. Moreover, the small
number of patients with symptomatic UTIs in the follow-up precluded the exploration of
possible confounding variables. The strengths were the inclusion of 184 UTI episodes by
E. coli and K. pneumoniae and treatment only with fosfomycin or ciprofloxacin, considering
that clinical trials to evaluate the therapeutic efficacy in AB included 112 and 205 KTRs
with UTI of any etiology and receiving nonhomogeneous therapies [10–12]. Moreover,
physiologically acidic urine was a common event, occurring in 48.4% of the 184 KTRs in
the present study.

The study had several implications for clinical practice. First, it pointed out the need
to consider an initial acidic urine pH as a factor for the strict follow-up of KTRs with E. coli
UTI, especially in those treated with fosfomycin. Regarding the future, controlled and
randomized clinical trials may answer the question of what the better therapy for cystitis is
in KTRs with the most frequent gram-negative bacilli etiologies.
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4. Materials and Methods
4.1. Study Design and Setting

We carried out an observational cohort of adult KTRs with E. coli and K. pneumoniae
UTI episodes (cystitis and asymptomatic bacteriuria ([AB]), who attended as outpatients
at the Virgen del Rocío University Hospital, Seville, Spain, from January 2017 to De-
cember 2019 and in a second period from March 2021 to June 2022 to collect additional
K. pneumoniae episodes.

Physicians in charge of patients asked them to participate in the study, and they
were prospectively included if (i) they provided informed consent; (ii) the requested
urine cultures identified E. coli or K. pneumoniae; (iii) the attendant physicians prescribed
fosfomycin or ciprofloxacin therapy in accordance with their clinical criteria; (iv) urine
cultures were performed between 14 and 30 days after beginning the treatment; and (iv) a
six-month follow-up was available, with an optional urine culture if new UTI symptoms
occurred. Patients who did not fulfill these criteria were excluded. Fosfomycin trometamol
was administered as two oral doses of 3 g administered 48 h apart [25], and ciprofloxacin
was administered as 250 mg orally every 12 h for 5 days [26]. The outcomes investigated
were microbiological cure at one month and clinical cure at one- and six-month follow-ups.

The following data were recorded from the digital charts at inclusion: demograph-
ics, chronic underlying diseases, time since kidney transplantation, immunosuppressive
regimens, clinical data, plasma creatinine, urinary pH (pH ≤ 6 was defined as acidic),
leukocyturia, urine nitrites in samples processed 4–8 h after collection, and antimicrobial
therapy. The GESITRA/REIPI UTI guidelines were followed for clinical definitions [3]. Bac-
teriuria was defined as urine specimens isolated with quantitative counts of ≥105 CFU/mL.
Asymptomatic bacteriuria was defined as the presence of bacteriuria in the absence of any
UTI symptoms. Cystitis was considered for bacteriuria and clinical manifestations such
as dysuria, frequency and urgency of urination, suprapubic pain, and/or hematuria in
the absence of pyelonephritis symptoms. Acute pyelonephritis (APN) was considered the
simultaneous presence of bacteriuria and/or bacteremia and fever, with one or more of the
following: lumbar pain (if native kidney involved), renal allograft tenderness (if the kidney
was transplanted), chills, or cystitis symptoms. Microbiological cure was achieved when
urine culture was negative at 14–30 days. Clinical cure was considered the resolution of
symptoms in the case of cystitis. Mortality was considered as death occurring within six
months of follow-up. Impairment of renal function was defined as a ≥0.5 mg/dL increase
in plasma creatinine.

4.2. Antimicrobial Susceptibility of E. coli and K. pneumoniae Clinical Isolates at Different
pH Conditions

Clinical isolates were collected at inclusion and during follow-up and processed within
4–8 h after collection, and urine pH was measured. The hospital microbiology service
identified the bacterial isolates and performed susceptibility testing with standard tests.
Causative organisms were identified using a MicroScan WalkAway® Plus system (Beckman
Coulter, Nyon, Switzerland). In cases where identification was uncertain, verification
was obtained using a Bruker Biotyper MALDI-TOF MS system (Bruker Daltonik GmbH,
Leipzig, Germany). The antimicrobial susceptibility testing and interpretation were in
accordance with the yearly European Committee on Antimicrobial Susceptibility Testing
(EUCAST) criteria [27].

Moreover, ciprofloxacin and fosfomycin MICs were determined in duplicate, in so-
lutions with pH 8, 7, and 5 and interpreted following the 2023 EUCAST criteria (www.
eucast.org/clinical_breakpoints, accessed on 22 December 2023): in the absence of defined
breakpoints for oral fosfomycin in Enterobacterales other than E. coli, the same criteria
were applied for K. pneumoniae. Antimicrobials were purchased as standard powders
(Sigma-Aldrich, Madrid, Spain). The in vitro ciprofloxacin susceptibility assay was de-
termined by microdilution method adjusting MHB (Thermo Scientific, Oxford, UK) to
obtain acidic (pH = 5) or alkaline (pH = 8) pH values by adding 0.012% (v/v) of 12 N HCl

www.eucast.org/clinical_breakpoints
www.eucast.org/clinical_breakpoints
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or 0.072% (v/v) of 2 N NaOH, respectively (Sigma-Aldrich, Spain). Increasing concen-
trations of ciprofloxacin (from 0.01 to 8 mg/L) were tested with a starting inoculum of
5 × 105 CFU/mL. Fosfomycin susceptibility assays were carried out by agar diffusion.
Aliquots of LB-agar (Sigma-Aldrich, Spain) were supplemented with glucose-6-phosphate
(25 mg/L), increasing concentrations of fosfomycin (from 0.12 to 1024 mg/L) and, finally,
0.05% (v/v) of 12 N HCl or 0.07% (v/v) of 10 N NaOH to adjust acidic (pH = 5) or alkaline
(pH = 8) pH values, respectively. Aliquots were plated and gel, then 2 µL of inoculum (final
concentration of 5 × 105 CFU/mL) was plated and incubated overnight at 37 ◦C. For E. coli,
ciprofloxacin, and fosfomycin with MIC values of >0.06 to 0.5 mg/L and >4 to 8 mg/L were
considered the LLQR and LLFR, respectively. For K. pneumoniae, ciprofloxacin MIC values
of >0.12 to 0.5 mg/L were considered the LLQR; no isolates were classified as LLFR because
of the 128 mg/L ECOFF (https://mic.eucast.org/; accessed on 21 July 2023).

4.3. Bactericidal Activity of Ciprofloxacin and Fosfomycin against E. coli and K. pneumoniae
Strains at Different pH Conditions

To evaluate the impact of different pH conditions on the bactericidal activities of ciprofloxacin
and fosfomycin against uropathogenic E. coli and K. pneumoniae strains, with different sus-
ceptibility patterns, we used eight strains: (i) E. coli Nu14 [28], ciprofloxacin- and fosfomycin-
susceptible (MIC 0.03 and 2 mg/L, respectively); (ii) E. coli HUVR94, ciprofloxacin- and
fosfomycin-susceptible (MIC 0.03 and 0.5 mg/L, respectively); (iii) E. coli Nu79 gyrA D87G
with LLQR (MIC 0.12 mg/L) and fosfomycin-susceptible (MIC 0.5 mg/L) [29]; (iv) E. coli
Nu14 with a glpT missense mutation, ciprofloxacin-susceptible (MIC 0.01 mg/L) and pre-
viously defined as LLFR (MIC 32 mg/L) [30]; (v) K. pneumoniae HUVR42, ciprofloxacin-
and fosfomycin-susceptible (MIC 0.007 and 4 mg/L, respectively); (vi) K. pneumoniae
HUVR5, ciprofloxacin- and fosfomycin-resistant (MIC 8 and 128 mg/L, respectively);
(vii) K. pneumoniae HUVR110, ciprofloxacin-resistant (MIC 8 mg/L) and fosfomycin-susceptible
(MIC 4 mg/L); and (viii) K. pneumoniae HUVR91, ciprofloxacin-susceptible (MIC 0.06 mg/L)
and fosfomycin-resistant (MIC 64 mg/L).

The bactericidal activity of both antimicrobials against the eight strains was deter-
mined, in triplicate, by time-kill assays at concentrations equivalent to their MIC on MHB
(Thermo-Scientific, UK) and urine from three healthy volunteers who had not undergone
antibiotic treatment in the previous three months. Urine samples were pooled and sterilized
by filtration (polyether-sulphone membrane filters, 0.22 mm, VWR; Leicestershire, UK) and
stored at 4 ◦C until analysis. MHB and/or urine were adjusted to obtain acidic (pH = 5)
or alkaline (pH = 8) pH values by adding 0.012% (v/v) of 12 N HCl or 0.072% (v/v) of
2 N NaOH, respectively (Sigma-Aldrich, Spain). The initial concentration of inoculum
was 5 × 105 CFU/mL, and samples were taken at 0, 2, 4, 6, and 24 h. Bactericidal activ-
ity was defined as a decrease of ≥3 log10 CFU/mL based on the initial concentration of
inoculum [27].

In these assays, mutant-resistant development was determined if the strains were
ciprofloxacin- or fosfomycin-susceptible, and there was regrowth at 24 h after a bactericidal
effect at previous time points. In these cases, five colonies were randomly picked up to
perform susceptibility assays, as previously described. The mutant resistant rate was
calculated as (number of resistant colonies/total number of colonies) × 100.

4.4. Statistical Analysis

Continuous variables are expressed as median and interquartile range (IQR), and
qualitative variables as proportions. The microbiological cure at one month and clinical
cure at one- and six-months follow-up were analyzed separately in patients with E. coli
or K. pneumoniae episodes and treated with ciprofloxacin or fosfomycin, comparing the
results in patients with urine pH at diagnosis of ≤6 and >6, through chi-square and Fisher
exact tests. The association of urine pH with the microbiological and clinical outcomes was
adjusted by age (≤60 vs. >60 years) and cystitis or AB. Several sensitivity analyses were
performed to compare patients with urine pH ≤ 6 and > 6 in all patients (N = 184), patients

https://mic.eucast.org/
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with cystitis (N = 52), and patients with AB (N = 132), independently of the etiology. The
bactericidal activities of ciprofloxacin and fosfomycin in time-kill studies are presented
as differences in the log10 CFU/mL with respect to the initial bacterial concentrations. A
p value of <0.05 was considered significant. The statistical package SPSS v24.0 (SPSS Inc.,
Chicago, IL, USA) was used.

5. Conclusions

The results of the present study suggest that low urine pH is associated with a greater
frequency of symptomatic UTI in the first month after the antimicrobial treatment when
the etiology of the initial episode is E. coli. However, the data in the follow-up show that
acidic urine does not affect the microbiological efficacy of ciprofloxacin and fosfomycin in
KTRs with cystitis and asymptomatic bacteriuria.
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low-level fosfomycin resistance at pH 7.0 (neutral); Table S16: pH effect on the bactericidal activity of
ciprofloxacin MIC, in MHB and urine, against uropathogenic Escherichia coli strains; Table S17: pH
effect on the bactericidal activity of fosfomycin MIC, in MHB and urine, against uropathogenic
Escherichia coli strains; Table S18: pH effect on the bactericidal activity of ciprofloxacin MIC, in MHB
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