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Abstract: Urinary tract infections (UTIs) are prevalent bacterial infections in both community and
healthcare settings. They account for approximately 40% of all bacterial infections and require around
15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs
for several decades, the significant increase in antibiotic resistance in recent years has made many
previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings
creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections
are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is
inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence
of antibiotic resistance. Biofilms enable pathogens to evade the host’s innate immune defences,
resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the
bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the
availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum
is critical, it alone will not solve the problem; innovative treatment approaches are also needed.
This review analyses the main characteristics of biofilm formation and drug resistance in recurrent
uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting
biofilm-caused UTI is emphasised.
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1. Introduction

Approximately 15% of antibiotics are prescribed for the treatment of urinary tract
infections (UTIs), which are some of the most common bacterial infections. UTIs affect
over 400 million people annually and result in 150 million deaths worldwide [1,2]. It is
estimated that around 50% of women and 5% of men will experience a UTI during their
lifetime [3]. The incidence of UTIs increases with age, affecting between 30% and 50% of
women over the age of 60 [4]. UTI pathogenesis is the result of several complex interactions
between a uropathogen and the host [5,6]. However, it is widely recognised that outpatient
antibiotic use is often excessive and unnecessary [7]. While antibiotics have been used to
treat common infections for many years, antibiotic resistance has made several antibiotics
that are commonly used for UTIs ineffective, leading to more serious illness, hospital
admissions, and deaths, as well as increased healthcare costs [6,8]. Antibiotic resistance is a
major concern, with antibiotic-resistant UTIs being a critical aspect [9]. Antibiotic resistance
was identified by the World Health Organization as one of the top ten global public health
threats in 2021 [10]. A urinary tract infection that spreads to the bloodstream and causes
sepsis can be fatal, and drug-resistant infections can make this more likely [6,11]. In 2019,
drug-resistant infections directly caused 1.27 million of the approximately 4.95 million
deaths attributed to antibiotic resistance. This exceeded the number of deaths caused by
HIV/AIDS [12,13]. Antibiotic resistance is a natural phenomenon, but its acceleration
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due to the misuse of antibiotics in humans and animals is a serious problem [14]. This is
especially concerning for UTIs, which are among the most prevalent infectious diseases [15].
Biofilms are widely recognised as a major contributing factor of the high rates of recurrence
and antibiotic resistance that are commonly associated with UTIs [16,17]. Biofilms can be
formed by different types of bacteria, including both Gram-positive and Gram-negative
species, and they are known to play an important role in several disease processes [18,19].
This review analyses the significance of biofilm formation in recurrent UTIs and summarises
recent developments in understanding how drug resistance evolves in major uropathogens.
The importance of rational antibiotic use in UTI treatment and the factors contributing to
increasing bacterial resistance are also highlighted. It also assesses the advantages and
disadvantages of alternative treatments for UTIs.

2. Classification and Pathogenesis of UTIs
2.1. Types of UTIs

There are several classification systems for UTIs [20]. However, the most widely
used systems are those developed by the CDC, which distinguish between uncomplicated
and complicated UTIs on the basis of the presence of risk factors such as anatomical or
functional abnormalities in the urinary tract [5,6,21]. UTIs are also classified according to
the location of the infection and the clinical presentation of the UTI [6]. The urinary tract
consists of the kidneys, ureters, bladder, and urethra. The kidneys filter waste products
from the blood and produce urine, which then passes through the ureters to the bladder.
UTIs are typically categorized as upper or lower depending on their location within the
urinary tract. Urethritis is an inflammation of the urethra, and ureteritis is an inflammation
of the ureter [22]. Lower UTIs, including cystitis, which refers to a bladder infection, and
upper UTIs, such as pyelonephritis involving the kidney, are classified based on the affected
area [23]. In healthy, pre-menopausal, non-pregnant women with no history of an abnormal
urinary tract, acute cystitis and pyelonephritis are the classifications for uncomplicated
UTIs, with women being more commonly affected than men [24]. Complicated UTIs involve
functional or metabolic abnormalities, such as obstruction, urolithiasis, pregnancy, diabetes,
neurogenic bladder, renal, or other immunocompromising conditions [25]. Recurrence,
catheter association, and urosepsis are also included in the classification of UTIs [26]. UTIs
are classified as recurrent if two or more episodes occur within six months or three or
more episodes occur within 12 months [27,28]. Catheter-associated urinary tract infections
(CAUTIs) account for around 75% of all hospital-acquired UTIs [29]. The risk of contracting
these infections increases with prolonged use of a urinary catheter, which is a tube inserted
into the bladder through the urethra to drain urine. Urosepsis is a systemic inflammatory
response to UTIs such as cystitis, bladder infection, and pyelonephritis, and it can lead to
multiple organ dysfunction, failure, and even death [30].

2.2. Clinical Syndromes

Diagnosing UTIs can be challenging, especially in patients with non-specific symp-
toms [31]. However, it is crucial to differentiate between UTIs and asymptomatic bacteriuria
to determine the necessity of antibiotic treatment [6]. Asymptomatic bacteriuria is the pres-
ence of one or more bacterial species in urine, as indicated by a positive urine culture, in a
patient who does not exhibit any signs or symptoms of a UTI (see below) [32]. In contrast,
UTIs are infections that can affect the urethra, bladder, ureters, and/or kidneys. The symp-
toms experienced depend on which part of the urinary tract is affected [4,32]. Table 1 shows
the signs and symptoms of UTIs depending on the location of the bacterial infection.

UTIs are more common in women and typically affect the bladder and urethra [18].
Uropathogens commonly infect the urinary tract through an ascending route that starts in
the genital area, passes through the urethra to the bladder, and then ascends the ureters
to reach the kidneys (Figure 1). Cystitis is a prevalent UTI among women, especially
pregnant women, due to pregnancy’s interference with bladder emptying [33]. Women
are more susceptible to cystitis due to the shorter length of their urethra and its proximity
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to the anus. Recurrent episodes of cystitis are common among women, especially during
their reproductive years, as bacteria can travel from the urethra to the bladder during
sexual intercourse [34]. Bladder infections in women can also be caused by the use of a
diaphragm for contraception or the decrease in estrogen production after menopause [35].
The spermicide used in conjunction with a diaphragm suppresses the natural vaginal flora,
allowing the bacteria responsible for cystitis to thrive [21]. Bladder prolapse can occur as
a result of decreased estrogen production during menopause, which can make it difficult
to empty the bladder and increase the risk of bladder infections [36]. In men, cystitis and
urethritis are frequently caused by bacterial prostatitis resulting from ascending urethral
infection or intraprostatic reflux [37]. If antibiotics fail to eliminate all bacteria, such as
when they do not penetrate the prostate adequately or when treatment is discontinued
prematurely, prostatitis may recur and become chronic [38]. Bacteria that persist in the
prostate gland have a tendency to re-infect the bladder. Cystitis can also result from a
urethral stone obstructing urine flow, preventing the removal of residual bacteria that
can rapidly multiply in the bladder, or from a catheter that introduces bacteria into the
bladder [4]. Urethritis is an infection of the urethra, which is the tube that carries urine from
the bladder to the outside of the body. Symptoms of urethritis typically include pain during
urination, a strong urge to urinate, and sometimes discharge (which is more common in
men than women) [39]. The most common causes of urethritis are sexually transmitted
microorganisms, such as Neisseria, Chlamydia, Herpes simplex virus, and Trichomonas [40].
Pyelonephritis is a type of urinary tract infection (UTI) that typically originates in another
part of the urinary tract, such as the urethra or bladder, and then spreads to one or both
kidneys [41]. In rare cases (about 5%), infections can also spread to the kidneys from
other parts of the body through the bloodstream [4]. Pyelonephritis is more common in
women than in men and may be milder and more difficult to recognize in children and the
elderly [41]. Risk factors of pyelonephritis include kidney stones, catheterization, urinary
anatomical abnormalities, reflux, diabetes mellitus, enlarged prostate, and pregnancy [6].

Table 1. Signs and symptoms of UTIs in different parts of the urinary system.

Organs of Urinary Tract Signs and Symptoms

Bladder Dysuria *, blood in urine, frequency *, suprapubic pain
Urethra Burning with urination, discharge
Kidneys Nausea, vomiting, high fever, back or side pain

Urethritis Dysuria *, itching, frequency *
* These symptoms may overlap with the clinical presentation of STIs.

2.3. Urinary Tract Infections Caused by Bacteria

UTIs are caused by both Gram-negative and Gram-positive bacteria [42]. Uropathogenic
Escherichia coli is the most common pathogen found in both uncomplicated and complicated
UTIs. This bacterium is responsible for at least 80% and 65% of community- and hospital-
acquired UTIs, respectively [6]. For several decades, it was believed that the bladder and
urethra of healthy individuals were sterile or contained too few bacteria to cause infec-
tions [43]. However, recent studies have shown evidence of numerous microorganisms in
the bladder of adult humans without clinical infections. The relevance and contribution of
these microorganisms to health and disease are still under investigation [43,44]. Common
pathogens causing UTIs include Enterococcus faecalis, Proteus mirabilis, Klebsiella pneumoniae,
Staphylococcus saprophyticus, Group B Streptococcus, Pseudomonas aeruginosa, and S. aureus [6].
Uropathogens express fimbrial adhesins that bind to glycolipids and glycoproteins on the
mucosal–epithelial surface of the host (Figure 2) [45]. Adhesins are used by uropathogens to
create biofilms on both biotic and abiotic surfaces, enabling them to colonise the mucosa of
the urinary tract and indwelling devices such as urinary catheters [46]. Furthermore, some
pathogens secrete substances, such as hemolysin, capsule, proteases, and phospholipases,
which aid bacterial invasion by disrupting epithelial integrity [45,47–50]. Additionally,
certain uropathogens, such as UPEC, can invade the host’s epithelial cells and replicate
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within them, creating a reservoir for recurrent infections [51]. This enables the bacteria to
colonise and cause UTIs. Bacterial virulence factors, such as fimbriae, adhesins, P and type
1 pili, and others that facilitate bacterial invasion, have been described in detail in previous
comprehensive reviews (Figure 2) [4,6,45,52].
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Figure 1. Urinary tract infections (UTIs). UTIs are classified as upper or lower based on their
anatomical location. Lower UTIs are further categorised by the specific anatomical part affected, such
as urethritis for the urethra, ureteritis for the ureter, and cystitis for the bladder. If microorganisms
evade the host’s defences and are not promptly eradicated, they can travel from the lower urinary
tract to the kidneys and, if left untreated, can lead to pyelonephritis.
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expressed in different tracts of the uroepithelium. Type 1 fimbriae facilitate bacterial adhesion at the
proximal and distal tubules, as well as at the level of the collecting duct. Bacteria expressing type 2
and S fimbriae can adhere to various parts of the urinary tract, including the glomeruli, Bowman’s
capsule, collector duct, and proximal and distal tubules. Adhesion is also possible at the level of
the bladder, collecting ducts, and distal and proximal tubules through Dr adhesins. Furthermore,
bacteria that are able to colonise the bladder, distal tubule, and collector duct express the adhesion
protein F1C, which can result in the formation of biofilms.

3. Biofilm Formation

Bacterial biofilms are a significant cause of UTIs, accounting for around 65% of noso-
comial infections and 80% of all microbial infections [53,54]. Biofilms are communities
of microorganisms that permanently attach to biotic or abiotic surfaces and are embed-
ded in their own extracellular matrix [55]. This matrix, known as exopolysaccharides
(EPSs), consists of several compounds, including polysaccharides, lipids, extracellular
DNA, and proteins [56]. The formation of a matrix causes changes in growth rate and
gene transcription, resulting in an altered phenotype compared to that of the planktonic
counterparts [57]. EPSs play a crucial role in biofilm formation, although their composition
varies depending on the bacteria forming the biofilm [58]. They maintain the functional
and structural integrity of biofilms, prevent the diffusion of antibiotics to the cell surface
of microbes, and protects bacteria in the biofilm from various environmental stresses [59].
Biofilm formation is a multistep process involving reversible and irreversible attachment,
the production of EPSs, biofilm maturation, and detachment [60]. The first step in bac-
terial adhesion is determined by attractive or repulsive forces, such as hydrophobicity,
electrostatic interactions, and van der Waals forces [61]. At this stage, planktonic bacteria
attach to the surface in a reversible manner, with adhesion being mainly influenced by
the surface properties of the substrate [60]. Reversible attachment is typically followed by
irreversible attachment, which is mediated by physical appendages of the bacteria, such as
fimbriae and pili [62]. This attachment marks the beginning of the evolution of microbes as
a biofilm. At this stage, the adhesion process is strengthened by producing EPSs, which
facilitate aggregation and adhesion, enabling better surface colonisation. The EPS composi-
tion varies among organisms [63]. For example, E. coli’s matrix is primarily composed of
colanic acid, while P. aeruginosa’s matrix produces alginate as its main capsular polysaccha-
ride [64]. Once bacteria have irreversibly attached to a surface, the biofilm begins to grow
and mature [18,60]. The ability of a bacterial biofilm to grow is primarily determined by
quorum sensing and is limited by factors such as waste removal and nutrient availability
in the surrounding environment [65]. The biofilm grows and matures until it reaches
a critical mass, which is characterized by a defined three-dimensional structure, water
channels, and considerable thickness [18]. Once mature, microbes detach from the biofilm
and return to a planktonic state, enabling them to colonise other surfaces and initiate a
new biofilm cycle [66]. Different bacteria use various mechanisms to disperse biofilms,
which is a crucial step in their transmission both between and within hosts, facilitating
the spread of infection [18,46]. Biofilms are also present inside host cells, where they play
a vital role in the development of recurrent urinary infections by creating intracellular
bacterial communities (IBCs) that shield bacteria from neutrophils and antibiotics [67].
These structures, which are responsible for chronic cystitis, have been extensively described
in uropathogenic E. coli (UPEC) [67]. Biofilms significantly impact human healthcare, as
their formation on medical devices is often linked to persistent infections and tolerance to
antibiotic agents [46]. Additionally, medical-device-associated infections are among the
leading causes of nosocomial infections [68]. Bacterial biofilms have a significant impact on
the development of UTIs, especially in cases of catheter-associated UTIs (CAUTIs), which
account for 40% of all hospital-acquired infections [69]. Biofilms can be developed on the
urothelium, prostate stones, and implanted biomedical devices by both Gram-positive
and Gram-negative bacteria [46]. The most commonly reported bacteria causing UTIs
include E. coli, P. mirabilis, K. pneumoniae, S. epidermidis, S. saprophyticus, S. aureus, and
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E. faecalis [18]. P. mirabilis is a bacterial pathogen that frequently causes both uncomplicated
and complicated UTIs, including CAUTIs. The pathogen can form biofilms because of
virulence factors such as fimbriae, capsules, and ureases [70]. Urea hydrolysis leads to the
formation of ammonium ions, which cause the precipitation of magnesium and calcium
phosphate crystals [70]. The formation of bacterial biofilms protects bacteria from antibi-
otic compounds that are used to coat catheters. The presence of bacterial biofilm on the
urothelium can facilitate bacterial invasion of the renal tissue, leading to pyelonephritis [6].
Biofilm formation also increases the ability of strains to persist in the prostatic secretory
system, leading to recurrent UTIs [71]. Previous studies have shown a clear link between
recurrent UTIs and biofilm-producing isolates [71]. In healthy women, biofilm formation
by UPEC in the vaginal reservoir has been linked to the majority of recurrent UTIs [72].
Biofilms are known to be more resistant to antibiotic treatment than planktonic bacterial
cells, which poses a challenge for removing biofilm from devices [16].

4. The Role of Biofilm in the Persistence and Recurrence of UTIs

Biofilm cells have distinct characteristics compared to those of planktonic cells, in-
cluding increased antibiotic resistance and evasion of the innate and adaptive immune
response [46]. These characteristics arise from the unique structure of biofilms and the
activation of various processes. The high viscosity of the biofilm obstructs the host’s
immune defence system and antimicrobial treatments, contributing to its resistance and
persistence [73]. Furthermore, the release of extracellular toxins results in significant tissue
damage, leading to an increase in nutrient availability and further consolidation of the
biofilm [74]. Asynchronous microbial growth within the biofilm gives rise to variant bacte-
rial phenotypes, such as persister cells, which are inherently resistant to antibiotics [60].
Biofilm-forming bacteria exhibit phenotypic variations, which increase the rate of horizontal
gene transfer (HGT). HGT can occur through several mechanisms, including conjugation,
transformation, and transduction [75]. It is important to note that while these mechanisms
are well known, they are not the only ones. Recently, a fourth mechanism has been identi-
fied, which involves membrane vesicles that transfer antibiotic resistance genes between
members of the biofilm community [76]. CAUTIs caused by bacterial biofilms are a com-
mon type of hospital-acquired infection [69]. Urinary catheters are drainage tubes made of
silicone or latex that are inserted into the bladder to collect urine. They are commonly used
during or after surgery to reduce overflow incontinence or to relieve urinary retention [69].
E. coli, K. pneumoniae, and P. mirabilis are the most common causes of CAUTIs [77]. Bacteria
attach to the surface of the catheter and produce urease, which hydrolyses urea into ammo-
nium ions [78]. This process raises the pH of the urine, resulting in the formation of crystals
of magnesium and calcium phosphate. These crystals become part of the growing biofilm,
which protects the bacteria from compounds used to coat catheters [79]. Previous studies
have shown that patients may develop UTIs within a few days of catheterization due to
the presence of biofilm on urinary catheters [26,69]. Additionally, it has been found that
patients who undergo catheterization for more than 28 days are at a high risk of developing
CAUTIs [17]. Biofilms formed in the initial stages of CAUTIs are often colonized by a
single species, and subsequently, mixed communities develop, resulting in a thick biofilm
that makes antibiotic therapy ineffective [46]. CAUTIs are often caused by Gram-negative
bacteria, such as E. coli and K. pneumoniae, originating from the patient’s perineal micro-
biota or from the hands of medical professionals [80]. These bacteria can contaminate the
urethra and migrate to the bladder, where they create biofilms that act as a reservoir of
infection and promote antibiotic resistance. Catheters increase the risk of UTIs because
they promote bacterial adherence by damaging the protective mucopolysaccharide layer of
the uroepithelium, making it more vulnerable to bacterial invasion [26]. Recent research
has shown that enhancing care practices can reduce the incidence of CAUTIs and their
associated negative outcomes, including higher costs, longer hospital stays, and increased
mortality rates, particularly in critical care units [81,82].
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5. Resistance of Bacteria in Biofilm

Antibiotic resistance may be significantly higher in uropathogens that reside in
biofilms, up to 1000 times higher than in planktonic bacteria [83]. Biofilms produced
by uropathogens play a crucial role in antibiotic resistance through several mechanisms
(Figure 3). (1) Antibiotics diffuse inadequately within the biofilm due to the extracellular
matrix, causing delayed penetration and reduced effectiveness; (2) bacteria within biofilms
exhibit increased expression of efflux pumps compared to that of planktonic cells, which
contributes to their resilient resistance to antibiotics; (3) the close cell-to-cell contact within
biofilms facilitates the transmission of antibiotic resistance genes through HGT [16,83].
HGT facilitates the transfer of transposons and other mobile genetic elements between
biofilm-forming cells, leading to the dissemination of resistance markers [75]. These mark-
ers encode the secretion of antibiotic-inactivating enzymes and other virulence factors.
(4) The presence of slow-growing persister cells that are intrinsically resistant to antibiotics
represents a reservoir of surviving cells capable of rebuilding the biofilm population [84].
The effectiveness of antibiotics is often limited by various mechanisms within a biofilm,
which, in turn, drives antibiotic resistance, a topic that has been extensively investigated in
many previous studies [6,16,46].
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transporters to efflux the drug from the cell, and the formation of biofilms by uropathogens on
the surface of the urothelium and on fixed devices, such as catheters. Mechanisms used by VAN
and MRSA involve target site alteration, while TET, VIM, and IMP are associated with enzymatic
degradation. Additionally, uropathogenic bacteria employ various methods of decreasing the ef-
fectiveness of antimicrobial agents. These methods include the production of a thickened cell wall,
which makes it difficult for vancomicin to enter the cell (VISA), the use of efflux pumps, and the
modulation of porin channels. The presence of biofilm increases the persistence of microorganisms
and their antimicrobial resistance. Antibiotics alone may not always be sufficient to eradicate biofilm.
Therefore, alternative treatments such as phagotherapy, enzymatic degradation, the use of antimi-
crobial peptides and nanoparticles, the development of new antibiotics, and vaccines are currently
under investigation. NDM: New Delhi Metallo β-lattamasi, KPC: Carbapenemase-producing Kleb-
siella pneumoniae, TEM: β-lactamase isolated from a blood culture from a patient named Temoniera
in Greece, SHV: sulfhydryl variant of TEM, OXA: oxacillinase, AmpC: cephalosporinase, CTX-M:
cefotaximase, VRE: vancomycin-resistant Enterococcus, MRSA: Methicillin-resistant Staphylococcus
aureus, ABC: ATP-binding cassette.
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6. Strategies for Combatting Biofilm-Forming Pathogenic Microorganisms in UTIs

Given the high levels of antibiotic resistance and the significant contributions to
pathogenicity made by microbial biofilms, particularly those formed on catheters in hospi-
talised patients, there is an urgent need to develop strategies for inhibiting uropathogenic
biofilms in UTIs [69]. Although antibacterial drugs can often stop early biofilm for-
mation, once established, biofilms are difficult to eradicate with traditional antibiotic
treatments [66,85]. In recent years, a variety of natural and synthetic agents, as well as
nanotechnology-based approaches, have been used in clinical settings to disrupt mature
biofilms [86]. However, a search of PubMed databases from January 2014 to December
2022 using the keywords ‘phytochemicals’ and ‘anti-biofilm’ did not reveal any approved
antibiofilm agents for the treatment of infectious diseases. The most promising agents
are still in preclinical development because of their reduced efficacy in in vivo tests. The
following section discusses the most promising strategies for eradicating biofilms.

6.1. Effectiveness of Antimicrobial Peptides (AMPs) against Biofilm Formation

Antimicrobial peptides (AMPs) are small peptides that exhibit antibiofilm activity
against both Gram-positive and Gram-negative bacteria that cause UTIs [87]. Several pep-
tides have been shown to prevent bacterial biofilm formation through various mechanisms,
including depolarisation and the subsequent disruption of cell membranes, which allows
better penetration of biofilm-inhibiting agents [85]. AMPs not only disrupt membranes
but also inhibit biofilm formation and adhesion by degrading extracellular polymeric sub-
stances, disrupting cell communication, and downregulating genes responsible for biofilm
formation [88]. The antimicrobial properties of AMPs against various bacteria have been
extensively studied. Table 2 presents the most well-defined antimicrobial properties of
AMPs against different Gram-positive and Gram-negative bacteria.

Table 2. Antibiofilm activity of antimicrobial peptides (AMPs) against bacteria responsible for UTIs.

AMPs Antibiofilm Activity Mechanism of Action Reference

Nisin A, Mastoparan S. aureus Membrane depolarisation [89]
A3 E. faecalis, S. aureus Membrane disruption [90]

Coprisin E. coli, S. aureus Membrane disruption [91]
GHaK S. aureus Membrane permeabilisation [92]

PS1 P. aeruginossa,
S. aureus EPS production inhibition [93]

DJK 5/6 E. coli, P. aeruginosa,
K. pneumoniae

Cell signal interruption for
biofilm formation [94]

Melittin E. coli, P. aeruginosa,
K. pneumoniae Membrane permeabilisation [95]

LL-37 P. aeruginosa,
S. epidermidis

Preventing the transcription of
specific genes necessary for

quorum sensing
[96]

Hepcidin S. epidermidis Inhibition of EPS production [97]
A3: antimicrobial peptide-A3; LL-37: human cathelicidin antimicrobial peptide; temporin-GHa (cloned from
Hylarana guentheri); PS1: synthetic peptides.

6.2. QS Inhibitors

Quorum sensing (QS) is a cell-to-cell signalling mechanism that enables bacteria to re-
lease small signalling molecules called autoinducers that regulate gene expression involved
in virulence and biofilm formation [98]. Several QS inhibitors of both natural and synthetic
origins have been identified. Blocking QS receptors through the downregulation of the
autoinducer-synthetase-encoding gene is one mechanism through which a large group of
inhibitors, such as glyptins, exert their activity [99,100]. Phytochemicals from traditional
medicinal plants, such as terpenoids, phenols, essential oils, alkaloids, polyacetylene, and
lectins, are among the antibiofilm agents that act by blocking the quorum-sensing inducers
of bacteria (Table 3) [101,102].
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Table 3. Quorum-sensing inhibitors.

QS Inhibitors Antibiofilm
Activity Mechanism of Action Reference

Allicin P. aeruginosa,
P. mirabilis QS inhibition [103,104]

5-Hydroxymethylfurfural P. aeruginosa Downregulation of the expression
of quorum-sensing genes [105]

Glycyrin and glyzarin Acinetobacter
baumannii

Inhibition of microbial-quorum-
sensing-mediated virulence factors [106]

Tannic
acid

P. mirabilis
S. typhi and

S. paratyphi A

Restriction of QS-regulated
virulence factors [107,108]

However, bacteria can develop resistance to phytochemicals through various mech-
anisms. Therefore, these products are effectively used in combination with traditional
antibiotics to eradicate microbial biofilms [102].

6.3. Biofilm Inhibition by Nanoparticles

Nanoparticles, which are less than 100 nm in size, exhibit unique biological activi-
ties and have been reported to be effective in treating biofilm-resistant UTIs [109]. Due
to their small size, nanoparticles can penetrate cells and deposit ultra-thin coatings on
various materials. Previous studies have shown that silver (Ag), nickel (Ni), zinc oxide
(ZnO), gold (Au), and copper (Cu) nanoparticles possess significant antibiofilm proper-
ties [110]. In addition, modifying the surface of nanoparticles with appropriate capping
agents can enhance their interaction with biofilms [86]. When nanoparticles (NPs) are
introduced into physiological fluids, they become coated by proteins, forming a protein
corona (PC) that modifies their physicochemical properties, including their size, charge,
and functionality. Recent studies have shown that modifying NPs with an organic corona
can improve their interaction with biofilms [111]. Nanotechnology provides significant ben-
efits in treating UTIs by enabling controlled and sustained drug release. When combined
with magnetic nanoparticles, macrolides—the primary drugs used to treat biofilm-related
infections—exhibit significantly enhanced antimicrobial activity [112]. Table 4 displays the
nanoparticles that have demonstrated effectiveness against biofilm-forming bacteria that
cause UTIs.

Table 4. Antimicrobial action of different NPs against biofilm-forming bacteria that cause UTIs.

NPs Anti-Biofilm
Activity MIC Mechanism of

Action Reference

Silver nanoparticles
(AgNPs)

S. aureus, E. coli,
P. aeruginosa,

P. vulgaris

0.625 mg/mL
(S. aureus)

Nano-based
drug delivery [113–115]

Fluoride-based
nanoparticles E. faecalis, S. aureus 0.1 mg/mL

(S. aureus)

Inhibition of
bacterial

metabolism
[116–119]

Polymeric nanoparticles
(PNs)

Gram-positive and
Gram-negative

bacteria

0.340 mg/mL
(S. aureus)

Controlled drug
delivery [120–122]

Zinc-based
nanoparticles E. coli, S. aureus 0.05 mg/mL

(S. aureus)

Disruption of
membrane
integrity

[116,123]

Gold nanoparticles
(AuNPs)

P. aeruginossa,
E. coli, S. aureus

7.56 µg/mL
(S. aureus)

Targeted drug
delivery [124–126]

Iron, aluminium oxide,
copper oxide,

gallium-based NPs

Gram-positive and
Gram-negative

bacteria

100 µM
(S. aureus) ROS generation [127–131]
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Metal nanoparticles have been shown to inhibit biofilm formation by bacteria that
cause UTIs through various mechanisms, such as by damaging bacterial DNA or cell
membranes, causing component leakage, and oxidizing constituents by generating reactive
oxygen species (ROSs) [128]. In addition to drug delivery, many NPs can be used to
impregnate medical devices due to their biocompatibility and innate antimicrobial activity
that prevents the formation of biofilms [132].

6.4. Bacteriophage Therapy for Treating UTIs

In recent years, there has been renewed interest in bacteriophages as potential agents
for combatting antibiotic-resistant and chronic UTIs [133]. Bacteriophages are highly
specific in targeting bacteria, safe (as they do not infect eukaryotic cells), lack bacterial
resistance mechanisms, and have the potential for easy incorporation into hydrogel-coated
catheters [134]. The use of bacteriophages as agents to destroy bacterial biofilm is, therefore,
a promising resource. However, the broader use of phage therapy in humans has been
limited by the requirement for specific authorizations [135].

6.5. Biofilm-Dispersing Enzymes

One of the most promising strategies for biofilm eradication is the search for the
enzymatic degradation of EPSs, which account for up to 90% of the total biofilm. Microbial-
biofilm-disrupting enzymes belong to three classes: glycosidic hydrolases, deoxyribonucle-
ases, and proteases. They cause the detachment of sessile bacterial cells, making the biofilm
more susceptible to antibiotics. Enzymatic biofilm disruption may improve drug access by
disrupting biofilm maturation, but issues of biofilm-degrading enzyme toxicity, tolerability,
and stability are not fully resolved. In addition, although preclinical studies on enzymatic
biofilm dispersion are promising, only limited demonstrations of the safety and efficacy of
enzymes in in vivo models are currently available.

7. Discussion and Conclusions

Among the infectious diseases associated with the presence of biofilm, those of the
urinary tract are especially important. Although the urinary tract has natural antimicrobial
host defences, such as urine flow, urinary pH, polymorphonucleate-mediated inflammatory
response, and the presence of bacterial adhesion inhibitors, most uropathogens are able to
attach to, colonize, and form biofilms in the urinary tract due to the presence of several viru-
lence factors, including adhesins. Over the last two decades, the frequent use of antibiotics
for the treatment of infections associated with biofilms has led to a steady and progres-
sive increase in virulent and antibiotic-resistant bacteria that cannot be eradicated with
traditional antibiotic treatment [6]. In biofilms, resistance to conventional antimicrobials is
mainly due to the inability of these molecules to reach the persister cells within the biofilm.
These cells are also resistant to antimicrobials due to their low metabolic activity [16]. They
are not mutants, but rather phenotypic variants of the wild type that become active and re-
build the biofilm when antibiotic treatment is stopped. Previous research has demonstrated
that biofilm can impede the effectiveness of antimicrobial agents by either obstructing or
delaying their spread or chemically interacting with the antibiotics [46]. The high levels
of antibiotic resistance that characterise biofilms are largely due to the exopolysaccharide
matrix, which represents one of the key elements in the establishment and maintenance
of a biofilm’s integrity. For example, lysing alginate, the main component of the extracel-
lular matrix of the biofilm formed by P. aeruginosa, hinders the diffusion of antimicrobial
substances, suggesting that the matrix polysaccharide of the biofilm is responsible for the
resistance of microorganisms to antimicrobial agents [136]. In addition, the level of resis-
tance is also dependent on the stage of development of the biofilm. Studies on P. aeruginosa
biofilms at different stages have shown that older, slow-growing biofilms are considerably
more resistant to antimicrobial agents than younger, fast-growing ones [137]. Due to the
resistance of the biofilm to destruction by a single agent, combination therapy has been
proposed in several studies to improve the penetration of existing antimicrobial agents
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into the rigid structure of the biofilm. For example, the combination of clarithromycin, a
macrolide antibiotic, and vancomycin was found to completely eradicate a biofilm formed
by P. aeruginosa and Staphylococcus spp. and, thereby, resolve the infection [46]. Bacterial
biofilms are the leading cause of healthcare-associated infections in humans, particularly
catheter-associated urinary tractitis. While many antibacterial coatings have been devel-
oped to prevent biofilm formation on catheter surfaces, including metal ions, nanoparticles,
bacteriophages, quorum sensing inhibitors, and bioactive molecules, only a few antifouling
coatings have been approved for marketing. Therefore, there is an urgent need for new
approaches and strategies for inhibiting biofilm formation.

8. Future Directions

Biofilms pose a significant concern in medical-device-associated infections. Currently,
many efforts are underway to discover new potential candidates to treat or prevent bacteria
that form biofilms and cause UTIs. Although natural and synthetic agents, as well as
nanotechnology-based approaches, have shown encouraging antibiofilm activity, their
effectiveness is limited. Difficulties in understanding the mechanisms by which these
compounds exert their effects on biofilm may explain these limitations. Little is known
about the molecular mechanisms that are activated following the interaction of these agents
with antibiofilm activity, including signalling cascades, pili gene regulation, efflux pump
activity, and altering the EPS structure. In this context, it is important to underline that the
gap between in vitro and in vivo testing has not yet been bridged. Despite considerable
interest in various agents that inhibit biofilms in vitro, the current models used to test these
agents are unable to recapitulate the conditions of the human bladder, where bacterial
biofilm formation occurs. This is because in vitro studies cannot perfectly replicate in vivo
conditions. As we gain a better understanding of the antibiotic tolerance mechanisms of
biofilms, our ability to develop drugs that can overcome bacterial biofilms will improve. It
is important to study CAUTIs and their different treatment modalities, bearing in mind
that there are differences that cannot be ignored. One possible approach to enhancing the
effectiveness of antibiotics against biofilms is to use various combinations of natural and
synthetic agents with antibiotics.
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ABC ATP-binding cassette
AmpC Cephalosporinase
AMPs antimicrobial peptides
A3 antimicrobial peptide-A3
CAUTI catheter-associated urinary tract infections
CDC Centers for Disease Control and Prevention
CTX-M Cefotaximase
EPS Exopolysaccharides
GAG layer Glycosaminoglycan
HGT horizontal gene transfer
KPC carbapenemase-producing Klebsiella pneumoniae
LL-37 human cathelicidin antimicrobial peptide
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MRSA methicillin-resistant Staphylococcus aureus
NDM New Delhi Metallo β-lattamasi
PS1 synthetic peptides
OXA oxacillinase
SHV sulfhydryl variant of TEM
TEM β-lactamase isolated from a patient named Temoniera in Greece
temporinGHa cloned from Hylarana guentheri
UPEC uropathogenic Escherichia coli
UTIs urinary tract infections
VRE vancomycin-resistant Enterococcus
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