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Abstract: Antimicrobial resistance is an increasingly widespread phenomenon that is of particular
concern because of the possible consequences in the years to come. The dynamics leading to the
resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs
both in terms of dosage and timing of administration. Moreover, the drug is often administered in
the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore,
losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential
oils are mixtures of compounds with different pharmacological properties. They have been shown to
possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic
processes. The abundance of molecules they contain makes it difficult for treated microbial species to
develop pharmacological resistance. Given their natural origin, they are environmentally friendly and
show little or no toxicity to higher animals. There are several published studies on the use of essential
oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript.
This review aims to shed light on the results achieved by the scientific community regarding the use
of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The
Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of
studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is
more environmentally friendly and less prone to the emergence of drug resistance phenomena.

Keywords: essential oils; plants; antimicrobial activity; animal husbandry; antimicrobial-resistant
bacteria (ARBs); animal health and welfare

1. Introduction

One of the biggest issues facing livestock farming across the globe is the fast-growing
demand for food of animal origin, particularly in low-income countries. Animal breeding
methods are evolving as a result of this expanding tendency, and intensive livestock systems
are quickly replacing rural livestock farms [1]. In today’s livestock system, antibiotics play
a key role. Particularly, antibiotics are becoming an essential part of animal husbandry in
order to fulfill the world population’s demand for food [2,3].
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Sick animals may spread disease to other flock members either directly or indirectly
via contaminated feed, water, soil, and plants. This is particularly true in intensive livestock,
where space for each animal is limited [4]. Furthermore, at any point during the processing
of animals in slaughterhouses, germs can be transferred from carcass to carcass [5,6].
Livestock infections have a significant impact on public health as well, and great efforts are
made to control them because outbreaks of zoonotic diseases in humans are linked to direct
or indirect contact with an infected animal, the animal’s environment, or, more commonly,
the consumption of contaminated food of animal origin [7]. Furthermore, antibiotics are
widely utilized not just for medicinal purposes but also as growth-promoting, and disease-
prevention measures. However, their overuse has increased selection pressure, which has
led to the current emergence of antibiotic resistance.

In 2014, the World Health Organization (WHO) stated that the global public health
catastrophe posed by antibiotic-resistant bacteria is rapidly approaching [8]. The issue
of antimicrobial resistance affects both human and veterinary medicine. Antimicrobial-
resistant bacteria (ARBs) infections are on the rise today; it is predicted that by 2050, these
infections will be responsible for 10 million deaths per year [9]. ARB infections in livestock
are particularly dangerous as they are linked to higher veterinary care costs, higher death
rates, declining populations, and decreased production [10].

When treated with antibiotics, animals eliminate the active ingredients or their metabo-
lites into the environment to some extent [11]. The biggest source of environmental pollu-
tion is animal dung. After administration, antibiotics are absorbed by the body and pro-
cessed. The main routes of elimination of the drug and/or its metabolites are urine and/or
feces [12]. The animal excretes antibiotics through feces if oral absorption is inadequate.

The presence of antibiotics at levels below those used for therapy accelerates the
spread of ARBs. The World Organization for Animal Health (OIE) advised the prudent
and cautious use of antimicrobial drugs in animals to reduce this worldwide problem
and guarantee the safety of animal-derived food [13]. Antibiotic usage in animal farms
has already been reduced in several countries; the European Union (EU) banned the use
of antibiotics as growth promoters in animal diets in 2006 [14]. Furthermore, consumer
“feeling” is changing. When choosing food, they pay more attention to food labels and
often choose products from animal farms where the use of drugs is limited [15,16].

In this scenario, in order to lower ARBs and the frequency of the most significant
infections in livestock farming, the search for effective antibiotic alternatives is becoming
mandatory [17,18]. Antimicrobial peptides, bacteriophage, bacteriocins, prebiotics, and
probiotics have garnered interest as possible replacements or supplements to currently used
antimicrobial chemicals [19,20]. To these promising alternatives are added the resources
provided by the plant world.

For millennia, traditional medicine has been based on medicinal plants. Through
observation and experience, humans have developed a vast traditional culture around the
appropriate use of plants. Over the past hundred years or so, advancements in science and
technology, particularly in the field of plant pharmacognosy, have led to the identification
of several novel compounds with unusual modes of action [21]. The scientific use of drugs
obtained from plants for the treatment and prevention of diseases is known as phytotherapy.

The use of phytotherapy in veterinary medicine is also known as ethnoveterinary
medicine; the latter is practiced wherever people have a strong connection with animals.
It is particularly important in communities where breeding animals are the main source
of food. Numerous botanical species have historically been used—and in some cases still
are—to cure horses, pigs, sheep, cows, and poultry [22]. In recent decades, ethnoveterinary
treatment has become more popular in highly industrialized countries due to public health
concerns (such as antibiotic/anthelmintic resistance) and the ongoing expansion of organic
livestock farming [23,24]. The primary basis for phytotherapy is derived from natural
complexes present in plants, which are mostly composed of low molecular weight chemical
compounds. The components of fruits, vegetables, spices, and other plant parts (such as
pulp, bark, peel, leaf, berry, or bloom) are sources of phyto-complexes. Today, essential
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oils (EOs) are among the most widely used natural substances [25]. The culinary, cosmetic,
pharmaceutical, and agricultural sectors have all found many uses for EOs, which has led
to a current wave of studies on secondary plant metabolites. Thus, studies on the medicinal
properties of EOs have increased in recent years [26–31].

The investigation of EOs’ antibacterial qualities is becoming more and more important
as antibiotic-resistant forms of bacteria pose a serious danger to both human and animal
health, making alternative pharmacological treatments useful in the fight against diseases
brought on by these pathogens. Numerous studies have examined the effectiveness of
EOs both in vivo and in vitro [32,33]. Some of them have assessed the impact of EOs on
animals by adding them to feed or sprinkling them on the animals’ quarters to lower
bacterial contamination and raise farm cleanliness standards [34]. Other studies have been
conducted on reference strains, bacterial strains isolated from farm animals, and food of
animal origin to reduce bacterial contamination by extending the shelf life of goods meant
for human consumption [35]. Several veterinary studies conducted in vivo and in vitro
on the use of EOs as substitutes for available antibiotics were considered in this review.
Literature reviews summarizing the various scientific publications in this field are lacking.
This manuscript therefore aims to take stock of the situation and infer the suitability of
certain compounds as promising candidates for the treatment of microbial diseases.

2. Methodology

Several databases were used to gather the papers for this review, including PubMed,
Google Scholar, PubMed, SciELO, and SCOPUS. A variety of keywords pertaining to the
review’s topic were included in the search box, such as “antibacterial activity”, “phy-
tochemical” or “antimicrobial resistance”, and “essential oil and antibacterial activity.”
Depending on the combination of phrases, the operators “AND” or “OR” were employed.
Using “antibacterial activity” AND “plant extract” OR “essential oil” as examples. To be
eligible for the evaluation process, the studies had to be published in English. Research on
particular antimicrobial substances was limited to those with detailed descriptions of their
mechanisms of action, accurate quantitative assessments of their antibacterial efficacy, and
a well-established origin.

3. Essential Oils

The European Pharmacopoeia defines EO as: “Odorant product, generally of a com-
plex composition, obtained from a botanically defined plant raw material, either by driving
by steam of water, either by dry distillation, or by a suitable mechanical method without
heating” [36]. According to the European Pharmacopoeia, an EO is typically extracted from
the aqueous phase using a physical process that does not significantly alter its chemical
composition. Due to their strong flavor, which decreases the appetite of herbivores, EOs
have a significant protective effect on plants. When in the liquid phase, EOs are volatile,
limpid, and seldom colored substances. Chemically, they are soluble in organic solvents
that have lower densities than water [37]. All plant parts, including buds, flowers, leaves,
stems, twigs, seeds, fruits, roots, wood, and bark, are useful to synthesize. Once generated,
EOs are stored in glandular trichomes, secretory cells, cavities, and canals [38]. Only 10%
of plant species—more than 17,000 plant species—produce and contain EOs, consequently,
they are referred to as aromatic plants. The Lamiaceae, Lauraceae, Asteraceae, Rutaceae,
Myrtaceae, Poaceae, Cupressaceae, and Piperaceae families make up the majority of their
global distribution [39].

EOs are made up of a naturally occurring complex combination produced by plants’
secondary metabolism. This mixture typically contains 20–60 organic volatile components
with molecular weights below 300. They are partially found in the vapor form because of
their high enough vapor pressure at ambient temperature and atmospheric pressure [40].
Two or three primary constituents, present in high concentrations (20–70%), make up
each EO. Terpenes (including monoterpenes and sesquerpenes), aromatic chemicals (such
as alcohol, phenol, methoxy derivatives, and aldehydes), and terpenoids (isoprenoids)
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are generally the principal active ingredients. Terpene hydrocarbons and oxygenated
molecules are the two main categories into which EO components and aroma can be
separated [38,41]. The most prevalent class of chemical components included in EOs are
terpenes and terpenoids. When several isoprene units (C5H8) are combined, terpenes,
which are hydrocarbons, are produced. The production of terpenes takes place in the
cytoplasm of plant cells, is initiated by acetyl-CoA, and progresses via the mevalonic
acid pathway. Cyclases, which have a hydrocarbon backbone, are able to reorganize
terpenes into cyclic structures, resulting in the formation of either monocyclic or bicyclic
structures [42,43]. Terpene-specific synthetase modifies the allylic prenyldiphosphate to
form the terpene skeleton. After synthesizing the isopentenyl diphosphate (IPP) precursor,
IPPs are repeatedly added to form the prenyldiphosphate precursor of the various classes
of terpenes. Finally, secondary enzymatic modification (redox reaction) of the skeleton
confers functional properties to the various terpenes [42,43]. The two primary types of
terpenes are monoterpenes (C10H16) and sesquiterpenes (C15H24), however, there are also
longer chains like diterpenes (C20H32), triterpenes (C30H40), etc. Some examples of EO
components having antimicrobial action include p-cymene, limonene, menthol, eugenol,
anethole, estragole, geraniol, thymol, γ-terpinene, and cinnamonyl alcohol [44]. Plants
that contain some of these chemicals include angelica, bergamot, lemongrass, mandarin,
mint, caraway, celery, citronella, coriander, eucalyptus, geranium, petitgrain, pine, juniper,
lavandin, lavander, lemon, orange, peppermint, rosemary, sage, and thyme [45].

Terpenoids are produced by biochemically modifying terpenes using enzymes that
transfer or remove methyl groups and add oxygen molecules [42]. Alcohols, phenols, esters,
aldehydes, ethers, ketones, and epoxides are the different subgroups of terpenoids. Ter-
penoids include thymol, carvacrol, linalool, linalyl acetate, citronellal, piperitone, menthol,
and geraniol.

Phenylpropanoids (derived from phenyl-propane) are aromatic compounds produced
via the shikimic acid route that leads to phenylalanine. The aromatic chemicals include
phenols (eugenol and chavicol), aldehydes (cinnamaldehyde), alcohols (cinnamic alcohol),
methylenedioxy compounds (apiole, myristicin, and safrole), and methoxy derivatives
(anethole, estragole, and methyleugenols).

EOs exhibit a relatively high degree of variety in terms of qualitative and quantita-
tive composition.

This variability is caused by a number of variables, which fall into two main categories:
(1) intrinsic factors, which include the plant itself, its maturity, and its interactions with
the environment (such as the type of soil and climate); and (2) extrinsic factors, which are
associated with the extraction technology.

Seasonal fluctuations, plant organs, plant maturity, regional origin, and genetics are
other aspects to consider. Due to their strong interdependence and mutual effect, these
aspects can sometimes be challenging to separate from one another [40].

Antimicrobial Mechanism of Action

The composition of EOs, the presence of functional groups in their active components,
and their synergistic interactions are factors that determine their activity [46]. The kind of
EO or strain of the microbe utilized determines the antibacterial mode of action. It is well
recognized that Gram-positive bacteria are more vulnerable to EOs than Gram-negative
bacteria [47,48]. This is explained by the fact that Gram-negative bacteria have an outer
membrane that is more complex, rigid, and rich in lipopolysaccharides (LPS), which limits
the diffusion of hydrophobic compounds through it. In contrast, Gram-positive bacteria lack
this extra complex membrane and are instead surrounded by a thick peptidoglycan wall
that is not dense enough to withstand small antimicrobial molecules, which facilitates the
entry of antimicrobial compounds through the cell membrane. Moreover, since lipophilic
ends of lipoteichoic acid are present in cell membranes, the membrane composition of Gram-
positive bacteria may facilitate the penetration of hydrophobic components of EOs [49].
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Numerous studies have shown that the bioactive ingredients found in EOs can adhere
to the cell’s surface before penetrating the phospholipid bilayer of the cell membrane. Their
buildup compromises the structural integrity of the cell membrane, which can negatively
impact cell metabolism and ultimately result in cell death [50,51]. Additionally, it has been
reported that the action of EOs on the integrity of the cell membrane alters its permeability,
causing the loss of essential intracellular components such as proteins, reducing sugars,
ATP, and DNA, while also inhibiting the generation of energy (ATP) and related enzymes,
resulting in cell breakdown and electrolyte leakage [52]. Therefore, a series of events
encompassing the whole bacterial cell is thought to be responsible for the antimicrobial
activity of EOs [53]. Figure 1 summarizes the mechanisms of toxic action of EOs against
the bacterial cell.
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Figure 1. Mechanisms of EOs action that lead to microbial cell death.

Table 1 shows some EOs and their components that have demonstrated antimicro-
bial action. The mechanisms by which they exert this action on the bacterial cell are
also mentioned.

Table 1. Essential oils and essential oil components with antimicrobial activity.

EO or EO Component Bacteria Mechanism Reference

(−)-Borneol
Escherichia coli
Staphylococcus aureus
Salmonella typhimurium

Cell membrane breakdown [54]

(+)-Borneol E. coli
S. aureus Cell membrane breakdown [54]

Citral
E. coli
S. aureus
S. typhimurium

Cell membrane breakdown [54]

Citronellal
E. coli
S. aureus
S. typhimurium

Cell membrane breakdown [54]
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Table 1. Cont.

EO or EO Component Bacteria Mechanism Reference

Hibicuslide C P. aeruginosa DNA fragmentation [55]

Quercetin P. aeruginosa Inhibition of FabZ enzyme [56]

Thymol
E. coli
S. aureus
S. typhimurium

Cell membrane breakdown [54]

Cuminum cyminum E. coli Cell membrane breakdown [57]

Mentha piperita Streptococcus mutans Cell membrane breakdown and cell leakage [58]

Origanum vulgare S. aureus Cell membrane breakdown [57]

Pimenta dioica P. aeruginosa Cell membrane breakdown and leakage of
K+ from cytosol [59]

Solidago canadens Pseudomonas fluorescens
S. mutans Cell wall breakdown [60]

4. Control of Bacterial Disease via Essential Oils

Etiological agents of infection that can affect a large number of animals are common in
intensive livestock farms; the most frequently affected animals are the young ones [61,62].
Equally frequent are infectious diseases that can affect individual animals. It is often oppor-
tunistic bacteria that sustain these pathological states, often conditioned by alterations in
normal physiological conditions, as occurs during pregnancy. Opportunistic bacteria have
become particularly important because the evolution of animal husbandry technologies
often leads to a drop in the host’s protective reactivity, such that it is vulnerable even
to bacteria proper to the normoergic host [63]. In general, several bacterial strains are
developing resistance to synthetic drugs. Table 2 shows some important infectious agents
and the main classes of antibiotics against which resistance has been recorded. In this
situation, natural products, in particular Eos, could be a viable alternative. The results
obtained by the scientific community in controlling the etiological agents of important
bacterial diseases using EOs isolated from different botanical species are examined in the
next paragraphs.

Table 2. Important bacteria causing microbial infections and classes of antibiotics to which resistance
has been recorded.

Bacterial Agent of Infection Common Resistance

Escherichia spp. Cephalosporins, fluoroquinolones, aminoglycosides [64]

Salmonella spp. Tetracyclines, Sulfonamides, Streptomycin, Kanamycin, Chloramphenicol,
β-lactams, Amoxicillin/clavulanic acid, Nalidixic acid, Ceftriaxone [65]

Klebsiella spp. Cephalosporins, fluoroquinolones, aminoglycosides, carbapenems [66]

Pseudomonas spp. Piperacillin/tazobactam, ceftazidime, ciprofloxacin, aminoglycosides [67]

Campylobascter spp. Quinolones, Macrolides, Lincosamides, Chloramphenicol, Aminoglycosides,
Tetracycline, β-lactams, Cotrimoxazole, Tylosin [68,69]

Staphylococcus spp. β-lactams, fluoroquinolones, macrolides, aminoglycosides [70]

Streptococcus spp. β-lactams, macrolides, tetracyclines, co-trimoxazole [71,72]

Mycobacterium Rifampin, isoniazid, and three of the following: aminoglycosides, polypeptides,
fluoroquinolones, thioamides, cycloserine, or para-aminosalicylic acid [73,74]
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4.1. Gram-Negative Bacteria
4.1.1. Escherichia coli

Escherichia coli is a member of the Enterobacterales family responsible for numerous
diseases in both humans and animals. It poses a serious risk to veterinary care as it can
spread disease to all animal species, often resulting in financial losses. In calves, it is
responsible for colibacillosis. This is an infection that can occur from the first days of life
until 2–3 months of age. E. coli infects the calf soon after birth through the food route or
the umbilical cord and colonizes the intestine. Depending on the age of the subjects, the
serotypes involved, and their ability to settle in the various intestinal tracts, septicemic,
enterotoxemic, and enteric forms of colibacillosis can occur [75]. In cattle, E. coli, Klebsiella,
Enterobacter, and other microorganisms are responsible for mastitis [76]. Furthermore,
infection by E. coli can result in avian colibacillosis, a systemic disease affecting birds. While
contaminated dust is typically inhaled by animals, E. coli mostly affects poultry via an
oral–fecal cycle. It produces a wide range of clinical symptoms in chickens, including
enteritis, cellulitis, enlarged head syndrome, septicemia, polyserositis, coligranuloma,
omphalitis, and salpingitis. Poultry colibacillosis is characterized by subacute symptoms
such as pericarditis, airsacculitis, and perihepatitis, and acute symptoms such as septicemia
that can be fatal [77].

Septicemia is often the first sign of the infection, followed by localized inflammation in
many organs or abrupt death [78]. Avian colibacillosis is characterized by variable lesions,
the most common of which are polyserositis and airsacculitis. Furthermore, E. coli can
penetrate the egg shell if the eggs are contaminated with feces. Contamination of eggs by
feces can cause yolk sac infection or allow E. coli to enter through the shell, infecting the
chicks during hatching and frequently leading to significant mortality rates. When infected
at an early stage, birds that survive clinical disease may not exhibit many symptoms of
infection but may become carriers [79]. Economic losses due to necrotic cellulitis may
occur at slaughter. Given the importance of this disease, several studies were conducted
to confirm the anti-E. coli properties of some EOs derived from various botanical species.
The goal of these studies was to identify natural products that could be used to improve
environmental hygiene on chicken farms. Several EOs showed anti-E. coli action in vitro.

Rhayour et al. (2003) discovered that clove EO had an impact on E. coli, causing holes
in the membrane and cell wall [80].

A study was carried out by Burt & Reinders (2003) [81] to measure the bactericidal
qualities of five different EOs on a non-toxic strain of E. coli O157:H7 at three different
temperatures and with and without an emulsifier or stabilizer. The disc diffusion test
was used to screen for antibacterial qualities, and the most active ones were chosen for
additional investigation using microdilution colorimetric assays. The greatest bacterio-
static and bactericidal effects were exhibited by Origanum vulgare and Thymus vulgaris
(light and red variants) EOs, followed by Syzygium aromaticum and Pimenta racemosa EOs.
Sixty-five µL L−1 of Origanum vulgare EO was colicidal at 10, 20, and 37 ◦C. While 0.25%
(w/v) lecithin decreased bacterial activity, the inclusion of 0.05% (w/v) agar as a stabilizer
strengthened the antibacterial capabilities, especially at 10 ◦C [81].

Applied alone or in combination, Cinnamomum verum and Syzygium aromaticum EOs
have demonstrated strong antibacterial action against E. coli strains obtained from chickens
with colibacillosis.

The primary components of the two oils—eugenol and its acetate form—have been
linked to this action [82]. According to Zhang et al. (2016) [83], Cinnamomum verum EO
alters the E. coli membrane’s permeability and integrity, resulting in the loss of inner cell
components [83].

EOs extracted from the leaves of 29 medicinal plants in Brazil were tested in a study
by Duarte et al. (2007) [84] against 13 distinct E. coli serotypes. The EO derived from
Cymbopogon martini demonstrated a wide range of inhibition and high action (MIC be-
tween 100 and 500 µg/mL) against ten of the thirteen E. coli serotypes, including two
enteropathogenics, three enteroinvasives, three enterotoxigenics, and two shiga-toxin-
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producing serotypes. Two enterotoxigenic, one enteropathogenic, one enteroinvasive, and
one sigatoxin-producing serotype were all significantly suppressed by Cymbopogon winteri-
anus. E. coli can be effectively killed by Aloysia citrodora with moderate to severe inhibition.
Other EOs exhibited antibacterial qualities as well, although their effectiveness against the
investigated serotypes was more constrained [84].

Raho and Benali (2012) [85] investigated the antibacterial properties of the EO derived
from Eucalyptus globulus leaves in vitro. The EO’s inhibitory properties were evaluated
using dilution broth and agar disc diffusion techniques against E. coli. The findings demon-
strated that, depending on the inoculum size and the quantity of EO, the EO exhibited
antibacterial activity to differing degrees. The EO of Eucalyptus globulus leaves has an
inhibitory zone ranging in diameter from 8 to 26 mm. The largest zone of inhibition was
obtained for E. coli (10−3 dilution) with a 100% concentration of Eucalyptus globulus EO.

Romero et al. (2015) [86] investigated the antibacterial impact and mechanism of action
of some components of EOs (carveol, carvone, citronellol, and citronellal) against S. aureus
and E. coli. Dimethyl sulfoxide (DMSO, 100%) at different concentrations ranging from
0.066 to 3000 µg/mL was used to test each component. The compounds were weighed to
obtain µg/mL units. The microdilution broth technique was used to calculate the MICs of
the EO components. When tested against E. coli, every chemical showed bactericidal and
inhibitory properties. Citronellol (5 µg/mL) proved highly inhibitory against E. coli, with
carveol/carvone (200 µg/mL) and citronellal (300 µg/mL) following [86].

The study by Thielmann et al. (2019) [87] is one of the most significant in terms of
the quantity of plant species tested against E. coli. Using a single-method approach, the
authors determined the minimum inhibitory concentrations (MICs) of 179 EO samples from
86 plant species. Using a dispersion-based method to integrate EOs in a concentration range
between 6400 and 50 µg/mL, MICs were obtained in a broth microdilution experiment.
Twenty-two samples from 12 plant genera inhibited E. coli at doses below 400 µg/mL.

At 50 µg/mL, only four EOs—Neolitsea cassia, Cinnamomum verum, Origanum vulgare,
and Thymus zygis—showed efficacy against E. coli. Despite this, certain additional EOs
from Cupressus sempervirens, Backhousia citriodora, Cymbopogon citratus, Cymbopogon martini,
Cymbopogon nardus, Litsea cubeba, Origanum majorana, Origanum vulgare, and Syzygium
aromaticum nevertheless showed encouraging action against E. coli, with MICs ranging from
100 to 400 µg/mL. Some EOs did not show antibacterial properties. In particular, Cananga
odorata, Cupressus sempervirens, Daucus carota, Foeniculum vulgare, Juniperus communis, and
Pimpinella anisum had no efficacy against E. coli [87].

Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations
(MBCs) were used in the study by Galgano et al. (2022) [88] to test the bacteriostatic–
bactericidal activity of Citrus limon, Pinus sylvestris, Foeniculum vulgaris, Ocimum basilicum,
Melissa officinalis, Thymus vulgaris, and Zingiber officinale against various E. coli strains
in vitro. Except for T. vulgaris, all the studied EOs showed little antibacterial action against
Escherichia coli. The antibacterial action of T. vulgaris was independent of oil content, and
this EO completely inhibited the growth of E. coli [88].

It has also been shown that Litsea cubeba EO works well against E. coli [89]. When
E. coli cells were treated with this EO, Li et al. (2014) [90] noticed holes and gaps on the
outer and inner membranes. These were mostly ascribed to the existence of aldehydes like
geranial and neral.

The strong action against E. coli isolates that the EO of Cymbopogon citratus showed
in vitro can be traced back to aldehydes [89,91].

High action against E. coli was also shown by Mentha piperita EO [89,92]. The main
ingredients of Mentha piperita EO, menthol, and its oxidative product, menthone, have been
shown to possess antibacterial activities [93,94].

Eos from Pelargonium graveolens and Ocimum basilicum showed anti-E. coli action [89,95,96].
The significant quantity of linalool in basil EO has been linked to its activity, but to a varied
degree depending on the strain tested, whereas the high concentration of oxygenated
monoterpenes in Geranium robertianum EO seems to influence its antibacterial function [89].
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4.1.2. Salmonella Species

Pathogenic to humans and animals, Salmonella spp. Causes gastroenteritis, septi-
caemia, pneumonia, and abortion. Some serovars, referred to as “host-restricted”, are
closely adapted to the host; for example, S. abortusovis is adapted to sheep and is the
main cause of abortion in this animal, while S. typhi suis, S. gallinarum, and S. pullorum
are adapted to pigs and chickens, respectively. Other serovars possess a broad host spec-
trum and are known as “host-adapted” serovars. Diseases in pets and livestock animals
result in financial losses and increase the possibility of transmission to people. In people,
infection can occur through the ingestion of contaminated food and drink. The field of
food microbiology has mostly studied the application of EOs in combating Salmonella
infections. Indeed, foodborne diseases caused by Salmonella spp. pose a growing risk to
human health; salmonellosis outbreaks are the result of recent changes in food processing
and marketing practices [97]. Relatively few serovars are responsible for the majority of
cases of salmonellosis in people and domestic animals; these can be divided into three
categories based on host predominance.

The first group of serovars is host-specific. They usually cause systemic diseases in a
few animals that are related by phylogeny. For instance, systemic disease in sheep, poultry,
and humans is nearly solely linked to S. enterica serovar abortusovis, paratyphi, and pullorum.
The second type of strain is host-restricted. Although they are mostly associated with one
or two closely related host species, they can typically lead to disease in different hosts. For
example, serovar Dublin and serovar Choleraesuis of S. enterica are often linked to severe
systemic diseases in ruminants and pigs, respectively [98]. However, it’s possible for these
serovars to infect humans and other animal species. The third category is S. enterica serovars,
including infantis and enteritidis, which often cause gastroenteritis in a significant number
of unrelated host species. Of course, there are wide variations in the type and severity of
Salmonella infections in various animal species. These variations are caused by a variety
of factors, such as the Salmonella serovar, dosage, age, virulence of the strain, host animal
species, host immunological state, and geographic location [99]. Worldwide, S. enterica
continues to be a major source of infection and disease in both humans and animals.

The R (+)-limonene, orange terpenes, trans-cinnamaldehyde, carvacrol, and cold com-
pressed orange oil were evaluated against fifteen distinct strains of S. enterica subsp. serovar
Heidelberg, recovered from a variety of sources, including cattle, pigs, turkeys, poultry,
and poultry egg houses. The growth of all microorganisms was entirely suppressed by
carvacrol and trans-cinnamaldehyde. However, cold compressed orange oil only hindered
the development of two isolates, while R (+)-limonene and orange terpenes exhibited no
inhibitory effect against the same strains [100].

EOs extracted from Aloysia triphylla, Cinnamomum verum, Cymbopogon citratus, Litsea
cubeba, Mentha piperita, and Syzygium aromaticum have been put to the test with S. enterica
Serovar Enteritidis isolated from chickens. The anti-Salmonella activity of Cinnamomum
verum was greatest, followed by Syzygium aromaticum extract. It has been proposed that the
inclusion of these EOs into chicken diets, together with Saccharomyces cerevisiae administra-
tion, is an integrated strategy to prevent intestinal colonization by Salmonella. Additionally,
EOs isolated from Cinnamomum verum and Syzygium aromaticum could be used either alone
or in combination for disinfection [101].

The primary ingredients in these EOs, cinnamonaldehyde and eugenol, have been
linked to their antibacterial properties. Because of their capacity to donate hydrogen,
these compounds react with lipid and hydroxyl radicals to transform them into stable
products [102]. Furthermore, since the two substances include a carbonyl group that binds
to the enzymes, rendering them inactive and/or damaging the bacterium’s cell wall, they
can prevent bacteria from producing vital enzymes [103].

Research against S. typhimurium ATCC 14028 revealed notable seasonal variations
in the EO components of Aristolochia fontanesii roots and their antibacterial action. The
main components of Aristolochia fontanesii EO were oxygenated monoterpenes (5.9–28.0%)
and oxygenated sesquiterpenes (50.2–81.1%). Because of the higher concentrations of
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alcohols and esters (23.0% of total oil) and the synergistic effect of other minor compounds
such as linalool, terpinene-4-ol, camphor, and t-pinocarveol, the EO (15 µL) of Aristolochia
fontanesii exhibits potent antibacterial (zone of inhibition: 8.2–12.0 mm) properties [104].
Nearly all tested Salmonella strains were shown to be significantly susceptible to the EOs
of Thymus vulgaris, Syzygium aromaticum, and Cinnamomum verum. The clove, cinnamon,
and thyme Eos’ MBC/MIC ratios for most bacteria were equal to 1, indicating that these
oils had bactericidal effects at concentrations of at least 20 µL/mL. Microbes’ ability to
form biofilms was seen to be suppressed in the presence of subinhibitory concentrations of
Thymus vulgaris, Cinnamomum verum, and Syzygium aromaticum EOs [105]. The oxygenated
monoterpene concentration of EOs isolated from Thymus mastichina and Calamintha nepeta
was greater (86.0–91.0%), with 1,8-cineole (28.0–71.0%) as the most important component.
On the other hand, Origanum virens EO exhibited a greater concentration of hydrocarbon
monoterpenes (45.3%) and oxygenated monoterpenes (45.5%), with notable components
including γ-terpinene (20.2%) and thymol (19.4%). When compared to other tested Gram-
negative strains in the same investigation, S. enteritidis LFG 1005 and S. typhimurium LFG
1006 were more vulnerable to the strong antibacterial activity of the EOs of all three of
these plants. The high content of 1,8-cineole in the EOs of Calamintha nepeta and Thymus
mastichina was shown to exhibit strong antibacterial activity, with MICs ranging from 0.8 to
>2 mg/mL [106].

In the EO isolated from the leaves of Taxodium distichum, 37 chemicals were found.
Of all 37 compounds, α-pinene was identified as the main constituent with 83.1% [107].
With an inhibition zone of 17 mm and a minimum inhibitory concentration (MIC) of
78.1 g/mL, S. typhimurium was shown to be sensitive to Taxodium distichum leaf EO (ATCC
14028). According to Al-Sayed (2018) [107], the presence of terpene components in the
EOs is responsible for the reported antibacterial action. In another investigation, it was
found that Spondias pinnata leaves and flowers contain high levels of β-caryophyllene,
a sesquiterpene hydrocarbon, with 49.9% in the leaves and 53.3% in the flowers, while
nonacosane (25.0%) was a common ingredient in the EO extracted from the fruit. While
the EO from flowers showed poor activity, the EO from leaves demonstrates considerable
antibacterial action against S. typhymurium (ATCC 14028). Against S. typhimurium, leaf
EO had a minimum inhibitory concentration (MIC) of 125.0 µg/mL, while gentamycin
had a MIC of 0.5 µg/mL. The compounds shown to have antibacterial action against
S. typhimurium were β-caryophyllene, α-terpineol, α-pinene, β-pinene, terpinolene, se-
linene, and limonene.

A further investigation revealed that the EO isolated from the leaves of Artemisia dracun-
culus var. qinghaiensis had moderate inhibitory effects at a concentration of 10 µL/mL against
S. paratyphi (CMCCB 50094), with inhibition zones spanning from 10.03 to 13.03 mm [108].
Among the substances found in Artemisia dracunculus EO were α-pinene, β-phellandrene,
linalool, terpinen-4-ol, α-terpineol, β-caryophyllene, germacrene D, and caryophyllene
oxide, which were also identified as antibacterial substances from other plants. Overall,
Artemisia dracunculus’s high content (19.2%) of sabinene has been linked to its antibacte-
rial action against S. paratyphi [108]. Carvacrol (825.0–950.0 µg/mg) was found to be the
main constituent of the EO isolated from Satureja montana (Lamiaceae) in another study.
Satureja montana was found to have an in vitro minimum inhibitory concentration (MIC)
of 250 µg/mL against Salmonella enterica sv Anatum SF2 [109]. According to this study,
hydrophilic lipopolysaccharides (LPS), which function as a barrier to macromolecules and
hydrophobic chemicals, preventing them from penetrating the target cell membrane, are
thought to be responsible for Gram-negative bacteria’s lower susceptibility to EOs. Addi-
tionally, in another study, 28 distinct EOs, isolated from different parts of plants, were tested
for their antibacterial potential against L. innocua ATCC 33090 and S. enteritidis ATCC 13076.
The most effective EOs against S. enteritidis were found in the leaves of Eucalyptus globulus,
Eucalyptus exserta, and Pimenta pseudocaryophyllus, as well as two EOs isolated from orange
juice by-products (Citrus sinensis): orange oil phase essence and citrus terpenes [110].
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4.1.3. Klebsiella Species

Environmental sources of Klebsiella bacteria include soil and water [111]. K. pneumoniae
is regarded as one of the most hazardous multidrug-resistant bacteria [112], and is more
common in insects, domestic animals, and wild animals than in the environment [113]. It
can cause septicemia in foals, pneumonia, metritis, mastitis, and cervicitis in mares [114].
It can lead to lower milk production, worse milk quality, and increased death rates in
cows. It can also be the causative agent of mastitis and pneumonia in cows [115]. Strains
of K. pneumoniae that produce carbapenemase have been described in several papers dur-
ing the past 20 years. The genesis of multidrug-resistant K. pneumoniae phenotypes is
caused by the synthesis of these extended-spectrum β-lactamases and modification of the
outer membrane permeability (decreased expression of porins and overexpression of efflux
pumps) [116]. Since carbapenemases are able to hydrolyze practically all β-lactam antibi-
otics and even β-lactamase inhibitors, only a small number of second-line antibiotics, either
alone or in combination, such as colistin, tigecycline, fosfomycin, polymyxin B, and gen-
tamicin, can still be effective against carbapenem-resistant K. pneumoniae [117,118]. Cases
of colistin-resistant K. pneumoniae have been reported [119]. When choosing second-line
anti-K. pneumoniae drugs, specific toxicity aspects should be taken into account (gentam-
icin can potentially cause nephrotoxicity, and colistin is known to have nephrotoxic and
neurotoxic effects). For these reasons, the search for alternatives is mandatory. Several
plant species have shown antibacterial activity against K. pneumonia: Arbutus unedo [120];
Cistus spp. [121]; Cytinus hypocistis [122]; Myrtus communis [123]; Pistacia lentiscus [124];
Teucrium spp. [125]; Cytinus [126]; Thymus vulgaris L. [127]; Pistacia terebinthus [128]; Rapa
catozza [129]; Crinum angustum [130]; Tinospora cordifolia, Alstonia scholaris [131]; Rhus co-
riaria [132]; Calicotome villosa [133]; Melaleuca alternifolia [134]; Mentha spp. [135]. Among
these, Pistacia lentiscus [124], Myrtus communis [123], and Arbutus unedo [120] are undoubt-
edly common and readily available plants that could be utilized to enhance animal welfare
and help fight this infection [136].

It has been shown that several EOs and volatile chemicals make clinical isolates or
reference strains of K. pneumoniae more susceptible to conventional antibiotics. Research
examining the synergistic effects of two native Moroccan thymes (Thymus maroccanus and
Thymus broussonetii) EOs in conjunction with conventional antibiotics against a clinical
isolate of K. pneumoniae was conducted. While Thymus broussonetii EO only exhibited syner-
gistic effects with pristinamycin, Thymus maroccanus EO demonstrated synergistic effects
with ciprofloxacin, gentamicin, and pristinamycin. The different chemical compositions of
these two EOs may be the cause of their differing behaviors: carvacrol content was greater
in Thymus maroccanus EO (76.35%) than in Thymus broussonetii EO (39.77%) [137]. Thymus
saturejoides Coss. EOs, which have carvacrol as their primary ingredient (25.3–45.3%),
worked in concert with cefixime to counteract a clinical isolate of K. pneumoniae [138]. The
various targets on which the combinations act, including the bacterial membrane (cefixime,
carvacrol), proteins (gentamicin, pristinamycin), enzymes (carvacrol), ATP (carvacrol), and
DNA (carvacrol, ciprofloxacin), explain these synergistic effects [139–141]. Satureja kitaibelii
EO has been shown to effectively work in concert with two conventional antibiotics, tetra-
cycline and chloramphenicol, to combat K. pneumoniae ATCC 700603 (10-fold decrease in
the MIC values of both drugs). Savory EO’s main ingredient, geraniol (50.4%), showed
synergistic benefits only when combined with chloramphenicol (10-fold reduction in the
MIC value), demonstrating antibacterial activity comparable to that of savory EO. By acting
on the efflux pumps responsible for antibiotic resistance, geraniol modulates bacterial
resistance [142,143]. The combination of geraniol and tetracycline has shown additive
benefits; it appears that other chemicals in savory EO (limonene, ocimene, linalool, nerol,
β-caryophyllene, and germacrene D) may also work in concert with tetracycline [142].
Against the same reference strain, K. pneumoniae ATCC 700603, Thymus pulegioides EO,
which belongs to the geraniol/geranyl acetate chemotype, has shown synergistic action
with tetracycline, streptomycin, and chloramphenicol [144].
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4.1.4. Pseudomonas Species

Pseudomonas aeruginosa is a frequent source of infections in people, animals, and hos-
pitalized patients. In animals, the morbid forms resulting from infection take the form of
generalized septicemic-type phenomena or inflammatory processes of a predominantly
purulent nature, circumscribed to various organs and apparatuses. It can cause skin, genital
tract, and urinary tract infections, as well as bacteremia and pneumonia. Although less com-
mon, other species of the Pseudomonas genus can infect various body districts. The disease
causes widespread deaths of embryos and significant mortality rates in newborn chickens.
Fish with P. aeruginosa infection exhibit severe symptoms such as hemorrhagic septicemia,
gill necrosis, distended abdomen, splenomegaly, friable liver, and enlarged kidney.

P. aeruginosa has become resistant to several drug classes. The pathogen’s outer
membrane, which shields it from harmful substances and enables it to build a biofilm,
is specifically responsible for the bacterium’s innate resistance to a broad spectrum of
antibiotics. The inefficacy of some antibiotics against P. aeruginosa can also be attributed
to the presence of extended-spectrum β-lactamases in this microbe [145,146]. To fight this
infection, more than 23 distinct plants can be employed.

Among these plants are Citrus spp., which are widely cultivated in the southern region
of the Italian peninsula.

EOs extracted from Cinnamomum spp. bark have been shown to have antibacterial
action against several microorganisms, including P. aeruginosa [32,147].

According to research by Kavanaugh et al. [148], cinnamon EO can prevent P. aeruginosa
from growing and forming biofilm. P. aeruginosa was effectively counteracted in vitro by the
oils of Cinnamomum aromaticum, Syzygium aromaticum, Myroxylon balsamum, Thymus vulgaris,
and Melaleuca alternifolia. Additionally, the EOs of Cinnamomum aromaticum, Thymus vulgaris,
and Myroxylon balsamum were found to be effective in inhibiting biofilm development.

In previous investigations, T. vulgaris EO proved effective against P. aeruginosa, as it
impeded the in vitro proliferation of human clinical multidrug-resistant isolates [149].

But thyme EOs weren’t always effective against this infection. When a P. aeruginosa
strain was isolated from a dog that had externa otitis, for instance, tests revealed that it was
resistant to many antibiotics, just as it was resistant to T. vulgaris oil. The canine strain was
further tested using oils extracted from the following plants: Origanum basilicum, Origanum
vulgare subsp. hirtum, Litsea cubeba, Lavandula latifolia, Illicium verum, Rosmarinus officinalis,
Salvia sclarea, Ocimum basilicum, and Rosmarinum officinalis. Only the last three oils had little
efficacy [150].

Kacaniova et al. (2017) [151] conducted an investigation to explore the EOs qualities
towards Pseudomonas spp. isolated from fish. A variety of EOs were tested for their
antibacterial efficacy against ten distinct strains of Pseudomonas isolated from recently
captured freshwater fish. The following 21 EOs were used to test each isolate: Lavandula
angustifolia, Cinnamomum verum, Pinus cembra, Mentha piperita, Foeniculum vulgare, Pinus
sylvestris, Satureja hortensis, Origanum vulgare, Pimpinella anisum, Rosmarinus officinalis, Salvia
officinalis, Abies alba, Citrus aurantium var. dulce, Citrus sinensis, Cymbopogon nardus, Mentha
spicata var. crispa, Thymus vulgaris, Carum carvi, Thymus serpyllum, Ocimum basilicum, and
Coriandrum sativum. Every tested EO showed antibacterial activity. The most successful
EO against Pseudomonas species was Cinnamomum verum, both in accordance with the MIC
and disc diffusion techniques. Hosseiny et al. verified the eventual synergism of EOs and
antibiotics. The authors used the disc diffusion assay to assess the antibacterial activity of
three EOs (Thymus vulgaris, Origanum majorana, and Salvia officinalis) against P. aeruginosa
(ATCC 9027), either alone or in combination with conventional antibiotics (piperacillin,
cefepime, meropenem, gentamicin, and norfloxacin). The examined EOs demonstrated a
range of actions against the tested microorganisms, according to the results. Sage showed
little effect against the tested microorganisms, whereas thyme and marjoram oils were
the most effective. The antibacterial activity of antibiotics that target the cell wall, such as
cefepime, meropenem, and piperacillin, was more than doubled when thyme oil was added.
The action of every antibiotic studied, with the exception of norfloxacin, was enhanced by
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marjoram oil. Sage was used with meropenem, gentamicin, and piperacillin to increase
their combined action, even though it was ineffective against Pseudomonas.

4.1.5. Campylobacter Species

Pathogens belonging to the genus Campylobacter cause illnesses in humans and several
animal species. The Campylobacter genus therefore includes micro-organisms responsible
for contagious infectious diseases. Domestic animals are sensitive, with symptoms affecting
the genital system (abortion, metritis, and sterility), the digestive system (enteritis and
hepatitis), and the mammary system (mastitis). The animal infection is transmissible to
humans. It is regarded as one of the main causes of gastroenteritis in people globally.
Campylobacter is the etiological agent of outbreaks linked to chicken products and can cause
foodborne disease through the contamination of poultry carcasses.

Campylobacter was the cause of 1087 of the 4598 hospitalizations due to foodborne
illness in 2015 (Centers for Disease Control and Prevention [CDC], 2017) [152]. Among bacte-
rial infections, this impact on public health was surpassed only by that of Salmonella [153,154].
Averaging the number of deaths and illnesses that resulted in health loss, Scallan et al.
(2015) [154] calculated that Campylobacter caused 22,500 disability-adjusted life years (DALY)
every year. In terms of the most significant impact on public health resulting from food-
borne illnesses, Campylobacter ranked third, behind Toxoplasma (32,700 DALY) and non-
typhoidal Salmonella (32,900 DALY). After rotavirus, typhoid fever, and cryptosporidiosis,
a comprehensive review conducted between 1990 and 2013 revealed Campylobacter as the
fourth most common cause of diarrheal illness [155].

It has been repeatedly shown that broiler and layer flocks have very high Campylobacter
prevalence. Since EOs seem to strengthen poultry’s immune systems, there is a chance to
lower Campylobacter concentrations via immune system regulation [156]. Moreover, EOs
may directly interact with populations of Campylobacter.

Several studies have shown the in vitro activity of various EOs against Campylobac-
ter strains.

The effectiveness of EOs against Campylobacter isolates is connected to the EO, since
each has a distinct chemical makeup and mode of action.

Friedman et al. (2002) [157] evaluated the antibacterial efficacy of many Eos using
isolates from clinical and food sources. The most effective Eos against C. jejuni were Citrus
aurantium, Daucus carota, Apium graveolens seed, Artemisia vulgare, Nardostachys jatamansi,
Gardenia jasminoides, Jasminum abyssinicum, Pogostemon cablin, and Calendula officinalis.

It was shown that the EOs of Melaleuca alternifolia, Backhousia citriodora, and Leptosper-
mum scoparium were effective against C. jejuni and C. coli isolated from chicken [158], while
Origanum syriacum was effective against a strain of C. jejuni [159].

Also, when applied as a feed supplement, the EOs demonstrate good antibacterial
activity. When added to diet in quantities less than 1%, caprylic acid, a component of
coconut oil and palm kernel oil, greatly decreased the amounts of Campylobacter [160,161].
This was noted in 10-day-old and market-age broilers; it had no effect on body weight or
feed conversion ratio.

To counteract the C. jejuni infection, Arsi et al. (2014) [162] investigated the use of
thymol, carvacrol, or a combination thereof as a dietary supplement. In order to perform
this, four separate studies were conducted with day-old broiler chicks (n = 10 chicks/dose)
given thymol, carvacrol, or mixtures of these compounds in feed. On day three, the birds
were orally challenged with C. jejuni, and on day ten, cecal samples were taken in order to
count the number of Campylobacter. The study found that Campylobacter levels decreased for
thymol treatments at 0.25% (trial 1), 1% carvacrol or 2% thymol (trial 2), or a combination
of both thymol and carvacrol at 0.5% (trial 3). These findings back up the addition of these
substances to feed in an effort to lessen hens’ colonization of Campylobacter. Thymol at a
0.25% concentration decreased Campylobacter by 0.6 log CFU/mL cecal contents. With 2%
thymol, a 2 log CFU decrease was seen. Furthermore, a single attempt employing 0.5%
thymol and carvacrol resulted in 2 log CFU/mL cecal contents.
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Campylobacter species can also infect mammals. Specifically, dogs and cats may show
asymptomatic or develop clinical signs related to the gastrointestinal tract, but in any case,
they pose a risk of infection to their owners. Although there are no studies comparing
the effectiveness of EOs to pet strains of Campylobacter in the literature, it is plausible that
isolates from dogs and cats may be susceptible to EOs that have been shown to be effective
against strains of Campylobacter that originate from other sources.

4.2. Gram-Positive Bacteria
4.2.1. Staphylococcus Species

Staphylococcus species are well-known to cause opportunistic infections in humans, but
they also pose a serious threat in veterinary medicine. These pathogens infect cold-blooded
animals, birds, and mammals in many anatomical areas.

Both coagulase-positive and coagulase-negative staphylococci, which are implicated
in infections of varying degrees of severity, belong to this genus. Among coagulase-positive
species, the most well-known is S. aureus. Staphylococci are the most common saprophytes
of human and animal skin. Specific sites of colonization are, in cattle, the skin of the teats
and udder. They are found in the nostrils and tonsils of cattle and sheep, on the skin
of the head and neck, and in the external auditory meatus of pigs. In the presence of
predisposing factors, they pass through the skin, causing mild infections. They are also
responsible for specific diseases: mastitis, pyaemia in lambs, botryomycosis, endometritis,
exudative epidermitis, pyoderma, and otitis. Numerous infections in humans, including
moderate superficial skin infections, osteomyelitis, native valve endocarditis, heart valve
implant-associated infections, severe sepsis, and bacteremia, are caused by staphylococci.
S. aureus diseases are typically linked to mastitis in animals raised for dairy products.
S. pneumoniae commonly infects companion animals. S. pseudointermedius is a component
of the mucosal, cutaneous, and upper respiratory tract microflora, but it has the potential
to develop into an invasive pathogen that may identify several illnesses. Still, some species,
such as S. chromogenes, S. xylosus, and S. hyicus, have the ability to infect pets. Staphylococcal
infections in agricultural animals may pose a serious financial risk.

Numerous investigations have confirmed EO’s anti-staphylococcal activity. Good
anti-staphylococcal action was shown by Satureja montana EO [150]. Prior observations
of S. montana EO’s antibacterial efficacy against a variety of Gram-positive and Gram-
negative bacteria established a connection with the compound’s main ingredients, including
carvacrol. Vitanza et al. (2019) [163] pointed out that S. aureus exposed to the EO of Satureja
montana underwent cell wall disruption.

Ebani et al. (2020) [164] discovered that whereas EOs from C. zeylanicum and C. myrrha
showed no action against S. xylosus, they exhibited modest activity against many canine
isolates of S. aureus, S. pseudointermedius, S. chromogenes, and S. hyicus. In a similar vein,
S. aureus was found to be somewhat sensitive to myrrh oil by Adam and Selim (2013) [165].
Furthermore, Mahboubi and Kazempour (2016) [166] found that Commiphora myrrha has
relevant efficacy against S. aureus.

Studies have demonstrated that S. aureus is susceptible to the EOs of Cymbopogon
citratus and Melissa officinalis. Aloysia citrodora EO also reduced the development of S. aureus
reference strains by compromising the plasmic membrane’s structural integrity and causing
a loss of cytoplasmic contents, which results in cellular death.

Most generally, S. aureus is regarded as the most significant microbe connected to mas-
titis. Because of their propensity for chronicity and recurrence, intramammary infections
brought on by this pathogen are extremely difficult to treat [167]. The substantial economic
effect of S. aureus-caused bovine mastitis is a major problem in veterinary practice. In an
in vivo investigation, Abboud et al. (2015) [168] found that the EOs of Thymus vulgaris and
Lavandula angustifolia exhibited potent antibacterial activity against strains of Streptococcus
and Staphylococcus. After four consecutive days of therapy, an intramammary application
of these oils, or a combination of them, resulted in a significant reduction in the number of
bacteria in the various milk samples. In the same study, the external use of Thymus essential
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oil in Vaseline produced greater antibacterial action, leading to a 100% recovery rate. In a
different trial conducted by Cho et al. in 2015 [169], single and double dosages of Origanum
EO ointment (0.9 mL of EO in a 10 mL tube) were infused into the affected quarters twice
a day for three days. The circumstances of the udders improved. Somatic cell counts
considerably decreased in the groups as compared to pre-treatment levels. Additionally,
on the fourth day following the therapy, no S. aureus or E. coli were found in the milk for
three days. Comparable effectiveness was noted for white blood cell counts, which sharply
dropped in comparison to pre-treatment levels [169].

4.2.2. Streptococcus Species

Streptococci are widespread in nature as commensals and parasites of the oral cav-
ity, intestinal, and genito-urinary tracts of humans and animals. Pathogenic species are
responsible for specific diseases. For example, S. agalactiae causes mastitis in ruminants,
while S. equi is responsible for adenitis in horses. The majority of the information found
in the literature relates to the effectiveness of EOs against strains of human-originating
Streptococcus spp. While some streptococcal species—like S. pyogenes—can infect humans
as well as animals, other streptococcal species primarily cause infections and illnesses in a
variety of companion and farm animals.

Testing cinnamon oil extracts from Cinnamomum verum and Neolitsea cassia revealed antimi-
crobial efficacy against a number of diseases, including certain Streptococcus species [170–172].

Cinnamaldehyde, the primary constituent of Cinnamomum essential oil, has been
linked to the antistreptococcal action of the plant against other bacteria.

S. iniae may affect a wide variety of freshwater, estuarine, and marine fish species.
Among the most vulnerable species are Oncorhynchus mykiss, Seriola quinqueradiata, Lates
calcarifer, and Oreochromis niloticus [173–177]. A fish infection that is spreading over the
world and is devastating many freshwater and saltwater species financially is sustained by
Streptococcus agalactiae [178]. The bacterium has been found in a variety of fish, including
rainbow trout, seabream, tilapia, yellowtail, croaker (Micropogonius undulatus), killfish
(Menhaden spp.), and silver pomfret (Pampus argenteus).

Serious zoonotic pathogens include some streptococci species. For example, S. iniae
can cause bacteremia, cellulitis, meningitis, and osteomyelitis [179], S. agalactiae can cause
neonatal meningitis, sepsis, and pneumonia [180,181]. Both S. dysgalactiae subsp. equisimilus
and S. dysgalactiae subsp. dysgalactiae can cause bacteremia, lower limb cellulitis, and
meningitis in infants.

In vitro, the ethanolic extract of Thymus daenensis was less effective in controlling
S. iniae than its EO [182]. With the lowest minimum inhibitory concentrations (MICs) of
39 µg/mL and 31.2 µg/mL, respectively, the EO of Bakhtiari savory (Satureja bachtiarica)
showed strong action against both S. iniae and S. agalactiae strains [166]. Aloe vera EO
showed no inhibitory action against S. iniae strains that were first isolated from sick rainbow
trout [183], but its ethanolic extract had an anti-S. iniae impact that was similar to that
of erythromycin.

Because of its bacteriostatic action, Lavandula angustifolia EO has been demonstrated
to be a potential inhibitor against isolates of S. iniae and S. parauberis [184]. With a MIC
of 0.063% and a MIC:MBC ratio of 1:8, one strain of S. parauberis was the most sensitive.
This suggests that, while it cannot survive at extremely low concentrations of lavender EO,
there may be a chance for bacterial survival at high concentrations.

The fish pathogen S. iniae has been shown to be effectively inhibited by Cinnamomum
verum both in vitro and in vivo. Five days before S. iniae infection, tilapia given fish diets
supplemented with 0.4% (w/w) of cinnamon oil and 0.1% (w/w) of oxytetracycline showed
no signs of death during an in vivo study [172].

In an in vivo investigation, the modifying impact of clove Syzygium aromaticum EO on
the antioxidant and immunological state of Nile tilapia after S. iniae infection was assessed.
Fish immunity was boosted by clove EO against bacterial assault. Furthermore, it was
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shown that this oil’s antibacterial activity was partially mediated via hepatic hepcidin
expression [185].

De Aguiar et al. (2019) [186] demonstrated the in vitro efficacy of oregano and
Thymus spp. EOs against S. suis isolates.

4.2.3. Mycobacterium Species

Although some research has been conducted to confirm the efficacy of EOs against
Mycobacterium tuberculosis and M. bovis, the species that cause tuberculosis in both humans
and animals [187], the use of alternative treatments for tuberculosis is discouraged given
the seriousness of this infectious disease.

Conversely, EOs may serve as substitute natural treatments for diseases brought on by
non-tuberculous mycobacteria (NTM).

These are opportunistic bacteria that are found in soil and water and are widely dis-
tributed in the environment. They are often spread via skin infection, eating or drinking
infected food or water, and inhaling aerosol particles. A number of NTM strains generate
biofilm, which increases their resistance to antimicrobial drugs, disinfectants, and envi-
ronmental stressors [188]. Human forms caused by NTM include disseminated forms,
pulmonary mycobacteriosis, skin infections, and lymphadenitis. These mycobacteria
produce identical infections in a number of animal species, which makes them signifi-
cant in veterinary medicine as well. Dogs and cats’ cutaneous forms are often linked to
NTM species.

Conventional medication therapy is employed, although it’s not always effective.
Because of this, using EOs topically may be a viable substitute; however, more research
is required to determine the EOs’ additional in vivo functions in addition to their lack of
toxicity. Even though M. avium is linked to TB in birds, it is still considered an NTM agent.

In vitro experiments were conducted to show the antibacterial and antibiofilm proper-
ties of Juniperus communis, Helichrysum italicum, and L. hybrida EOs against NTM, namely
M. avium, M. intracellulare, and M. gordonae [188,189].

EO from Zingiber officinale, which is distinguished by a high concentration of monoter-
penes and sesquiterpenes, has shown efficacy against a few NTM species, namely
M. abscessus subsp. massiliense and M. chelonae [187].

Research has been conducted to confirm the in vitro efficacy of a few EOs against
M. avium subsp. paratuberculosis, an NTM pathogen that causes paratuberculosis, a serious
illness that causes significant economic losses in ruminants. Myrtus communis EO had poor
efficacy [91], whereas oils of cinnamon and oregano showed strong action [190,191].

The infection known as M. avium subsp. paratuberculosis is found in the udders and
the gastrointestinal tract. While it is unlikely that EOs might be utilized as a medication
to treat ruminants afflicted with paratuberculosis, natural products, which have shown
efficacy in vitro, may be used to lessen the pathogen’s ambient farm contamination.

The botanical species effective against the bacterial species considered in this manuscript
are summarized in Table 3.

Table 3. Essential oils used for the control of the main bacterial etiological agents causing diseases in
zootechnical species.

Bacterial Species Botanical Species References

Escherichia coli

Aloysia triphylla, Backhousia citriodora, Cananga odorata, Neolitsea
cassia, Cinnamomum verum, Citrus limon, Cymbopogon citratus,
Cymbopogon nardus, Cymbopogon martini, Cupressus sempervirens,
Daucus carota, Eucalyptus globulus, Foeniculum vulgare, Juniperus
communis, Litsea cubeba, Mentha piperita, Melissa officinalis, Ocimum
basilicum, Origanum majorana, Origanum vulgare, Pimenta racemosa,
Pelargonium graveolens, Pimpinella anisum, Pinus sylvestris,
Syzygium aromaticum, Thymus vulgaris, Thymus zygis,
Zingiber officinale

[81,83–85,87–89,91,96]
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Table 3. Cont.

Bacterial Species Botanical Species References

Salmonella spp.

Aloysia triphylla, Aristolochia fontanesii, Artemisia dracunculus,
Cinnamomum verum, Calamintha nepeta, Cinnamomum verum, Citrus
sinensis, Cymbopogon citratus, Syzygium aromaticum, Eucalyptus
globulus, Eucalyptus exserta, Litsea cubeba, Mentha piperita,
Origanum virens, Pimenta pseudocaryophyllus, Satureja montana,
Syzygium aromaticum, Spondias pinnata, Taxodium distichum,
Thymus mastichina, Thymus vulgaris

[101,104–108]

Klebsiella spp.

Alstonia scholaris, Arbutus unedo, Calicotome villosa, Cistus spp.,
Cytinus spp., Cytinus hypocistis, Crinum angustum, Melaleuca
alternifolia, Myrtus communis, Pistacia lentiscus, Pistacia terebinthus,
Rapa catozza, Satureja kitaibelii, Teucrium chamaedrys, Rhus coriaria,
Thymus broussonetii, Thymus maroccanus, Thymus pulegioides,
Thymus vulgaris, Tinospora cordifolia

[120–135,137]

Pseudomonas spp.

Abies alba, Carum carvi, Cinnamomum aromaticum, Cinnamomum
verum, Citrus aurantium, Coriandrum sativum, Cymbopogon nardus,
Foeniculum vulgare, Illicium verum, Lavandula angustifolia,
Lavandula latifolia, Litsea cubeba, Melaleuca alternifolia, Mentha
piperita, Mentha spicata, Myroxylon balsamum, Ocimum basilicum,
Origanum vulgare, Pimpinella anisum, Pinus cembra, Pinus sylvestris,
Rosmarinus officinalis, Salvia sclarea, Satureja hortensis, Syzygium
aromaticum, Thymus serpyllum, Thymus vulgaris

[148–151]

Campylobacter spp.

Apium graveolens, Artemisia vulgaris, Backhousia citriodora,
Calendula arvensis, Citrus aurantium, Daucus carota, Jasminum
officinale, Melaleuca alternifolia, Nardostachys jatamansi, Origanum
syriacum, Pogostemon cablin

[157–159]

Staphylococcus spp.
Achlys triphylla, Cinnamomum verum, Cymbopogon citratus,
Lavandula angustifolia, Melissa officinalis, Origanum spp.,
Satureja montana

[150,164,165,168,169]

Streptococcus spp.
Neolitsea cassia, Cinnamomum verum, Lavandula angustifolia,
Origanum spp., Satureja bachtiarica, Syzygium aromaticum,
Thymus daenensis

[170–172,182,183,185,186]

Mycobacterium spp. Helichrysum italicum, Juniperus communis, Lavandula latifolia,
Myrtus communis, Zingiber officinale [165,188–191]

5. Limitations and Future Perspective

Although there appears to be a strong link between medicinal plant extracts and
antibacterial activity, the majority of current research is based on in vitro investigations;
therefore, it is unclear how applicable this information would be in a clinical context.
In vivo, compounds with antibacterial activity in vitro could not have much of an impact.
The primary impediment to the application of medicinal plants as antimicrobials is the
absence of treatment standardization. This is one of the reasons why the effectiveness of
medicinal herbs is not widely believed. The link between the structure and activity of
bioactive chemicals, as well as their methods of action, has largely remained unknown until
recently. Standardizing treatment protocols will result from learning more about the phar-
macology of substances obtained from medicinal plants [192]. There are few clinical studies
assessing the efficacy of medicinal plant components for treating infectious disorders and
identifying their side effects [193,194]. Standardized testing is necessary to evaluate the
antimicrobial activity of pure bioactive chemicals; however, more sensitive bioassay ap-
proaches are required to test plant extracts or EOs [195]. The repeatability of plant extract
composition is another significant constraint. It is well recognized that, depending on the
suppliers, an extract might have various qualities. To create quality control methods, bioac-
tive substances must be accurately characterized and authenticated [196,197]. In order to
demonstrate a reliable association between in vitro effectiveness results and the therapeutic
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relevance of these drugs, it will be necessary to conduct in vivo research on animal models
in the future [198]. For both skin and mucous membranes, topical application is currently
the most promising approach [199,200]. The ability of EOs to increase the penetration of
antiseptics might be used to both restore antibacterial action against resistant species and
prevent surgical and medical device-related infections [201,202]. Although clinical testing
is required, there is some potential for inhalation applications [203].

It is necessary to learn more about the pharmacokinetics, pharmacodynamics, and
possible toxicity of EOs taken orally because there is currently little evidence about the safety
of this method of administration. The acceptability of EOs or EO component supplements
in animal feed has not been thoroughly studied [204]. This is typically seen when strong-
tasting and odorous ingredients are used, including allicin and allyl isothiocyanate [205].
Inevitably, feed supplementation techniques (such as encapsulation) could be used to
prevent these side effects.

With the application of EOs and substances like carvacrol and cinnamonaldehyde that
have more agreeable sensory qualities. Due to their greater number of taste receptors, some
animals, like pigs, are actually more sensitive to changes in flavor characteristics [206].
However, certain methods that make it easier to add EOs to animal feed may raise manu-
facturing costs, making industrial applications less feasible. Actually, for economic reasons
primarily, certain manufacturers exhibit opposition to the use of EOC and other technolo-
gies. The widespread usage of antibiotics is a result of their affordability and convenience
of use [204].

Compound structural alterations to enhance pharmacokinetics and pharmacodynam-
ics, as well as evaluations of the structure-activity connection, should be included in future
research. In order to elucidate the mechanism behind these compounds’ antimicrobial
activity and identify other pathways that may be targeted, further research should be
performed on the synergistic interactions seen in medicinal plant extracts and between
substances and antibiotics. Antimicrobial drugs and medicinal plant extracts can interact
in ways that are beneficial (synergism) or detrimental (antagonistic) [207]. To qualify these
chemicals as biomedical agents, more study is needed, particularly on their toxicity and
in vivo investigations.

6. Discussion

In the 1940s, researchers found that some antibiotics, such as oxytetracycline, pro-
moted animal development when they were introduced for the treatment of bacterial
infections in both people and animals [208]. Following research showing that the use of
both oxytetracycline and chlortetracycline enhanced feed utilization, decreased mortality
and morbidity from clinical and subclinical infections in animals, and increased growth
rate, the Food and Drug Administration approved their use as additives in animal feed in
1951–1953 [208,209].

Sub-therapeutic tetracycline and other antibiotic administrations to farm animals have
contributed to the development of antibiotic resistance in humans, according to the Swann
report from 1969, which raised concerns about the use of antibiotics as growth promot-
ers [208]. Because it is frequently linked to the animals involved in acquiring resistant
enteric flora, which in turn adds to the human reservoir of antimicrobial-resistant coliforms
and Salmonella, the practice has been under constant scrutiny since then because of the
possible risks involved [209]. Since antibiotic resistance was discovered to be transfer-
able more than 30 years ago, the use as growth promoters of those antibiotics for which
cross-resistance has been demonstrated has been prohibited [210].

Antibiotic resistance in animal microorganisms and the establishment of antibiotic
resistance in human pathogens are believed to be influenced by the use of antibiotics in
veterinary medicine. There are several instances when bacteria or their genes are transferred
from animals to humans via the food chain [211]. Resistance gene transfer across bacterial
populations occurs via both straightforward and intricate pathways within the ecology of
bacteria. Furthermore, there is evidence that resistance genes from humans have returned to
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the animal population, supporting the idea that resistant microorganisms may spread from
animals to people. The possibility of these genes being amplified in animal populations
makes this a serious problem. New antimicrobial agents need to be developed.

The pharmaceutical industry is said to generate two or three novel antibiotics from
microbes annually on average [212]. As the number of novel antimicrobial medications in
the research and development (R&D) pipeline has started to decline over the past 20 years,
the pharmaceutical industry has grown more accepting of the potential applications of
plant-derived drugs [212]. In addition, the general public is now very interested in com-
plementary therapies like “medicinal plants” due to growing awareness of the abuse and
overuse of antibiotics. An estimated 20–80% of people use and believe that botanical
products are safe and beneficial in many different places around the globe. Therefore,
“traditional knowledge,” or the variety of information gathered by indigenous peoples on
the plant and animal items they have utilized to cure illnesses and preserve health, is of
enormous interest to people all over the world [212].

In addition to boosting the biosafety of breeding stock, the advantageous impacts
of Eos may also be used to substitute performance-enhancing additives, as shown by
the zootechnical indices. For example, when EO extracted from Poliomintha longiflora
(400 mg L−1) was added to chicken feed, Hernández-Coronado et al. (2019) [213] demon-
strated improved sensory evaluation of chicken meat. When broiler feed was supplemented
with 200 mg kg−1 of nanoencapsulated cumin EO with chitosan, it produced better body
weight gain (BWG) and feed conversion ratio than 650 mg kg−1 of flavomycin [214].
Eucalyptus globulus was able to lower the E. coli population and encourage the formation of
beneficial bacteria. Additionally, it boosted the digestibility of organic matter, which can
enhance nutritional absorption, lower blood cholesterol, and boost superoxide dismutase
activity. While cholesterol reduction improved the meat’s nutritional profile and increased
BWG and feed conversion, superoxide dismutase’s inhibition of free radicals increased
antioxidant activity [215].

A combination of 300 mg/day of Eos from Thymus kotschyanus, Lavandula angustifolia,
Salvia officinalis, and Capparis spinosa was used in another experiment on calves. The results
demonstrated an improvement in animal performance (59.1 kg final body weight for the
control group and 62.3 kg final body weight for the EO group) because of the antioxidant
and bactericidal properties of the mixture. The information provided suggests that it is quite
likely that EOs will be used in the creation of biotechnological substitutes for traditional
therapies. In addition to having possible antibacterial properties, the use of EOs in chicken
diets is of interest as it seems to enhance egg quality [216].

Moreover, EOs are incredibly adaptable substances that have the ability to function
as immunomodulators, detoxifiers, and performance boosters. Research should be done
to confirm the adverse effects of administering EOs in vivo. Cytotoxicity and therapeutic
index assessments must come first. Dušan et al. (2006) [217] proved the toxicology of several
EOs towards intestinal cell viability. Dosage dependence was seen in the antimicrobial
activity of certain plant extracts against enteroinvasive E. coli. In vitro cultures of intestinal-
like cells revealed comparatively substantial cytotoxicity to EO concentrations that could
totally block bacterial growth (0.05%). Reduced EO concentrations (0.01%) only partially
inhibited microbes and had a negligible negative impact on Caco-2 cells. The essential
oils of clove and cinnamon, as well as their main component, eugenol, had almost no
cytotoxic impact at lower concentrations, according to an assessment of cell deathbased
on morphological and viability staining followed by fluorescence microscopy. Despite
a small increase in the incidence of apoptotic cell death, oregano essential oil and its
constituent carvacrol demonstrated broad antibacterial action even at lower doses. Thyme
oil showed a relatively significant level of cytotoxicity, increasing the incidence of both
necrotic and apoptotic cell death. On the other hand, the constituent thymol has shown
neither cytotoxic impact nor significantly diminished capacity to impede the pathogen’s
apparent development at the employed levels [217].
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7. Conclusions

There is a wealth of scientific data supporting traditional knowledge on the antibac-
terial properties of plant extracts. A simple search using the PubMed database reveals
hundreds of publications in the scientific and medical literature describing the antibacterial
properties of various plant species and their chemical components. Furthermore, 6345 plant
species show experimental antibacterial activity, according to a search of the Napralert
database, which is a database of natural products maintained by the University of Illinois
at Chicago and contains 58,725 plant species. It is very likely that plant-based antimicrobial
agents can replace traditional antibiotics. In this respect, EOs can also be used to reduce
drug resistance. For example, some attempts have been made to improve or restore antibac-
terial efficacy against multidrug-resistant germs. Antimicrobial MICs can be reduced by
adding essential oils to antibiotics; aminoglycosides, including amikacin, have shown the
greatest reduction in MICs [218]. Their use has also been shown to restore drug sensitivity
in strains that overexpress efflux pumps [143]. The way Eos modify drug resistance is
particularly evident when it comes to drugs such as fluoroquinolones, β-lactams, and
chloramphenicol. This manuscript, therefore, is particularly interesting as a catalyst for a
new green pharmacology that triggers virtuous practices useful for what is often referred
to as “One-health”.
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