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Abstract: Antimicrobial resistance is a global health threat that requires innovative strategies against
drug-resistant bacteria. Our study focuses on enoyl-acyl carrier protein reductases (ENRs), in particu-
lar FabI, FabK, FabV, and InhA, as potential antimicrobial agents. Despite their promising potential,
the lack of clinical approvals for inhibitors such as triclosan and isoniazid underscores the challenges
in achieving preclinical success. In our study, we curated and analyzed a dataset of 1412 small
molecules recognized as ENR inhibitors, investigating different structural variants. Using advanced
cheminformatic tools, we mapped the physicochemical landscape and identified specific structural
features as key determinants of bioactivity. Furthermore, we investigated whether the compounds
conform to Lipinski rules, PAINS, and Brenk filters, which are crucial for the advancement of com-
pounds in development pipelines. Furthermore, we investigated structural diversity using four
different representations: Chemotype diversity, molecular similarity, t-SNE visualization, molec-
ular complexity, and cluster analysis. By using advanced bioinformatics tools such as matched
molecular pairs (MMP) analysis, machine learning, and SHAP analysis, we were able to improve
our understanding of the activity cliques and the precise effects of the functional groups. In sum-
mary, this chemoinformatic investigation has unraveled the FAB inhibitors and provided insights
into rational antimicrobial design, seamlessly integrating computation into the discovery of new
antimicrobial agents.

Keywords: antibacterial drug development; enoyl-acyl carrier protein reductases; ENR inhibitors;
antibiotic resistance; Fab; InhA; bioinformatical analysis

1. Introduction

When antibiotics began to be used to treat bacterial infections, it quickly became clear
that the bacteria would fight back, developing resistance to the antibiotics currently in
use (so-called drug-resistant (DR) and multidrug-resistant (MDR) bacteria). The treatment
of drug-resistant infections is very expensive and time-consuming, and can have serious
or even life-threatening side effects. For example, the average direct cost in the U.S.
for 2020 is between $20,000 for the treatment of drug-resistant TB and $568,000 for the
treatment of extensively drug-resistant tuberculosis (XDR TB) [1]. This requires the research,
discovery, and development of new antimicrobial active pharmaceutical ingredients (APIs).
Enoyl-acyl carrier protein reductases (ENRs) are one of the most promising targets for the
treatment of bacterial infections. The most abundant enzyme is FabI, while other isoforms
such as FabK (e.g., the only enoyl reductase enzyme in Streptococcus pneumoniae), FabL
(Bacillus subtilis has FabL and FabI), FabV, and InhA (also known as mycobacterial FabI
(MtFabI)) are less common. ENRs are important enzymes in the bacterial biosynthesis of
fatty acids (FAB-II pathway) for cell wall formation and are distinct from those in mammals
(so-called FAB-I pathway), which is important for selective toxicity [2]. Despite some
debate about their essentiality [3], ENRs remain important targets for the development
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of antistaphylococcal [4], antimalarial [5], and antibacterial agents, particularly against
Gram-negative bacteria and against M. tuberculosis [6].

Most ENRs belong to the superfamily of short-chain alcohol dehydrogenases/reductases
(SDRs) and catalyze the final and rate-limiting step of fatty acid elongation, namely the
reduction of the C–C double bond of the enoyl intermediate. They reduce the double bond
in trans-2-enoyl-ACP to acyl-ACP with the help of the co-factor NADH, which leads to
hydrolysis to the final product—a fatty acid (Figure 1) [2]. Although they catalyze the
same reaction, the active sites of the ENRs, particularly FabK and FabV, differ, with InhA
and FabI showing the greatest homology. Both InhA and FabI exhibit homotetrameric
structures with a conserved SDR motif (Tyr-X6-Lys). In this motif, lysine interacts with
the co-factor NADH via a hydrogen bond to ensure the stability of the complex, while
tyrosine acts as a proton donor (Figure 2). The crystal structures of E. coli FabI and M.
tuberculosis InhA show that InhA has a deeper binding cleft than FabI, which allows it
to accommodate long-chain substrates that bind in its long hydrophobic tunnel during
mycolic acid biosynthesis. B. subtilis FabL and E. coli FabI have only 25% sequence similarity.
Furthermore, while B. subtilis FabL utilizes NADPH as a cofactor, B. subtilis and E. coli
FabI utilize NADH. Although FabL has the same Tyr-X6-Lys motif as FabI, it has a distinct
coenzyme binding site [2,7,8].

Antibiotics 2024, 13, x FOR PEER REVIEW  2  of  28 
 

antistaphylococcal  [4],  antimalarial  [5],  and  antibacterial  agents,  particularly  against 

Gram‐negative bacteria and against M. tuberculosis [6]. 

Most ENRs belong to the superfamily of short‐chain alcohol dehydrogenases/reduc‐

tases (SDRs) and catalyze the final and rate‐limiting step of fatty acid elongation, namely 

the reduction of the C–C double bond of the enoyl intermediate. They reduce the double 

bond in trans‐2‐enoyl‐ACP to acyl‐ACP with the help of the co‐factor NADH, which leads 

to hydrolysis to the final product—a fatty acid (Figure 1) [2]. Although they catalyze the 

same reaction, the active sites of the ENRs, particularly FabK and FabV, differ, with InhA 

and FabI  showing  the greatest homology. Both  InhA and FabI exhibit homotetrameric 

structures with a conserved SDR motif (Tyr‐X6‐Lys). In this motif, lysine interacts with 

the co‐factor NADH via a hydrogen bond to ensure the stability of  the complex, while 

tyrosine acts as a proton donor  (Figure 2). The crystal structures of E. coli FabI and M. 

tuberculosis InhA show that InhA has a deeper binding cleft than FabI, which allows it to 

accommodate long‐chain substrates that bind in its long hydrophobic tunnel during my‐

colic acid biosynthesis. B. subtilis FabL and E. coli FabI have only 25% sequence similarity. 

Furthermore, while B. subtilis FabL utilizes NADPH as a cofactor, B. subtilis and E. coli 

FabI utilize NADH. Although FabL has the same Tyr‐X6‐Lys motif as FabI, it has a distinct 

coenzyme binding site [2,7,8]. 

 

Figure 1. The last step of fatty acid elongation, ACP = acyl carrier protein, ENRs = Enoyl‐acyl car‐

rier protein reductases [2]. 

 

Figure 2. Mechanism of catalysis by ENRs [7]. 

FabV of V. cholerae is 60% larger than other typical SDR enzymes, which are usually 

about 250 residues long. In addition, the active site spacing of FabV consists of eight resi‐

dues  (Tyr‐X8‐Lys),  in contrast  to FabI and FabL, which have a spacing of six residues. 

However, FabV contains the same co‐enzyme binding site as FabI, which uses the classical 

Rossman fold motif. FabK from S. pneumoniae is an FMN‐dependent oxidoreductase that 

belongs to the family of NAD(P)H‐dependent flavin oxidoreductases. NADH serves as a 

reducing agent, but acts indirectly by reducing the tightly bound flavin cofactor. This re‐

duced flavin then reduces the double bond [7]. 

There are two widely used inhibitors of ENRs today, a trichlorinated biphenyl ether 

called triclosan, which inhibits FabI of various bacteria as well as M. tuberculosis InhA, and 

isoniazid (INH), which also inhibits InhA (Figure 3). Triclosan is a synthetic compound 

Figure 1. The last step of fatty acid elongation, ACP = acyl carrier protein, ENRs = Enoyl-acyl carrier
protein reductases [2].

Antibiotics 2024, 13, x FOR PEER REVIEW  2  of  28 
 

antistaphylococcal  [4],  antimalarial  [5],  and  antibacterial  agents,  particularly  against 

Gram‐negative bacteria and against M. tuberculosis [6]. 

Most ENRs belong to the superfamily of short‐chain alcohol dehydrogenases/reduc‐

tases (SDRs) and catalyze the final and rate‐limiting step of fatty acid elongation, namely 

the reduction of the C–C double bond of the enoyl intermediate. They reduce the double 

bond in trans‐2‐enoyl‐ACP to acyl‐ACP with the help of the co‐factor NADH, which leads 

to hydrolysis to the final product—a fatty acid (Figure 1) [2]. Although they catalyze the 

same reaction, the active sites of the ENRs, particularly FabK and FabV, differ, with InhA 

and FabI  showing  the greatest homology. Both  InhA and FabI exhibit homotetrameric 

structures with a conserved SDR motif (Tyr‐X6‐Lys). In this motif, lysine interacts with 

the co‐factor NADH via a hydrogen bond to ensure the stability of  the complex, while 

tyrosine acts as a proton donor  (Figure 2). The crystal structures of E. coli FabI and M. 

tuberculosis InhA show that InhA has a deeper binding cleft than FabI, which allows it to 

accommodate long‐chain substrates that bind in its long hydrophobic tunnel during my‐

colic acid biosynthesis. B. subtilis FabL and E. coli FabI have only 25% sequence similarity. 

Furthermore, while B. subtilis FabL utilizes NADPH as a cofactor, B. subtilis and E. coli 

FabI utilize NADH. Although FabL has the same Tyr‐X6‐Lys motif as FabI, it has a distinct 

coenzyme binding site [2,7,8]. 

 

Figure 1. The last step of fatty acid elongation, ACP = acyl carrier protein, ENRs = Enoyl‐acyl car‐

rier protein reductases [2]. 

 

Figure 2. Mechanism of catalysis by ENRs [7]. 

FabV of V. cholerae is 60% larger than other typical SDR enzymes, which are usually 

about 250 residues long. In addition, the active site spacing of FabV consists of eight resi‐

dues  (Tyr‐X8‐Lys),  in contrast  to FabI and FabL, which have a spacing of six residues. 

However, FabV contains the same co‐enzyme binding site as FabI, which uses the classical 

Rossman fold motif. FabK from S. pneumoniae is an FMN‐dependent oxidoreductase that 

belongs to the family of NAD(P)H‐dependent flavin oxidoreductases. NADH serves as a 

reducing agent, but acts indirectly by reducing the tightly bound flavin cofactor. This re‐

duced flavin then reduces the double bond [7]. 

There are two widely used inhibitors of ENRs today, a trichlorinated biphenyl ether 

called triclosan, which inhibits FabI of various bacteria as well as M. tuberculosis InhA, and 

isoniazid (INH), which also inhibits InhA (Figure 3). Triclosan is a synthetic compound 

Figure 2. Mechanism of catalysis by ENRs [7].

FabV of V. cholerae is 60% larger than other typical SDR enzymes, which are usually
about 250 residues long. In addition, the active site spacing of FabV consists of eight
residues (Tyr-X8-Lys), in contrast to FabI and FabL, which have a spacing of six residues.
However, FabV contains the same co-enzyme binding site as FabI, which uses the classical
Rossman fold motif. FabK from S. pneumoniae is an FMN-dependent oxidoreductase that
belongs to the family of NAD(P)H-dependent flavin oxidoreductases. NADH serves as
a reducing agent, but acts indirectly by reducing the tightly bound flavin cofactor. This
reduced flavin then reduces the double bond [7].

There are two widely used inhibitors of ENRs today, a trichlorinated biphenyl ether
called triclosan, which inhibits FabI of various bacteria as well as M. tuberculosis InhA, and
isoniazid (INH), which also inhibits InhA (Figure 3). Triclosan is a synthetic compound
that is very commonly used in everyday products such as soap, toothpaste, and plastics,
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while INH is widely used as an anti-tuberculosis drug. Although both agents have been
used for decades, ENRs tended to be neglected until the late 1990s when it was recognized
that InhA and FabI were primary targets of isoniazid and triclosan, respectively [9]. This
led to an increased interest in these enzymes in the last two decades, which was favored by
the resistance to both drugs and the poor pharmacokinetic properties of triclosan. In the
past decades, other modified derivatives of INH and especially of triclosan with improved
pharmacokinetics have been synthesized, as well as many new drugs with completely new
structural properties. These have been described in patent applications [6] and extensive
literature reviews [2,10,11] in the last 10 years.
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Our preliminary analysis of interest in the individual enzymes (Figure 4) shows
minimal research interest in inhibitors for FabV (green color) and FabK (orange color).
However, there is notable interest in researching inhibitors for FabI (blue color) and InhA
(red color), with a recent focus on InhA. The most productive years for Fab enzyme research
were 2006, 2007, and 2014 in terms of the total number of compounds published in each
year between 2001 and 2022.
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Although some of these potent inhibitors have progressed to Phase II clinical trials,
none of them have yet received clinical approval. Most of these inhibitors have been
identified by high throughput screening (HTS) and to a lesser extent by screening of natural
products or virtual screening [6]. Due to resistance to existing treatment options, there is an
urgent need for new chemical agents that target bacteria, and ENRs are valuable targets;
therefore, there is a clear need for new approaches to address this problem.

To close this gap, it is essential to integrate various tools from the fields of bioinfor-
matics, chemoinformatics, machine learning, and chemometrics. The use of existing data
on known inhibitors and their systematic analysis through techniques such as quantita-
tive structure–activity relationships (QSAR) and various machine learning approaches are
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crucial. At the heart of this methodology is chemometrics, which applies mathematics,
statistics, and formal logic to explore the chemical space and drive scientific discovery. It
encompasses various techniques, including multivariate models such as principal compo-
nent analysis (PCA), partial least squares (PLS), and bilinear techniques such as principal
component regression (PCR) and partial least squares discriminant analysis (PLS-DA).
These interdisciplinary methods can help researchers unravel complex relationships within
chemical datasets and identify key physicochemical properties and molecular features
relevant to a compound’s bioactivity [12–16]. In addition, these techniques can predict
unexplored properties not covered by HTS or virtual screening and thus have the potential
to complement more traditional methods and revolutionize drug discovery. The knowledge
gained can help in the development of novel chemical entities with new scaffolds and
properties, thus contributing to the advancement of ENR inhibitors and addressing the
urgent need for effective treatments [17,18].

Therefore, our current study is dedicated to analyzing the predominant chemical space
of ENR inhibitors. To this end, we have compiled a comprehensive dataset comprising
1412 small molecules recognized as ENR enzyme inhibitors. These were obtained from
ChEMBL, BindingDB, our internal database from previous projects, and available literature
data (Tables S1 and S2). Our primary goal was to rapidly yet thoroughly investigate the
chemical landscape of existing ENR inhibitors using advanced cheminformatics tools.
Through this investigation, we aimed to explore the physicochemical properties of known
ENR inhibitors and identify features that are important for activity, thereby improving our
understanding of the molecular structure and features that influence the structure–activity
relationship (SAR) being sought. Our overarching goal is that this knowledge will aid in
the identification of new potential drug candidates against bacterial infections, ultimately
reducing failure rates in the later stages of drug design and development.

2. Results and Discussion
2.1. Data Collection, Preprocessing, and Classification

After a careful curation process described in the Materials and Methods section, the
final dataset comprised 1412 small molecules (Tables S1 and S2) with pIC50 values ranging
from 3.5 to 9.7. To distinguish between active and inactive compounds, we used a threshold
of 5.5 for the pIC50 value. This decision was made in view of the fact that many articles
in this field have chosen threshold values between 5 and 6 [17,19,20]. Furthermore, the
choice of 5.5 as a threshold resulted in a distribution of 855 (61%) inactive and 557 (39%)
active compounds in our database, ensuring a balanced representation of both categories.
Compounds below this threshold were categorized as inactive, while those that exceeded it
were considered active (Figure S1).

2.2. Physicochemical Properties

In our analysis, we looked at the physicochemical properties of the inhibitors in
each enzyme dataset and presented the key results in Figure 5. A total of 39 features
were generated using RDKit [21], including enhanced/hybrid logP (SlogP), number of
aromatic rings (NumAromaticRings), number of stereocenters (NumStereocenters), total
polar surface area (TPSA), average molar weight (AMW), number of rotatable bonds (NRB),
number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA),
fraction of carbon atoms that are sp3 hybridized (FractionCSP3), and many others. For
a comprehensive understanding, the results of the statistical analysis are presented in
Figures S2–S23 and Tables S3–S7.

Our comparisons revealed remarkable differences between the InhA and FabI in-
hibitors, with distinct features emerging. InhA inhibitors exhibited significant features,
such as higher SlogP, a greater NumAromaticRings, NumStereocenters, and FractionCSP3.
In addition, they exhibited a higher HBD and NRB compared to FabI inhibitors, combined
with a higher sum of atomic polarizabilities (apol) and a smaller radius. Understanding
these differences in physicochemical properties is critical. These differences arise from the



Antibiotics 2024, 13, 252 5 of 27

unique structural features of InhA, particularly its deeper binding cleft and the need to
accommodate long-chain substrates during the biosynthesis of mycolic acid [7]. Conse-
quently, InhA inhibitors may require higher lipophilicity to interact effectively with the
hydrophobic regions within the binding site, and the smaller radius observed may be
attributed to the specific geometric constraints imposed by the deeper binding cleft. In
addition, the presence of a long hydrophobic tunnel in InhA requires that its inhibitors
have a higher number of aromatic rings, stereocenters, and rotatable bonds. These features
contribute to the flexibility and adaptability of the molecules within the binding site.
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On the other hand, FabK inhibitors showed a different profile compared to FabI and
InhA inhibitors, with higher values for NumAromaticRings, HBD (hydrogen bond donors),
NRB (number of rotatable Bonds), amide bonds, the number of aliphatic rings, TPSA
(topological polar surface area), SlogP (calculated octanol-water partition coefficient), the
absence of stereocenters, and a larger radius. In contrast, the InhA and FabI inhibitors
showed higher values for SlogP and NumAromaticRings. However, no statistically sig-
nificant difference in AMW (average molecular weight) was observed compared to other
enzyme datasets.

When comparing the physicochemical properties of active and inactive compounds
within each enzyme dataset, clear differences were observed for FabI and InhA inhibitors.
In the case of InhA inhibitors, active compounds exhibited statistically higher values
for features such as AMW, HBD, TPSA, NRB, Bertz CT complexity, and sum of atomic
polarizabilities (apol) compared to inactive compounds. Similarly, active FabI inhibitors
showed significant differences with increased values in AMW, number of rings, NRB,
BertzCT complexity, and sum of atomic polarizabilities (apol). One factor contributing to
these variations is the inherent structure of the active sites, which influences parameters
such as AMW, the number of rings, and HBD. In addition, the higher values observed are
consistent with the typical progression of compounds undergoing further development,
where the molecular mass and number of rings tend to increase in order to optimize
the properties of the drug [22]. Interestingly, no significant difference was observed for
SlogP, possibly indicating that achieving higher lipophilicity within the limits of Lipinski’s
rules [23,24] is challenging, as the SlogP value of these compounds is already high in all
datasets, reflecting the high hydrophobicity of the active sites in these enzymes. However,
the increase in atomic apol presents a unique explanatory challenge that warrants further
investigation.

The results of the statistical evaluation and Figure 5 emphasize the importance of
these features in determining the activity of the compounds. It is noteworthy that the FabV
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and FabK inhibitors showed no statistically significant differences in the physicochemical
properties assessed compared to inactive compounds. This lack of significance may be
attributed to the relatively small dataset, as larger sample sizes are generally more likely
to reject the null hypothesis [25]. However, from Figure 5 we can see that the active
compounds in the FabV dataset have a higher HBD, HBA and TPSA than the inactive
compounds in this dataset.

Next, we wanted to analyze the changes over time in the physicochemical properties
of the ENR inhibitors to see if there was a trend that could be analyzed. However, no
specific pattern was observed and the results are shown in Figures S24–S27.

2.3. Lipinski’s Rule of Five

Bioactivity was evaluated in terms of drug-likeness characteristics, which is usually
determined using Lipinski’s Rule of Five (also known as Pfizer’s Rule of Five or simply
Rule of Five). This rule states that molecules with a molecular weight below 500 g/mol,
no more than five hydrogen bond donors, no more than 10 hydrogen bond acceptors, and
a logP value below 5 are generally considered drug-like [23,24]. While Lipinski noted
that orally bioavailable active pharmaceutical ingredients (APIs) often meet these criteria,
it is important to recognize that these guidelines should not be the sole determinants in
the medicinal chemistry development of all small molecules. To illustrate, only half of all
FDA-approved small-molecule drugs are both orally administrable and meet the Rule of
Five [26]. Overly dogmatic adherence to Lipinski’s rules can lead to the exclusion of po-
tential lead molecules that would otherwise be good drug candidates by overemphasizing
oral bioavailability and excluding natural products, including antibiotics, most of which do
not meet the Rule of Five criteria [27]. Furthermore, while oral administration is a desirable
property of a drug, it is not a mandatory requirement [28].

When the inhibitors of the enzymes of interest were screened using Lipinski’s five-
criteria rule, it was found that the majority of active compounds as well as inactive com-
pounds conformed to Lipinski’s rules. Notable exceptions were found for FabK inhibitors,
which had a non-compliance rate of 19%. For most compounds associated with single
enzymes, the frequency of a single violation was less than 10% and the frequency of two
violations was less than 7%. Remarkably, inhibitors targeting FabV, both in their active and
inactive forms, had no Lipinski violations. This absence could be attributed to the relatively
small dataset (Figure 6, Table S8).
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2.4. PAINS and Brenk Filters

Secondly, the dataset was analyzed for the presence of Pan-Assay Interference Com-
pounds (PAINS) and unwanted functional groups using the Brenk filter. The PAINS filter
identifies functional groups previously identified as false positives in other assays, which
necessitated a thorough check for these substructures in our dataset [19,29]. Similar to
the Lipinski rules, caution should be exercised when using PAINS filters, as a significant
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number of FDA-approved small-molecule drugs contain PAINS warnings [30]. As shown
in Table 1 for the enzyme FabI, 11% of all inhibitors fell through the PAINS filter, with
only 7% of all compounds being active and containing PAINS structures. In the case of the
enzyme InhA, 8% of all inhibitors failed the PAINS filter, and only 1% of all compounds
were active and contained PAINS structures. Analysis of FabK and FabV enzymes revealed
that FabK inhibitors had no PAINS structures, while 20% of all FabV inhibitors had PAINS
structures, with 10% being active inhibitors. Additional data on compounds classified as
PAINS or Brenk can be found in the Supplementary Materials (Tables S9–S11).

Table 1. Statistics on compounds categorized as PAINS and Brenk in all four enzyme datasets.

PAINS Brenk

Enzyme Activity No. Percent [%] No. Percent [%]

FabI
Active 30 7.1 175 12.4

Inactive 18 1.3 76 5.4

FabK
Active 0 0 2 0.1

Inactive 0 10.0 1 0.1

FabV
Active 1 0.1 2 0.1

Inactive 1 0.1 7 0.5

InhA
Active 6 0.4 78 5.5

Inactive 69 4.9 307 21.7

In addition, the dataset was examined for the presence of undesirable components
as described by Brenk et al. (Brenk filter) [31], e.g., substructures associated with toxicity
and high reactivity. The results, presented in Table 1, show that a considerable number of
compounds did not pass the Brenk filter. The table showing the most common unwanted
groups found in ENR inhibitors (PAINS and Brenk) can be found in the Supplementary
Materials (Table S12). It shows that in most cases undesirable groups were more abundant
(50% or more) in the active forms. The most commonly encountered problematic functional
groups in these compounds include Michael acceptors, oxygen-nitrogen single bonds,
aliphatic long chains, nitro groups, thiocarbonyl groups, and imines.

Given the above considerations, one could conclude that applying PAINS and Brenk
filters and then analyzing data without unwanted PAINS and Brenk structures would
result in a significantly reduced dataset. The combination of structures that remain after
the application of PAINS and Brenk filters resulted in only 746 molecules (51%; Table S11).
Therefore, it is advisable not to exclude molecules based solely on PAINS, Brenk, or even
the previously mentioned Lipinski violation filtering.

2.5. Structural Diversity

The structural diversity of all four inhibitor datasets was assessed using four differ-
ent representations: chemotype diversity, molecular similarity, t-SNE analysis, molecular
complexity, and cluster analysis. The use of these different calculations provides a compre-
hensive representation of the structural diversity within all four enzyme libraries.

2.5.1. Chemotype Diversity

The study of molecular scaffolds is of great importance as it facilitates subsequent
steps in the drug discovery pipeline, including scaffold hopping [32]. Our focus was on
identifying Murcos scaffolds to assess their diversity, resulting in 279 unique scaffolds
across all four datasets [33]. Table 2 provides statistical data on the number of scaffolds (N),
the proportion of scaffolds to the number of active molecules (N/M), and the number of
singletons (Nsing) for the four enzyme datasets described here. In terms of the proportion of
scaffolds per molecule (N/M), the InhA library had the highest N/M count, and therefore
the highest scaffold diversity, although the differences between InhA, FabI, and FabK were
only marginal. Fab V, the smallest library, had only two scaffolds with the lowest N/M
ratio, indicating the least diversity. These metrics provide valuable insight into scaffold
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diversity. However, it is important to note that they do not provide detailed information
about the specific distribution patterns of these scaffolds within the datasets.

Table 2. Diversity analysis results of scaffolds in the four enzyme datasets: Scaled Shannon entropy
(SSE) for the top 20 chemotypes and fraction of compounds within the most populated chemotypes.

Enzyme N M N/M Nsing Nsing/N Nsing/M AUC F50

InhA 38 266 0.143 20 0.526 0.075 0.846 0.085
FabV 2 5 0.400 NA NA NA 0.4 NA
FabK 12 25 0.480 7 0.583 0.28 0.670 0.236
FabI 28 269 0.104 14 0.500 0.052 0.857 0.060

N, number of chemotypes; M, number of active molecules; Nsing, number of singletons; AUC, area under the
curve; F50, fraction of chemotypes that contains 50% of the dataset.

Among the techniques that measure the global diversity of a compound dataset are
cyclic system recovery (CSR) curves that quantify the distribution of scaffold diversity [34].
In these diagrams, the closer the CSR line is to the diagonal, the greater the scaffold diversity.
The plots in Figure 7 show that the chemotypes from the InhA database have only slightly
lower scaffold diversity compared to those from the FabI database. Although CSR curves
have previously been used effectively to analyze larger datasets [34], unfortunately the
number of unique scaffolds in the FabV and FabK datasets was too small to produce a
curve suitable for comparison, as the values for both curves did not reach 0 and will thus
not be discussed in the following paragraph.
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The following metric was derived from the CSR curves: the area under the curve
(AUC) and the fraction of chemotypes required to find 50% of the molecules (F50), both
shown in Table 2. The use of both metrics has been used successfully in previous studies as
a measure of scaffold diversity because it is suitable for comparing collections of different
sizes due to its independence of library size [6,11–13]. Higher F50 values and lower AUC
values indicate greater diversity and vice versa. According to the F50 metric, the scaffolds
in the InhA dataset had a slightly higher diversity than those in FabI, with F50 values of
0.158 and 0.133, respectively. As expected, the scaffold diversity of the InhA dataset was
only slightly higher than that of FabI when both metrics, AUC and F50, were considered.
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2.5.2. Molecular Similarity

Tanimoto coefficients, also known as Tanimoto similarities, were calculated for MACCS
(nbits = 166) fingerprints to assess the structural similarity between inhibitors in each
dataset. The statistical values of pairwise intra-dataset Tanimoto similarity for each enzyme
are shown in Table S13, and the intra- and inter-group similarity results are shown in the
matrix in Figure 8 and in the Supplementary Materials (Figure S28).
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The analysis revealed limited diversity in the FabK and FabV inhibitors (with a within-
group similarity of 0.70 and 0.74, respectively), as expected due to the smaller scale and
synthesis by only a couple of research groups for both datasets. In addition, the two pairs
of inhibitors in these datasets were much more similar to each other than to the inhibitors of
the other two enzyme groups. In contrast, InhA and FabI exhibited greater diversity, with
within-group similarities comparable to between-group similarities for all other inhibitor
groups. Remarkably, both the InhA and FabI datasets showed at least a 10-fold increase in
the number of compounds, emphasizing that the largest dataset is not necessarily 10 times
more diverse. This is clearly illustrated here, where the differences between the mean
similarities are not significantly larger.

2.5.3. t-SNE Analysis

The visualization of chemical space is crucial to identify whether the datasets occupy
the same chemical space [19]. In Figure 9, t-SNE analysis using MACCS fingerprints illus-
trates characteristic substructure patterns for each enzyme dataset. The graph representing
all four enzymes shows that there is no overlap between the datasets and each enzyme
occupies its own place in chemical space. The number of clusters is directly proportional to
the number of compounds; the greater the number of compounds, the greater the number
of clusters. The diagram depicting all four enzymes shows a higher structural diversity of
the InhA dataset compared to the FabI dataset, which is reflected in a higher number of
clusters. We can also observe how small and structurally less diverse the FabV and FabK
datasets are, as the chemical space they occupy in the diagram is very limited.

In addition, Figure 9 also illustrates the differences in structural diversity between
active and inactive compounds for each enzyme separately. In particular, the diagram for
the enzyme InhA shows a greater chemical diversity in the inactive compounds, which can
be seen in several clusters. This indicates a broader spectrum of chemical structures among
the inactive inhibitors for InhA. On the other hand, FabI shows a slightly larger number
of clusters for active compounds, indicating diverse chemical profiles among the active
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inhibitors. Unfortunately, insufficient data for the enzymes FabV and FabK prevent the
formation of clear clusters.
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2.5.4. Complexity of Datasets

Molecular complexity is an important aspect of drug design as it is positively as-
sociated with target selectivity [17,18] and consequently with toxicological profiles [34]
and success in development in the clinic [35]. Various complexity metrics are commonly
used, including topological, physicochemical, and structure-based approaches, as well as
graph-theoretical methods [36]. For our analysis, we used the BertzCT complexity index as
a measure of complexity, as it is specifically designed to provide a more comprehensive
estimate of complexity by taking into account its molecular graphs and incorporating
information about the complexity of bonds and heteroatoms [19,37]. A correlation between
pIC50 and the BertzCT index is presented in Figure 10.

Although previous studies have found a correlation between pIC50 and the BertzCT
index [10], in our case we only observed a weak correlation for the InhA dataset, with
a Pearson correlation coefficient of 0.340 for active compounds and −0.107 for inactive
compounds (p < 0.05). No obvious correlation was observed for other three enzyme datasets
(Table S14).

Nevertheless, we found a difference in complexity when only activity is considered.
There was a statistically significant difference between active and inactive compounds in
InhA and FabI inhibitors, with active compounds exhibiting higher complexity. However, it
is noteworthy that this observed increase in complexity could be related to the development
pathway that compounds take in research projects. As compounds are identified, they
are often further developed, leading to a focus on synthesizing larger and more complex
molecules. Consequently, the observed increase in complexity during a research project can
be attributed to the preference for synthesizing larger compounds rather than the intrinsic
complexity of the synthetic pathway itself [38].

Nonetheless, we also observed differences in complexity between inhibitors in all four
datasets, although the differences were small. We found that InhA (BertzCT = 1004) and



Antibiotics 2024, 13, 252 11 of 27

FabK (BertzCT = 1090) datasets had a slightly higher complexity than the FabI dataset
(BertzCT = 977) and a much higher complexity than the FabV dataset (BertzCT = 660).
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2.5.5. Analysis of Clusters

To better understand and quantify the molecular diversity within each enzyme dataset
and identify significant structural classes associated with their activity, we performed
clustering using ECFP4 molecular fingerprints that capture more detailed molecular sub-
structures than MACCS fingerprints. A threshold of 0.75 for Tanimoto similarity was
manually adjusted to allow spontaneous generation of clusters with an optimal balance
between too small and too cohesive clusters (high intra-cluster similarity) and too large and
diverse clusters (low intra-cluster similarity). The total number of clusters in each dataset
served as a metric for chemical diversity.

This analysis identified a total of 226 clusters for all datasets together, a considerable
number considering the 1412 compounds. This result also highlights the diversity within
particularly large clusters, such as InhA and FabI. Most of these clusters were small,
comprising only one or two compounds. In addition, about 60% of the clusters in the InhA,
FabK and FabI datasets consisted of fewer than 10 compounds. The main statistical data
for all four datasets, with particular emphasis on the five largest clusters of each dataset,
are shown in Table 3, while their structures are shown in Figure 11.

The number of clusters in each dataset shows a correlation with the respective dataset
size. InhA, which was the largest dataset, had 77 clusters, while FabV, which was the
smallest, defined only one cluster. When comparing the number of compounds that
contained only active or inactive compounds, a clear trend emerged: the number of
completely inactive clusters clearly exceeded the number of completely active clusters. Only
9% of the compounds in the InhA and FabI datasets were exclusively active, a significantly
lower percentage than the 69% in InhA and 31% in FabI, which were exclusively inactive.
Remarkably, these inactive clusters tended to be small, with over 60% containing only
one compound per cluster. Similar to the t-SNE analysis, it is evident that the diversity of



Antibiotics 2024, 13, 252 12 of 27

compounds categorized as inactive or of low activity was much greater compared to the
active compounds.

Table 3. Statistical analysis of the five largest clusters for InhA, FabI, FabV, and FabK.

Enzyme Cluster IntSim a %Cmp b nCl c nCl/nCmp d nCmp e %Actives nCmpE f Q3 g pIC50
h

FabI 1 0.30 46.7

22

208 77.4

445

6.6 9.4
FabI 2 0.43 13.3 59 72.9 6.9 8.1
FabI 3 0.41 9.0 0.049 40 47.5 5.8 6.9
FabI 4 0.11 7.2 32 75 6.7 6.7
FabI 5 0.29 4.7 21 33.3 5.9 6.6

FabK 1 0.30 88.2
3

45 53.3
51

7.6 8.6
FabK 2 0.08 9.8 0.059 5 20 5.1 5.3

FabV 1 0.40 100 1 0.067 15 33.3 15 6.4 7.0

InhA 1 0.28 16.4

77

162 38.9

990

6.2 7.2
InhA 2 0.52 11.5 114 36.0 7.0 9.7
InhA 3 0.48 7.4 0.078 73 45.2 6.5 7.7
InhA 4 0,20 6.9 68 95.6 8.4 8.7
InhA 5 0.47 6.6 65 10.8 5.1 6.0

a IntSim—Intracluster similarity, b %Cmp—Proportion of compounds in an enzyme dataset, c nCl—Number
of clusters, d nCl/nCmp—Number of clusters divided by the number of compounds, e nCmp—Number of
compounds in a cluster, f nCmpE—Number of compounds in an enzyme dataset, g Q3—Third quartile of pIC50
values in a cluster, h pIC50—highest pIC50 value in a dataset.
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It is important to emphasize that the definition of inactivity was stringent, as most com-
pounds in these inactive clusters had pIC50 values above 5.5. Nonetheless, the significant
number of inactive clusters underscores the thorough investigation of structure–activity
relationships (SAR) in the InhA and FabI datasets, which led to the identification of com-
pounds with nanomolar activities as well as those with weak or no activity.

For a comprehensive evaluation of structural diversity within each dataset, the number
of clusters was standardized by the total number of compounds in each dataset. Based on
this criterion, the FabI dataset appears to be less diverse than the InhA dataset. Further
scrutiny of the physicochemical properties of the most populated clusters, as depicted in
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Table S15, revealed that the characteristics of most clusters aligned with the observations
made on the combined dataset. The majority of compounds demonstrated lipophilicity
between 3 and 6 and a molecular weight ranging from 300 to 550 (Table S15). However,
an exception was observed in cluster 4 of the InhA dataset, where pyrrolidine-based
derivatives displayed a higher average molecular weight (Mw 555), a lower average
lipophilicity (logP 1.3), and a higher number of hydrogen bond acceptors (HBA 7.4).

Examination of the clusters with the highest number of compounds reveals the de-
velopment trends observed in both academic and industrial settings over the last two
decades. Despite comprehensive reviews of inhibitors for all four enzymes over the years,
it is considered crucial to quickly highlight certain historical contexts and fundamental
properties of the most important classes.

The predominant cluster in all four datasets was cluster 1 of the FabI dataset which
included mainly acrylamides. This cluster comprised 208 compounds, accounting for 47%
of the total FabI dataset, with a mean intra-cluster similarity of 0.3. Remarkably, 77% of
the molecules in this cluster were active (Table 3). While the central pyridine acrylamide
structure is common to all compounds in this cluster, their diversity arises from the different
substituents on both sides of the molecules. In addition, it includes some of the most potent
compounds among all FabI inhibitors, with activities ranging from above 5.4 log units and
pIC50 to picomolar activity.

The identification of acrylamides as FabI inhibitors dates back to a high-throughput
screening (HTS) campaign initiated by SmithKline Beecham in the early 21st century. In
the following two decades, the development of these compounds was continued by sev-
eral companies, including SmithKline Beecham, Affinium Pharmaceuticals, Vitas Pharma
Research Private Limited (India), FAB Pharma, Janssen R&D, and Aurigen Discovery Tech-
nologies. Despite initial concerns about excessive patenting and a perceived lack of novelty
within this structural class, our analysis shows that this class is comparable to or even
more diverse than other classes of inhibitors when considering the similarities within a
cluster [6].

The second largest cluster, cluster 1 of InhA inhibitors, shows structures containing
oxopyrrolidine-3-carboxamide, piperidine carbonyl, and pyperazine carbonyl units. This
cluster comprises 162 compounds, accounting for 16% of the total InhA dataset (Table 3).
Approximately 39% of the molecules in cluster 1 exhibit activity and show a mean intra-
cluster similarity of 0.28. The diversity of these molecules is achieved by highly lipophilic
aromatic or carbocyclic substituents on both sides of the pyrrolidine ring. Their activi-
ties range from submicromolar to low micromolar concentrations and cover a range of
3.2 log units.

The third largest and particularly significant group comprises diaryl ethers identified
in cluster 2 of the InhA dataset, cluster 2 and 3 of the FabI dataset and cluster 1 of the FabV
dataset, totaling 114, 59, 40, and 15 compounds, respectively. Compared to other analyzed
clusters, these compound clusters show a high diversity, with the cluster similarity ranging
from 0.4 (FabV, cluster 1) to 0.52 (InhA, cluster 2). Triclosan serves as a prototype molecule
for these clusters, which was originally thought to exert antibacterial activity through
non-specific destruction of bacterial cell walls. In 2004, Sivaraman et al. [39] reported
that triclosan is a slow, tight-binding inhibitor of E. coli and S. aureus FabI that binds to
the NADP product complex with a Ki of 7 pM. Despite its modest antibacterial activity
(MIC = 12.5 µg/mL) and unfavorable properties such as low water solubility, ecotoxicity,
and potential disruption of thyroid and sex hormone homeostasis [20], it is still considered
a viable lead compound for further development.

Analogs of triclosan synthesized in recent decades exhibit enhanced inhibitory activity
and may be present in the analyzed clusters. The most potent compounds of this class
identified in the FabI and InhA datasets have shown sufficient minimum inhibitory con-
centrations (MIC) against strains resistant to triclosan. In quantitative structure–activity
relationships (QSAR), the lipophilicity of the alkyl chain was found to significantly in-
fluence activity. Compounds with increased activity against InhA are observed when
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lipophilicity is increased, with a C5 chain on the phenyl ring in particular proving most
effective. However, high lipophilicity poses a challenge for pharmacokinetics as the most
potent compounds have logP values above 5. Efforts have been made to introduce hy-
drophilic substituents, but unfortunately these have not been able to inhibit InhA in the
nanomolar range. However, a few inhibitors with a modified B-ring, in which phenyl was
replaced by pyridine, showed reduced logP and activity in the nanomolar range and were
well tolerated [40].

2.6. Matched Molecular Pairs (MMP)

One of the most popular methods for determining how specific structural changes
affect physicochemical or biological properties is MMP (Matched Molecular Pair) analysis.
MMP is defined as a pair of compounds that differ only at a single site and are characterized
by a specific substructure. A key feature of MMP is that the compounds in this pair
are linked by a well-defined transformation [41]. The strength of this method lies in its
simplicity and its ability to quickly predict differences in activity or property values rather
than determining exact values. MMP, which focuses on local transformations, is used to
predict the properties of compounds, recommend the preparation of the next compound,
and identify the changes with the greatest impact (activity cliffs) and the least impact
(bioisosteres) on activity [42].

Our analysis show that both core (number of cuts > 1) and end (number of cuts = 1)
transformations are prevalent in the conspicuous transformations in the InhA and FabI
datasets (Supplementary Materials, Figures S30 and S31). In particular, we found cases
where a single pair could include multiple transformation types, each specifying a different
context. This diversity, even if formally occurring only once, stems from simpler and more
frequently occurring transformations. As expected, the most common transformations
primarily resulted in minor structural changes (Supplementary Materials, Table S17). A
significant proportion involved substitutions between hydrophobic groups, such as the
exchange of a methyl group or a halogen atom with another halogen atom and vice versa.
This is in line with expectations, given the relatively hydrophobic nature of the binding
sites of all four enzymes [2]. In addition, CH2 groups were frequently inserted or removed
and ring substitution patterns were altered, which is particularly noticeable in the FabI
and InhA datasets. Most of these transformations involved functional groups within ring
systems. Interestingly, the effect of each transformation on activity varied depending on
the substitution pattern. For example, the consequences of the transformation of a methyl
substituent in one ring system were not necessarily repeated in another ring with a different
substitution pattern.

A notable observation when analyzing the results of the MMPs is the presence of
activity cliffs. This analysis can shed light on which types of transformations are more likely
to lead to a significant increase or decrease in activity. However, our results suggest that
the most common structural transformations rarely led to significant changes in activity, as
activity cliffs were rarely observed in these common transformations. Although all of these
transformations were found to be significant, the average activity gain per transformation
was less than 0.5 of ∆pIC50 in almost all cases. This indicates that most of the structural
changes of these inhibitors resulted in linear but small changes in activity.

We then examined the transformations that most frequently lead to activity cliffs.
To categorize the transformations based on their impact on activity, we assigned each
transformation to one of four categories based on the following criteria:

1. Activity cliff—At least one of the compounds in the MMP is active and the difference
in activity is at least 100 nM.

2. Soft cliff—At least one of the compounds in the MMP is active and the difference in
activity is less than 100 nM.

3. Similarly active—Both compounds in the MMP are active and the difference in activity
is less than 100 nM.
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4. Similarly inactive—Both compounds in the MMP are inactive and the difference in
activity is less than 100 nM.

The distribution of the individual categories within the enzyme dataset is shown in
Figure 12. Due to the considerable differences in the number of transformations within the
individual datasets, it is difficult to visualize them directly. Therefore, we converted the
counts into percentages of all transformations per enzyme. Of the total 7448 transformations,
only 576 were identified and categorized as activity cliffs, representing less than 8% of all
transformations. In particular, only 3% and 8% of activity cliffs were found in the FabI and
InhA datasets, respectively. This suggests that navigating the chemical space of InhA is
slightly more difficult than in FabI. Nevertheless, analyzing the occurrence of activity cliffs
is crucial for understanding which transformations are more likely to lead to undesired or
desired activity shifts.
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To obtain representative results regarding the transformations that lead more fre-
quently to activity cliffs, we analyzed only the cliffs that occurred in at least 10 pairs per
transformation and in at least 5% of the pairs per transformation. Under these conditions,
we identified 20, 2, and 252 transformations for the FabI, FabV, and InhA datasets, respec-
tively, that met these criteria. No transformations meeting these criteria were identified
in the FabK dataset. Representative transformations for the FabI and InhA datasets are
shown in Figure 13, and the transformations with the highest frequency of activity cliffs in
each dataset are listed in the Supplementary Materials (Table S18). The transformations
with the highest proportion of activity cliffs involve more significant structural changes
than those observed in the most frequent transformations. Changes in the substitution
pattern and the addition or deletion of a CH2 group were prevalent in all datasets. In
FabI, an activity cliff is often associated with the complete transformation of one carbo-
or heterocyclic cyclic system into another and the transformation of a polar functional
group (e.g., OH) into a more lipophilic group (e.g., OCH3). In InhA, activity cliffs were also
associated with the conversion of one cyclic system into another; however, in most cases,
one lipophilic carbocycle was transformed into another carbocycle. We also found that the
highest number of activity cliffs analyzed corresponded to compounds from clusters 1 and
5 of the FabI dataset and clusters 1, 2, 3, and 4 of the InhA dataset.
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Figure 13. Representative activity cliffs within each enzyme dataset. NA = Not active, IC50 is the
concentration of a compound, required to inhibit an enzyme’s activity by 50%.

While it is difficult to completely avoid compounds that exhibit activity cliffs in QSAR
analysis, certain scaffolds and fragments often show a predisposition for their occurrence.
Predicting which transformations are more likely to exhibit activity cliffs is challenging,
especially given the relatively low proportion of activity cliffs per transformation. Figure 14
shows the fragments that are more frequently associated with activity cliffs in ENR datasets.
The corresponding physicochemical properties can be found in the Supplementary Materials
(Table S19). We identified 574, 302, six, and three unique fragments for the InhA, FabI,
FabK, and FabV datasets, respectively. It is evident that the fragments most abundant in
FabI pairs contain a higher number of heterocyclic scaffolds than the fragments in InhA
transformations, resulting in a slightly higher median logP for the InhA dataset (2.0 vs.
1.8). As expected, only a limited number of fragments were identified for the FabK and
FabV datasets.
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While MMP analysis provides valuable insight into transformations that often lead to
non-linear changes in activity, it was a challenge to extract useful information for the FabK
and FabV datasets. Despite the diverse chemical space, there is still a significant number of
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compound pairs that are intriguing and warrant further investigation to understand ENR
inhibitory activity.

2.7. SHAP Analysis

SHapley Additive exPlanations (SHAP) was used to analyze the influence of functional
groups on the compounds in each dataset. SHAP provides ratings of the importance of
individual features, taking into account the interactions between features, based on the
Shapley values from cooperative game theory. A 307-bit substructure fingerprint was
generated using Padel 2.21 software [43], and Random Forest (RF) was selected for the
SHAP analysis, as it outperformed all other algorithms tested (Supplementary Materials,
Table S20, Figure S32). Due to poor performance in our model, FabV was excluded from
the analyses. Figure 15 shows the results, with the x-axis representing the SHAP values and
the y-axis representing the selected features. Each point in the graph represents a SHAP
value for a predictive feature, with red indicating a higher value and blue a lower value.
The distribution of the red and blue dots provides information about the overall influence
of the individual characteristics on the result of the model.

Antibiotics 2024, 13, x FOR PEER REVIEW  17  of  28 
 

A

12

A

O
NA

7

A

O
NNA

7

A

O

7

FabK
A

HN
A

N

1
A

FabV

2

A

H2N
2

InhA

A

51

A

Cl

23

A

Br

21

A

15

A

15

A

Cl

Cl

13

FabI

 

Figure 14. Most frequent fragments in transformation pairs. The numbers below each structure 

indicate the total number of fragments. 

While MMP analysis provides valuable insight into transformations that often lead 

to non‐linear changes in activity, it was a challenge to extract useful information for the 

FabK and FabV datasets. Despite  the diverse chemical space,  there  is still a significant 

number of compound pairs that are intriguing and warrant further investigation to un‐

derstand ENR inhibitory activity. 

2.7. SHAP Analysis 

SHapley Additive exPlanations (SHAP) was used to analyze the  influence of func‐

tional groups on the compounds in each dataset. SHAP provides ratings of the importance 

of individual features, taking into account the interactions between features, based on the 

Shapley values from cooperative game theory. A 307‐bit substructure fingerprint was gen‐

erated using Padel 2.21 software [43], and Random Forest (RF) was selected for the SHAP 

analysis, as it outperformed all other algorithms tested (Supplementary Materials, Table 

S20, Figure S32). Due  to poor performance  in our model, FabV was excluded  from  the 

analyses. Figure 15 shows the results, with the x‐axis representing the SHAP values and 

the y‐axis representing the selected features. Each point in the graph represents a SHAP 

value for a predictive feature, with red indicating a higher value and blue a lower value. 

The distribution of the red and blue dots provides information about the overall influence 

of the individual characteristics on the result of the model. 

 

Figure 15. Results of the SMOTE analysis. (a) FabI inhibitors, (b) FabK inhibitors, (c) InhA inhibitors. 

In the FabI dataset, our observations suggest that an increase in the number of Mi‐

chael receptors, alkene groups, and tertiary amide groups together with a decrease in the 

number of secondary carbon, secondary amide, basic N‐heterocyclic rings, and carbonic 

Figure 15. Results of the SMOTE analysis. (a) FabI inhibitors, (b) FabK inhibitors, (c) InhA inhibitors.

In the FabI dataset, our observations suggest that an increase in the number of Michael
receptors, alkene groups, and tertiary amide groups together with a decrease in the number
of secondary carbon, secondary amide, basic N-heterocyclic rings, and carbonic acid
derivatives contribute to an increased probability of activity in an RF model. Conversely, a
reduction in the number of these features leads to a lower probability of activity in FabI.
For FabK, our results suggest that increasing the number of aromatic groups, including S-
and N-heterocyclic systems, as well as the number of carboxylic acid derivatives such as
esters or amides and CONS bonds, increases the probability of activity in FabK within an
RF model. Furthermore, we find that increasing the number of basic N-heterocyclic groups
has a stronger effect on activity than increasing the number of non-basic N-heterocycles.

With respect to InhA, our results indicate that increasing the number of 1,3-tautomerizable
groups, secondary amides and aromatic rings while decreasing the number of basic N-
heterocycles, carboxylic acid derivatives and alkenes leads to an increased probability
of activity on InhA in an RF model. A reduction in the number of secondary carbons
also contributes to an increased probability of activity. In all datasets, most features have
SHAP values between −0.2 and 0.2, indicating that their influence on the overall prediction
is limited. This illustrates the complexity of our model, where predictions are highly
dependent on the intricate interactions between multiple traits.

Both the MMP and SHAP analyses revealed common transformations that are directed
by ligand–target interactions and emphasized the importance of specific functional groups,
particularly in the InhA and FabI datasets. These transformations, which include core and
end changes, reflect the dynamic nature of ligand binding and the structural plasticity of
binding sites. This is supported by crystal structures showing similar binding modes for
most inhibitors [44,45]. Remarkably, the most frequent transformations were primarily
substitutions between hydrophobic and electron-withdrawing groups, consistent with the
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hydrophobic nature of the enzyme binding sites [46]. Previous studies on triclosan and
its analogs emphasized the preference for small substituents on the B-ring to avoid steric
hindrances and unfavorable interactions within the active site, which is consistent with
our results. In addition, experimental studies on specific inhibitors, such as 5-chloro-2-
phenoxyphenol, have highlighted the importance of certain structural features, such as
methyl groups, in increasing binding affinity and influencing retention time in the active
site [47–51]. Increasing the polarity of both rings of triclosan, e.g., by replacing the B-ring
with isosteric N-heterocycles, resulted in decreased activity of pyridine analogs and almost
complete loss of activity of pyrimidine analogs. In addition, the introduction of polar
groups on the B-ring system, such as carboxylic acid, primary amide and tetrazole, led
to a significant decrease in activity. Similar trends were observed with other inhibitor
classes such as pyrrole carboxamides and acrylamide analogs, where lipophilic, electron-
withdrawing substituents in positions 3 and 5, preferably Cl, Br, or CF3, proved to be
particularly advantageous [48]. Nevertheless, some electronegative residues, such as the
hydroxyl group in triclosan, are crucial for the formation of hydrogen bonds with Tyr 158
hydroxyl, with some notable exceptions, such as thiazole inhibitors. This hydrogen bonding
network also extends to the hydroxyl group of NAD+ ribose, with the electronegative
group typically located in close proximity to a cyclic unsaturated or aromatic system that
interacts with the pyridine of a cofactor via stacking [11]. Given the dynamic nature of InhA
inhibition and its structural flexibility, it has been suggested that consideration of different
inhibitory pathways may be necessary for effective inhibition [44]. Integrating these
results from computational analysis with experimental data will provide a comprehensive
understanding of the dynamics of ligand–target interactions and thus inform rational drug
design strategies to develop new inhibitors with improved potency and selectivity.

3. Materials and Methods
3.1. Data Collection, Preprocessing, and Classification

A dataset of 3743 molecules was compiled from publicly available literature, ChEMBL [52],
BindingDB [53], and our database until April 2023. The literature data were manually
extracted by drawing each molecule in ChemDraw (version 22.0.0), and then the SMILES
codes were transferred into an Excel format along with the IC50 values. First, the data
from each database were prepared using the KNIME Analytics Platform 5.0 [54], using
a modified workflow derived from the TeachOpenCADD pipeline (https://hub.knime.
com/volkamerlab/space/TeachOpenCADD (accessed on 28 February 2024)). Data from
all four sources were then consolidated. Molecules for which no relevant data were
available (SMILES, enzymes) were excluded from further analysis. Duplicate values were
eliminated, leaving only entries with higher activity. In cases where IC50 data were missing
or indicated inactivity of the substance (activity of the inhibited enzyme greater than 80% or
inhibition less than 20%), an IC50 value of 100 µM was set. Furthermore, inhibitors specific
for Toxoplasma and Plasmodium were excluded, which corresponds to the focus of this
research on the inhibition of bacterial enzymes.

Finally, we converted the IC50 values into pIC50 values and categorized the molecules
as active or inactive based on a defined threshold. Compounds with a pIC50 value greater
than or equal to 5.5 were considered active inhibitors, while compounds with a pIC50 value
less than 5.5 were considered inactive inhibitors. The cut-off value for activity was set
between 5 and 6, which led us to choose an average value of 5.5. Finally, we obtained a
dataset of 1412 molecules (Supplementary Materials, Tables S1 and S2) with which we
performed additional analyses and data manipulations.

3.2. Calculation of Molecular Descriptors

Subsequently, RDKit descriptors were generated using the RDKit Descriptor Calcu-
lation node implemented in KNIME Analytics Platform 5.0 [54]. A total of 39 features
were generated, including enhanced/hybrid logP (SlogP), total polar surface area (TPSA),
average molar weight (AMW), number of rotatable bonds (NumRotatableBonds), number

https://hub.knime.com/volkamerlab/space/TeachOpenCADD
https://hub.knime.com/volkamerlab/space/TeachOpenCADD
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of hydrogen bond donors (NumHBD), number of hydrogen bond acceptors (NumHBA),
fraction of carbon atoms that are sp3 hybridized (FractionCSP3), and many others. The
BertzCT descriptor was calculated using Mordred, a descriptor-calculation software mod-
ule implemented in Python 3.7.4 [55]. Additionally, the substructure count fingerprint was
calculated using the PaDEL-descriptor software [43].

3.3. Lipinski’s Rule of Five, PAINS, and Brenk

The dataset was analyzed in KNIME Analytics Platform 5.0 [54], according to Lipin-
ski’s Rule of Five, and the number of Lipinski violations was calculated. Finally, the dataset
underwent analysis for unwanted substructures, including those classified as PAINS and
Brenk (Tables S9–S11).

3.4. Normal Distribution Testing

Before the features were compared between the two activity classes, a normality check
was carried out. Continuous features were tested for normality using the Kolmogorov–
Smirnov and D’Agostino–Pearson tests. The results were then adjusted using the Holm–
Bonferroni method (p < 0.05). Individually, BertzCT, fragment complexity (fragCpx), log S
by filter-it (FilterItLogS), apol (sum of atomic polarizabilities), Fraction of rotatable bonds—
excluding terminal bonds (RotBFrac), SlogP, TPSA, and average molecular weight (AMW)
were compared for each enzyme (both in active and inactive forms). A collective assay was
then performed for all active and all inactive forms [56].

It was found that none of the features tested for both the active and inactive datasets
individually, as well as for the enzymes as a whole, showed a normal distribution ac-
cording to the Kolmogorov–Smirnov test. However, certain descriptors were identified
as normally distributed using the D’Agostino–Pearson test (Table S3). It is important to
note that non-parametric tests are less powerful than parametric tests when analyzing
normally distributed data. This means that a larger sample size is required to reject the null
hypothesis in non-parametric tests compared to parametric tests. Given the small sample
size in some cases (e.g., FabK and FabV datasets), we treated all data as non-normally
distributed. Histograms can be found in the Supplementary Materials for further reference
(Figures S1–S10) [57].

3.5. Mann–Whitney U Rank Test

The Kruskal–Wallis H test was first used to test which features differed in all four
enzyme datasets [56]. Subsequently, samples that showed statistical differences (p < 0.05)
were subjected to additional tests to determine differences between individual samples
using the Mann–Whitney U test [57]. The p-values for the Mann–Whitney U-rank test
were calculated for each enzyme by comparing its active and inactive forms across various
molecular descriptors using Python scripts with the imported modules statsmodels and
scipy. The analysis also included the application of Holm–Bonferroni corrections [58].

3.6. Visualization Using t-SNE Analysis

To analyze differences between enzymes and their active and inactive compounds,
a multidimensional space was converted into 2D using t-SNE for visual clarity [59]. The
analysis, conducted with Python’s scikit-learn module [60] using fingerprints generated
with PaDEL [43], Modred [55], and RDKit [21], initially considered multiple fingerprints,
but ultimately, only the MACCS fingerprint was included in the research paper. This
decision was based on a thorough analysis that revealed MACCS provided the best visual
separation of data among the considered fingerprints.

3.7. Visualization Using t-SNE Analysis

To analyze the differences between enzymes and their active and inactive compounds,
a multidimensional space was converted to 2D using t-SNE to increase visual clarity.
Several fingerprints were initially considered in the analysis, which was performed with
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the scikit-learn module of Python using fingerprints created with PaDEL, Modred, and
RDKit, but ultimately only the MACCS fingerprint calculated with RDKit was included in
the research. This decision was based on a thorough analysis, which revealed that MACCS
offered the best visual separation of the data among the fingerprints considered [19].

3.8. Clustering Analysis

Clustering of datasets to create ‘structural families’ was performed using Python in a
Jupyter Notebook environment. First, SMILES representations of the compounds were used
to calculate ECFP4 molecular fingerprints. A distance matrix was then created to assess
the structural similarities between the compounds using Tanimoto similarity as a metric.
The Taylor–Butina clustering algorithm [61] was then applied to create clusters based on a
specific threshold. Different cut-off values for Tanimoto similarity were examined, ranging
from 0.1 to 0.9. The resulting clusters were visually examined to strike an optimal balance
between clusters that were too small and overly cohesive (high intracluster similarity) and
clusters that were too large and diverse (low intracluster similarity). After a comprehensive
visual inspection of the results, an optimal cutoff value of 0.75 was chosen, which struck a
balance between a sufficiently manageable number of clusters and a substantial number of
clusters with moderate to high intra-cluster similarity. Finally, the results were summarized
and systematically organized for further analysis, which was carried out KNIME Analytics
Platform 5.0 [54]. The number of unique clusters and the distribution of compounds within
these clusters were documented together with their respective biological activities.

3.8.1. Maximum Common Substructure (MCS)

To further analyze the clusters, the Maximum Common Substructure (MCS) of each
cluster was calculated in KNIME Analytics Platform 5.0 [54] using the RDKit MCS node.
RingMatchesRingOnly was set to True to ensure that only ring atoms were matched with
ring atoms when comparing different structures. In addition, the median of similarity
within a cluster was calculated, which represents the median of similarities between every
two compounds in a given cluster. Other parameters, such as the number of compounds
in each cluster, the number of active compounds in a cluster, and the third quartile of the
pIC50 values of the compounds in a cluster were also calculated.

Finally, the results were aggregated and systematically organized for further analysis.
This process included documenting the number of unique clusters as well as the distri-
bution of compounds within these clusters and their respective biological activities. This
comprehensive approach gave us a deep understanding of both the structural relationships
and the activity profiles of the compounds studied.

3.8.2. Analysis of Scaffolds

The analysis of chemical scaffolds is a fundamental tool widely used in medicinal
chemistry, cheminformatics, and chemogenomics. A scaffold can be defined as the central
structural framework common to a group of molecules [62]. Compounds derived from
bioactive scaffolds often exhibit pharmacological activity and utilize the same synthetic
pathways, making their analysis an essential step in drug discovery. In addition, they
play a crucial role in the identification of core structures that serve as a starting point
for further structural optimization, in the exploration of SAR, in the synthesis of new
compounds (scaffold hopping [32]), and in the generation of activity profiles representing
drug series [63]. In this study, Bemis–Murcko (BM) scaffolds [33] as implemented in RDKit
were used and analyzed in Python. These are defined as the core structure of a joint
consisting of rings and links [21]. The scaffolds were extracted from the compounds by
removing all substituents while retaining the ring systems and their connecting linkers.
Subsequently, each unique scaffold was coded with a unique number, which was used to
calculate the chemotype diversity.
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3.9. Diversity of Chemotypes

For each of the four enzyme datasets, we performed an analysis to determine the
number of unique chemotypes (N) and to identify chemotypes consisting of only one
compound, referred to as singletons (Nsing). BM scaffolds were first calculated for each
molecule and then several key metrics were calculated. These included the proportions
of chemotypes and singletons relative to the size of each individual dataset (M) and the
proportions of singletons relative to the total number of chemotypes across all four datasets
(N/M. Nsing/M. and Nsing/N).

Previous analyses of scaffold diversity have shown that cyclic system retrieval curves
(CRS) [20,64–67] are an effective tool for quantifying the scaffold diversity of chemical
libraries. To generate the CSR curves for each enzyme dataset, the number of unique
scaffold compounds was calculated and sorted according to their frequency of occurrence
in Python. The proportion of compounds was then plotted against the proportion of
chemotypes contained in these compounds. From these CSR curves, the following metric
was then determined: the AUC and the fraction of chemotypes required to find 50% of the
molecules (F50).

In contrast to the CSR curves, which provide information about the scaffold diversity
of all datasets, Shannon entropy (SE) is used to characterize the distribution (diversity) of
compounds among the n most populated chemotypes. An SSE value closer to 1 indicates
maximum scaffold diversity, while an SSE value closer to zero (0) indicates low scaffold
diversity. In this study, we analyzed different values of n, ranging from 5 to 20. More
detailed information on the calculation of SE and SSE can be found in references [64–67].

3.10. Molecule Similarity

Tanimoto coefficients (or Tanimoto similarities) were calculated for MACCS (nbits = 166) and
ECFP4 fingerprints (radius = 2, nbits = 2048) using Python 3.7.4 to measure the structural
similarities between the compounds in each dataset. Both MACCS and ECFP4 are binary
fingerprints representing molecular structure. The difference between them is that MACCS
encodes the presence or absence of certain substructures or features in a molecule, while
ECFP4 is a circular fingerprint that encodes information about the atomic and bonding
environments around each atom in the molecule.

Pairwise similarity matrices were calculated for each dataset, ranging from 0 (least
similar) to 1 (most similar). Compounds were ranked within each enzyme based on
mean similarity scores, and Cumulative Distribution Function (CDF) diagrams were gen-
erated [68]. These diagrams illustrate the similarity of chemical structures within and
between each enzyme group. The x-axis represents the pairwise similarity values, while
the y-axis represents the cumulative distribution function. Each enzyme is represented by
a separate line in the graph.

In addition, both intramolecular and intermolecular similarities were calculated, which
form the basis for creating a heat map of similarities. Various statistics, including mean,
median, standard deviation, maximum, minimum, and quartiles, were also calculated for
the pairwise similarities.

3.11. SHAP Analysis

Using Padel 2.21 software, a 307-bit substructure fingerprint was generated for each
compound in all four datasets, with each bit representing a corresponding number of
functional groups [43]. To avoid data leakage, the dataset was divided into training and
test sets by stratification in a 7:3 ratio. All subsequent data manipulations were carried
out exclusively on the training dataset. Invariant and highly correlated bits (Spearman
correlation coefficient > 0.7) were eliminated, resulting in a refined dataset with 78 bits.
It is important to emphasize that our main focus was on analyzing the importance of
features and not on developing a model for large-scale screening. Nevertheless, it was
crucial to obtain robust test results across different datasets. To overcome this challenge,
we performed strategic oversampling of the FabK and FabV classes during training using
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the Synthetic Minority Oversampling Technique (SMOTE) to improve the model’s abil-
ity to recognize patterns in these minority classes. In addition, various feature selection
techniques were used, including KBest, principal component analysis (PCA), Permutation
Feature Importance (PFI), Select from Model (Selmodel), and Recursive Feature Elimi-
nation (rfe). Each generated dataset was evaluated further with different classification
models, including Random Forest, XGBoost, Extra Trees, LightGBM, Decision Tree, Gradi-
ent Boosting, AdaBoost, K-Nearest Neighbors, Support Vector Classifier (SVC), and Linear
Discriminant Analysis (LDA). The optimization of the hyperparameters was performed
with GridSearchCV, whereby a nested cross-validation with the F1 macro was implemented
as an evaluation criterion. This metrics calculates the F1 score for each class and then
calculates the average of these scores, assigning the same weight to each class, regardless
of the number of instances in the class. For the inner cross-validation, five splits were used,
while 10 splits were used for the outer cross-validation. Normalization of the data was
performed exclusively with the MinMax scaler for SVC and LDA classifiers which required
normalization; otherwise, no normalization was performed.

The best performing classification model was then used to analyze Important features
to predict the activity of each dataset using SHAP (sHapley Additive exPlanations). SHAP
is a game-theoretic approach developed to explain the output of any machine learning
process [69]. Evaluation metrics such as accuracy, precision, and F1 macro were used
to evaluate the effectiveness of the model. Despite efforts to mitigate overfitting, slight
overfitting of the Random Forest model was observed. For example, the F1-macro cross-
validation score averaged 0.956 on the training set and 0.769 on the test set (Table S20).
Closer inspection revealed that the overfitting was primarily due to the poor performance
of the model on the small FabV dataset, which significantly affected the overall score, as
shown in Figures 15 and S32. With precision and recall values of 0.5 for the FabV test
dataset, our model was deemed unreliable for predictions on this dataset. Consequently,
this dataset was excluded from further analysis.

3.12. Matched Molecular Pairs (MMP)

Matched Molecular Pairs (MMP) is an approach that deals with the question of how
specific local chemical changes influence biological activity. It is used to predict the prop-
erties of compounds, recommend the next compound for synthesis, identify influential
changes (activity cliffs), and assess minimal effects (bioisosteres) on activity [70]. Our focus
was on the investigation of activity cliffs in four enzyme datasets.

To investigate this, we used the algorithm developed by Hussain and Rea [47] and
implemented it in KNIME Analytics Platform Version 5.0 [54] with Vernalis nodes. In
the initial phase, all compounds were fragmented using the MMP MoleculeFragment
node, which identifies the key-value pairs of the fragmented molecules for direct use in a
subsequent Fragments to MMPs node. Acyclic single bonds between two non-hydrogen
atoms, along with their two- or three-bond combinations (referred to as the number of
cuts), were deleted. The node allowed two cuts along a single bond, resulting in a single
bond value. Incoming explicit hydrogen atoms were removed before fragmentation, and
stereochemical considerations were not taken into account in this process. Pairs of similar
molecules (Tc > 0.56) differing by no more than 10 heavy atoms were identified. Each
pair was characterized by chemical transformations, considering only pairs with at least
four common transformations. For each pair, the difference in pIC50 changes for each
transformation. The obtained data was then further analyzed in Python 3.7.4.

4. Conclusions

In summary, our study provides a comprehensive investigation of small molecules
targeting ENR enzymes and offers crucial insights into structure–activity relationships,
physicochemical properties, and structural features. With a dataset comprising 1412 ENR
inhibitors, this research lays a solid foundation for rational drug design, particularly in
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the context of developing new antimicrobial agents that incorporate novel scaffolds and
chemical properties, with a particular focus on combating tuberculosis.

Using advanced cheminformatics tools, we have identified key physicochemical prop-
erties that influence bioactivity, such as lipophilicity, hydrogen bonding, and enzyme-
specific structural features. In particular, a detailed comparison between InhA and FabI
inhibitors revealed significant differences in lipophilicity, aromatic rings, and hydrogen
bonding, providing valuable information for tailored drug discovery strategies. However,
the FabK and FabV datasets showed limited diversity, highlighting the urgent need for
increased research efforts to explore new structural classes for these enzymes.

Our complexity analysis and clustering study revealed trends in drug development
pathways and showed a nuanced correlation between increased biological activity and
greater complexity. The clustering analysis revealed development trends over the last
two decades and highlighted the need for a strategic approach to drug development. In
addition, the study of matched molecule pairs (MMPs) revealed activity cliffs and showed
that frequent structural changes usually led to minor changes in activity.

The machine learning models and SHAP analysis revealed specific features that
influence the probability of activity of each enzyme. In the FabI dataset, an increased
number of Michael receptors, alkene groups and tertiary amide groups correlated with a
higher probability of activity, while a decrease in these features led to a lower probability. In
FabK, our results indicated that a specific increase in aromatic groups and certain chemical
bonds increased the probability of activity.

Looking ahead, our bioinformatic analysis of chemical space is very promising for
future ENR inhibitor discovery. The findings from the InhA and FabI datasets provide a
solid foundation for the development of novel inhibitors, while the limited analyses of the
FabK and FabV datasets emphasize the urgent need for diversified structural exploration.
As computational methods evolve, the integration of these tools will undoubtedly play
a crucial role in the development of novel ENR inhibitors with improved efficacy and
safety profiles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13030252/s1, Figures: Figure S1: Histogram of pIC50
values for all enzymes with a dashed threshold line at pIC50 = 5.5 on the x-axis. The total number
of compounds is 1413; Figure S2: Feature distribution in the entire dataset of active compounds.
Black graph represent calculated normal distribution; Figure S3: Feature distribution in the dataset
of inactive compounds. Black graph represent calculated normal distribution; Figure S4: Feature
distribution in the FabI dataset of active compounds. Black graph represent calculated normal
distribution; Figure S5: Feature distribution in the FabK dataset of active compounds. Black graph
represent calculated normal distribution; Figure S6: Feature distribution in the FabV dataset of active
compounds. Black graph represent calculated normal distribution; Figure S7: Feature distribution
in the InhA dataset of active compounds. Black graph represent calculated normal distribution;
Figure S8: Feature distribution in the FabI dataset of inactive compounds. Black graph represent
calculated normal distribution; Figure S9: Feature distribution in the FabK dataset of inactive
compounds. Black graph represent calculated normal distribution; Figure S10: Feature distribution
in the FabV dataset of inactive compounds. Black graph represent calculated normal distribution;
Figure S11: Feature distribution in the InhA dataset of inactive compounds. Black graph represent
calculated normal distribution; Figure S12: Heatmap of Mann–Whitney U test p-values: Comparisons
of the number of aromatic rings (NumAromaticRings) and the number of hydrogen bond accepting
groups (NumHBA) across all four enzyme datasets of active compounds; Figure S13: Heatmap of
Mann–Whitney U test p-values: Comparisons of the number of aromatic rings (NumAromaticRings)
and the hydrogen bond accepting groups (NumHBA) across all four enzyme datasets of active
compounds; Figure S14: Heatmap of Mann–Whitney U test p-values: Comparisons of the number of
rotatable bonds (NumRotatableBonds) and the number of stereocenters (NumStereocenters) across all
four enzyme datasets of active compounds; Figure S15: Heatmap of Mann–Whitney U test p-values:
Comparisons of the pIC50 values and radius across all four enzyme datasets of active compounds;
Figure S16: Heatmap of Mann–Whitney U test p-values: Comparisons of the fraction of rotatable
bonds, excluding terminal bonds (RotBFrac) and SlogP radius across all four enzyme datasets of
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active compounds; Figure S17: Heatmap of Mann–Whitney U test p-values: Comparisons of the
petitjean topological shape index (topoShape) and topological polar surface area (TPSA) across all
four enzyme datasets of active compounds; Figure S18: Heatmap of Mann–Whitney U test p-values:
Comparisons of the molar refractivity (AMR) and average molecular weight (AMW) across all four
enzyme datasets of active compounds; Figure S19: Heatmap of Mann–Whitney U test p-values:
Comparisons of the sum of the atomic polarizabilities (apol) and BertzCT across all four enzyme
datasets of active compounds; Figure S20: Heatmap of Mann–Whitney U test p-values: Comparisons
of the BPolDescriptor (bpol) and fraction of carbons that are sp3 (FCSP3) across all four enzyme
datasets of active compounds; Figure S21: Heatmap of Mann–Whitney U test p-values: Comparisons
of the FilterltLogS and longest aliphatic chain (nAtomLAC) across all four enzyme datasets of active
compounds; Figure S22: Heatmap of Mann–Whitney U test p-values: Comparisons of the number
of atoms in the largest pi system (nAtomP) and the number of aliphatic rings (NumAliphaticRings)
across all four enzyme datasets of active compounds; Figure S23: Heatmap of Mann–Whitney U test
p-values: Comparisons of the number of amide bonds (NumAmideBonds) across all four enzyme
datasets of active compounds; Figure S24: Temporal changes in physicochemical properties of InhA
inhibitors; Figure S25: Temporal changes in physicochemical properties of FabI inhibitors; Figure S26:
Temporal changes in physicochemical properties of FabK inhibitors; Figure S27: Temporal changes
in physicochemical properties of FabV inhibitors; Figure S28: Intra and inter-group similarity. The
diagonal in matrix depicts intra-library comparisons. i.e., the similarity between the compounds
in each enzyme. Dark red scores indicate larger similarity. while dark blue colors indicate small
similarity. Tanimoto similarity based on (A) MACCS keys (166-bit) fingerprints and (B) ECFP4 keys
fingerprints; Figure S29. Histogram of matched molecular pairs: distribution of significant and non-
significant transformations; Figure S30: Distribution of cut types across enzyme datasets; Figure S31:
Distribution of the number of pairs per transformation with significant effect across all enzyme
datasets; Figure S32: Confusion matrix for random forest classifier. Tables: Table S1. Summary
statistics of enzymes included in the study, categorized by source; Table S2. Summary statistics of
active enzymes by source; Table S3. Results of normality testing using Kolmogorov–Smirnov test.
The table presents p-values, where ‘_a’ denotes active and ‘_i’ denotes inactive; Table S4. Median
values for calculated selected features for all four datasets; Table S5. Mean values for calculated
selected features for all four datasets; Table S6. Standard deviation values for calculated selected
features for all four datasets; Table S7. Results of testing differences between active and inactive
compounds in each of the four datasets using Mann–Whitney U test. The table presents p-values
where ‘_a’ denotes active and ‘_i’ denotes inactive; Table S8. Statistics on Lipinski violations; Table S9.
Statistics on compounds classified as PAINS; Table S10. Statistics of compounds classified as Brenk;
Table S11. Combined table for compounds were classified as PAINS and Brenk at once. The total
number of compounds left alfer applying both filters is 746; Table S12. The most common unwanted
groups found in ENR inhibitors; Table S13. Pairwise intra-library Tanimoto similarity values for
four analyzed enzyme databases; Table S14. Correlation between pIC50 and BertzCT in actives and
inactives of each dataset; Table S15. Analysis of physicochemical properties in the five largest clusters
for InhA, FabI, FabV, and FabK, including NRB, HBD and HBA; Table S16. Number of pairs identified
by MMP analysis; Table S17. Most frequent MMP transformations; Table S18. Transformations with
highest proportion of activity cliffs. SD = Standard deviation; Table S19. Physicochemical properties
of fragments in activity cliffs; Table S20. Metrics for classification models and SHAP analysis with
special consideration of Random Forest (RF).
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18. Czub, N.; Pacławski, A.; Szlęk, J.; Mendyk, A. Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory

Assessment? A 5-HT1A Receptor Case. Pharmaceutics 2022, 14, 1415. [CrossRef] [PubMed]
19. Aniceto, N.; Bonifácio, V.D.B.; Guedes, R.C.; Martinho, N. Exploring the Chemical Space of Urease Inhibitors to Extract Meaningful

Trends and Drivers of Activity. J. Chem. Inf. Model. 2022, 62, 3535–3550. [CrossRef]
20. Victoria-Muñoz, F.; Sánchez-Cruz, N.; Medina-Franco, J.L.; Lopez-Vallejo, F. Cheminformatics Analysis of Molecular Datasets of

Transcription Factors Associated with Quorum Sensing in Pseudomonas aeruginosa. RSC Adv. 2022, 12, 6783–6790. [CrossRef]
21. Landrum, G. RDKit: Open-Source Cheminformatics; 2006. [CrossRef]
22. Meanwell, N.A. Improving Drug Design: An Update on Recent Applications of Efficiency Metrics, Strategies for Replacing

Problematic Elements, and Compounds in Nontraditional Drug Space. Chem. Res. Toxicol. 2016, 29, 564–616. [CrossRef]
23. Lipinski, C.A. Drug-like Properties and the Causes of Poor Solubility and Poor Permeability. J. Pharmacol. Toxicol. Methods 2000,

44, 235–249. [CrossRef]
24. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and

Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [CrossRef]
25. Liu, R.; Tsong, Y. (Eds.) Pharmaceutical Statistics: MBSW 39, Muncie, IN, USA, 16–18 May 2016; Springer: Cham, Switzerland, 2016.
26. Zhang, M.-Q.; Wilkinson, B. Drug Discovery beyond the “Rule-of-Five”. Curr. Opin. Biotechnol. 2007, 18, 478–488. [CrossRef]

[PubMed]
27. O’Shea, R.; Moser, H.E. Physicochemical Properties of Antibacterial Compounds: Implications for Drug Discovery. J. Med. Chem.

2008, 51, 2871–2878. [CrossRef] [PubMed]
28. Neidle, S. Design Principles for Quadruplex-Binding Small Molecules. In Therapeutic Applications of Quadruplex Nucleic Acids;

Elsevier: Amsterdam, The Netherlands, 2012; pp. 151–174; ISBN 978-0-12-375138-6.

https://www.cdc.gov/tb/topic/drtb/default.htm
https://doi.org/10.1016/j.ejmech.2020.112757
https://www.ncbi.nlm.nih.gov/pubmed/32883635
https://doi.org/10.1038/nature07772
https://www.ncbi.nlm.nih.gov/pubmed/19262672
https://doi.org/10.1093/jac/dkt045
https://www.ncbi.nlm.nih.gov/pubmed/23429643
https://doi.org/10.1042/BJ20050832
https://www.ncbi.nlm.nih.gov/pubmed/16225460
https://doi.org/10.1080/13543776.2016.1211112
https://www.ncbi.nlm.nih.gov/pubmed/27399249
https://doi.org/10.1007/s00018-009-8704-7
https://www.ncbi.nlm.nih.gov/pubmed/19151923
https://doi.org/10.1093/jac/dkp058
https://www.ncbi.nlm.nih.gov/pubmed/19282328
https://doi.org/10.1021/bi0008940
https://doi.org/10.1016/j.drudis.2016.09.009
https://doi.org/10.3109/14756366.2014.959512
https://doi.org/10.1155/2013/795178
https://doi.org/10.2478/v10296-012-0002-3
https://doi.org/10.1021/cc0000388
https://www.ncbi.nlm.nih.gov/pubmed/11300855
https://doi.org/10.2174/1568026617666161116143440
https://www.ncbi.nlm.nih.gov/pubmed/27848897
https://doi.org/10.7717/peerj.1958
https://www.ncbi.nlm.nih.gov/pubmed/27114890
https://doi.org/10.3390/pharmaceutics14071415
https://www.ncbi.nlm.nih.gov/pubmed/35890310
https://doi.org/10.1021/acs.jcim.2c00150
https://doi.org/10.1039/D1RA08352J
https://doi.org/10.5281/zenodo.10793672
https://doi.org/10.1021/acs.chemrestox.6b00043
https://doi.org/10.1016/S1056-8719(00)00107-6
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1016/j.copbio.2007.10.005
https://www.ncbi.nlm.nih.gov/pubmed/18035532
https://doi.org/10.1021/jm700967e
https://www.ncbi.nlm.nih.gov/pubmed/18260614


Antibiotics 2024, 13, 252 26 of 27

29. Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations. ACS
Chem. Biol. 2018, 13, 36–44. [CrossRef] [PubMed]

30. Capuzzi, S.J.; Muratov, E.N.; Tropsha, A. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference
CompoundS. J. Chem. Inf. Model. 2017, 57, 417–427. [CrossRef] [PubMed]

31. Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons Learnt from Assembling Screening
Libraries for Drug Discovery for Neglected Diseases. ChemMedChem 2008, 3, 435–444. [CrossRef] [PubMed]

32. Brown, N. Bioisosteres and Scaffold Hopping in Medicinal Chemistry. Mol. Inform. 2014, 33, 458–462. [CrossRef]
33. Bemis, G.W.; Murcko, M.A. The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887–2893.

[CrossRef]
34. González-Medina, M.; Prieto-Martínez, F.D.; Owen, J.R.; Medina-Franco, J.L. Consensus Diversity Plots: A Global Diversity

Analysis of Chemical Libraries. J. Cheminform. 2016, 8, 63. [CrossRef]
35. Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J.

Med. Chem. 2009, 52, 6752–6756. [CrossRef]
36. Méndez-Lucio, O.; Medina-Franco, J.L. The Many Roles of Molecular Complexity in Drug Discovery. Drug Discov. Today 2017, 22,

120–126. [CrossRef] [PubMed]
37. Chen, T.; Shu, X.; Zhou, H.; Beckford, F.A.; Misir, M. Algorithm Selection for Protein–Ligand Docking: Strategies and Analysis on

ACE. Sci. Rep. 2023, 13, 8219. [CrossRef] [PubMed]
38. Curatolo, W. Physical Chemical Properties of Oral Drug Candidates in the Discovery and Exploratory Development Settings.

Pharm. Sci. Technol. Today 1998, 1, 387–393. [CrossRef]
39. Sivaraman, S.; Sullivan, T.J.; Johnson, F.; Novichenok, P.; Cui, G.; Simmerling, C.; Tonge, P.J. Inhibition of the Bacterial Enoyl

Reductase FabI by Triclosan: A Structure-Reactivity Analysis of FabI Inhibition by Triclosan Analogues. J. Med. Chem. 2004, 47,
509–518. [CrossRef] [PubMed]

40. Armstrong, T.; Lamont, M.; Lanne, A.; Alderwick, L.J.; Thomas, N.R. Inhibition of Mycobacterium tuberculosis InhA: Design,
Synthesis and Evaluation of New Di-Triclosan Derivatives. Bioorg. Med. Chem. 2020, 28, 115744. [CrossRef] [PubMed]

41. Wassermann, A.M.; Bajorath, J. Chemical Substitutions That Introduce Activity Cliffs Across Different Compound Classes and
Biological Targets. J. Chem. Inf. Model. 2010, 50, 1248–1256. [CrossRef] [PubMed]

42. Sushko, Y.; Novotarskyi, S.; Körner, R.; Vogt, J.; Abdelaziz, A.; Tetko, I.V. Prediction-Driven Matched Molecular Pairs to Interpret
QSARs and Aid the Molecular Optimization Process. J. Cheminform. 2014, 6, 48. [CrossRef]

43. He, Y.; Liew, C.Y.; Sharma, N.; Woo, S.K.; Chau, Y.T.; Yap, C.W. PaDEL-DDPredictor: Open-source Software for PD-PK-T
Prediction. J. Comput. Chem. 2013, 34, 604–610. [CrossRef]

44. Chollet, A.; Maveyraud, L.; Lherbet, C.; Bernardes-Genisson, V. An Overview on Crystal Structures of InhA Protein: Apo-Form,
in Complex with Its Natural Ligands and Inhibitors. Eur. J. Med. Chem. 2018, 146, 318–343. [CrossRef]

45. Pan, P.; Tonge, P.J. Targeting InhA, the FASII Enoyl-ACP Reductase: SAR Studies on Novel Inhibitor Scaffolds. Curr. Top. Med.
Chem. 2012, 12, 672–693. [CrossRef]

46. Sullivan, T.; am Ende, C.; Truglio, J.; Johnson, F.; Lenaerts, A.; Slayden, R.; Kisker, C.; Tonge, P. High Affinity InhA Inhibitors with
Activity against Drug-Resistant Strains of Mycobacterium tuberculosis. ACS Chem. Biol. 2006, 1, 43–53. [CrossRef] [PubMed]

47. Hussain, J.; Rea, C. Computationally Efficient Algorithm to Identify Matched Molecular Pairs (MMPs) in Large Datasets. J. Chem.
Inf. Model. 2010, 50, 339–348. [CrossRef] [PubMed]

48. He, X.; Alian, A.; Stroud, R.; Ortiz de Montellano, P.R. Pyrrolidine Carboxamides as a Novel Class of Inhibitors of Enoyl Acyl
Carrier Protein Reductase from Mycobacterium tuberculosis. J. Med. Chem. 2006, 49, 6308–6323. [CrossRef] [PubMed]

49. Hea, X.; Alian, A.; de Montellano, P. Inhibition of the Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase InhA by
Arylamides. Bioorg. Med. Chem. 2007, 15, 6649–6658. [CrossRef] [PubMed]

50. Seefeld, M.A.; Miller, W.H.; Newlander, K.A.; Burgess, W.J.; DeWolf, W.E.; Elkins, P.A.; Head, M.S.; Jakas, D.R.; Janson, C.A.;
Keller, P.M.; et al. Indole Naphthyridinones as Inhibitors of Bacterial Enoyl-ACP Reductases FabI and FabK. J. Med. Chem. 2003,
46, 1627–1635. [CrossRef] [PubMed]

51. Kitagawa, H.; Ozawa, T.; Takahata, S.; Iida, M.; Saito, J.; Yamada, M. Phenylimidazole Derivatives of 4-Pyridone as Dual Inhibitors
of Bacterial Enoyl-Acyl Carrier Protein Reductases FabI and FabK. J. Med. Chem. 2007, 50, 4710–4720. [CrossRef] [PubMed]

52. Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; et al. The
ChEMBL Bioactivity Database: An Update. Nucleic Acids Res. 2014, 42, D1083–D1090. [CrossRef] [PubMed]

53. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A Web-Accessible Database of Experimentally Determined
Protein-Ligand Binding Affinities. Nucleic Acids Res. 2007, 35, D198–D201. [CrossRef]

54. Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The
Konstanz Information Miner. In Data Analysis, Machine Learning and Applications; Preisach, C., Burkhardt, H., Schmidt-Thieme, L.,
Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 319–326. [CrossRef]

55. Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10, 4.
[CrossRef]

56. Bolton, S.; Bon, C. Statistical Hypothesis Testing. In Pharmaceutical Statistics: Practical and Clinical Applications; Drugs and the
Pharmaceutical Sciences; M. Dekker: New York, NY, USA, 2004; pp. 104–139; ISBN 978-0-8247-4695-7.

https://doi.org/10.1021/acschembio.7b00903
https://www.ncbi.nlm.nih.gov/pubmed/29202222
https://doi.org/10.1021/acs.jcim.6b00465
https://www.ncbi.nlm.nih.gov/pubmed/28165734
https://doi.org/10.1002/cmdc.200700139
https://www.ncbi.nlm.nih.gov/pubmed/18064617
https://doi.org/10.1002/minf.201400037
https://doi.org/10.1021/jm9602928
https://doi.org/10.1186/s13321-016-0176-9
https://doi.org/10.1021/jm901241e
https://doi.org/10.1016/j.drudis.2016.08.009
https://www.ncbi.nlm.nih.gov/pubmed/27575998
https://doi.org/10.1038/s41598-023-35132-5
https://www.ncbi.nlm.nih.gov/pubmed/37217655
https://doi.org/10.1016/S1461-5347(98)00097-2
https://doi.org/10.1021/jm030182i
https://www.ncbi.nlm.nih.gov/pubmed/14736233
https://doi.org/10.1016/j.bmc.2020.115744
https://www.ncbi.nlm.nih.gov/pubmed/33007556
https://doi.org/10.1021/ci1001845
https://www.ncbi.nlm.nih.gov/pubmed/20608746
https://doi.org/10.1186/s13321-014-0048-0
https://doi.org/10.1002/jcc.23173
https://doi.org/10.1016/j.ejmech.2018.01.047
https://doi.org/10.2174/156802612799984535
https://doi.org/10.1021/cb0500042
https://www.ncbi.nlm.nih.gov/pubmed/17163639
https://doi.org/10.1021/ci900450m
https://www.ncbi.nlm.nih.gov/pubmed/20121045
https://doi.org/10.1021/jm060715y
https://www.ncbi.nlm.nih.gov/pubmed/17034137
https://doi.org/10.1016/j.bmc.2007.08.013
https://www.ncbi.nlm.nih.gov/pubmed/17723305
https://doi.org/10.1021/jm0204035
https://www.ncbi.nlm.nih.gov/pubmed/12699381
https://doi.org/10.1021/jm0705354
https://www.ncbi.nlm.nih.gov/pubmed/17713898
https://doi.org/10.1093/nar/gkt1031
https://www.ncbi.nlm.nih.gov/pubmed/24214965
https://doi.org/10.1093/nar/gkl999
https://doi.org/10.1007/978-3-540-78246-9_38
https://doi.org/10.1186/s13321-018-0258-y


Antibiotics 2024, 13, 252 27 of 27

57. Kitchen, C.M.R. Nonparametric versus Parametric Tests of Location in Biomedical Research. Am. J. Ophthalmol. 2009, 147, 571–572.
[CrossRef]

58. Nonparametric Tests. Available online: https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_nonparametric/bs704
_nonparametric_print.html (accessed on 18 September 2023).

59. Hinton, G.E.; Roweis, S. Stochastic Neighbor Embedding. In Advances in Neural Information Processing Systems 15 (NIPS 2002);
MIT Press: Cambridge, MA, USA, 2002; Volume 15.

60. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

61. Butina, D. Unsupervised Data Base Clustering Based on Daylight’s Fingerprint and Tanimoto Similarity: A Fast and Automated
Way to Cluster Small and Large Datasets. J. Chem. Inf. Comput. Sci. 1999, 39, 747–750. [CrossRef]

62. Hu, Y.; Stumpfe, D.; Bajorath, J. Lessons Learned from Molecular Scaffold Analysis. J. Chem. Inf. Model. 2011, 51, 1742–1753.
[CrossRef] [PubMed]

63. Müller, G. Medicinal Chemistry of Target Family-Directed Masterkeys. Drug Discov. Today 2003, 8, 681–691. [CrossRef] [PubMed]
64. Medina-Franco, J.L.; Martínez-Mayorga, K.; Bender, A.; Scior, T. Scaffold Diversity Analysis of Compound Datasets Using an

Entropy-Based Measure. QSAR Comb. Sci. 2009, 28, 1551–1560. [CrossRef]
65. González-Medina, M.; Owen, J.R.; El-Elimat, T.; Pearce, C.J.; Oberlies, N.H.; Figueroa, M.; Medina-Franco, J.L. Scaffold Diversity

of Fungal Metabolites. Front. Pharmacol. 2017, 8, 180. [CrossRef] [PubMed]
66. Vivek-Ananth, R.P.; Sahoo, A.K.; Baskaran, S.P.; Samal, A. Scaffold and Structural Diversity of the Secondary Metabolite Space of

Medicinal Fungi. ACS Omega 2023, 8, 3102–3113. [CrossRef]
67. Olmedo, D.A.; González-Medina, M.; Gupta, M.P.; Medina-Franco, J.L. Cheminformatic Characterization of Natural Products

from Panama. Mol. Divers. 2017, 21, 779–789. [CrossRef]
68. Deisenroth, M.P. Mathematics for Machine Learning, 1st ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA,

2020; ISBN 978-1-108-45514-5.
69. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local

Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef]
70. Yang, Z.; Shi, S.; Fu, L.; Lu, A.; Hou, T.; Cao, D. Matched Molecular Pair Analysis in Drug Discovery: Methods and Recent

Applications. J. Med. Chem. 2023, 66, 4361–4377. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ajo.2008.06.031
https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_nonparametric/bs704_nonparametric_print.html
https://sphweb.bumc.bu.edu/otlt/mph-modules/bs/bs704_nonparametric/bs704_nonparametric_print.html
https://doi.org/10.1021/ci9803381
https://doi.org/10.1021/ci200179y
https://www.ncbi.nlm.nih.gov/pubmed/21755989
https://doi.org/10.1016/S1359-6446(03)02781-8
https://www.ncbi.nlm.nih.gov/pubmed/12927511
https://doi.org/10.1002/qsar.200960069
https://doi.org/10.3389/fphar.2017.00180
https://www.ncbi.nlm.nih.gov/pubmed/28420994
https://doi.org/10.1021/acsomega.2c06428
https://doi.org/10.1007/s11030-017-9781-4
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1021/acs.jmedchem.2c01787

	Introduction 
	Results and Discussion 
	Data Collection, Preprocessing, and Classification 
	Physicochemical Properties 
	Lipinski’s Rule of Five 
	PAINS and Brenk Filters 
	Structural Diversity 
	Chemotype Diversity 
	Molecular Similarity 
	t-SNE Analysis 
	Complexity of Datasets 
	Analysis of Clusters 

	Matched Molecular Pairs (MMP) 
	SHAP Analysis 

	Materials and Methods 
	Data Collection, Preprocessing, and Classification 
	Calculation of Molecular Descriptors 
	Lipinski’s Rule of Five, PAINS, and Brenk 
	Normal Distribution Testing 
	Mann–Whitney U Rank Test 
	Visualization Using t-SNE Analysis 
	Visualization Using t-SNE Analysis 
	Clustering Analysis 
	Maximum Common Substructure (MCS) 
	Analysis of Scaffolds 

	Diversity of Chemotypes 
	Molecule Similarity 
	SHAP Analysis 
	Matched Molecular Pairs (MMP) 

	Conclusions 
	References

