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Abstract: Coagulase-negative staphylococci (CoNS) and mammaliicocci are opportunistic human
and animal pathogens, often resistant to multiple antimicrobials, including methicillin. Methicillin-
resistant CoNS (MRCoNS) have traditionally been linked to hospitals and healthcare facilities, where
they are significant contributors to nosocomial infections. However, screenings of non-hospital envi-
ronments have linked MRCoNS and methicillin-resistant mammaliicocci (MRM) to other ecological
niches. The aim of this study was to explore the home environment as a reservoir for MRCoNS
and MRM. A total of 33 households, including households with a dog with a methicillin-resistant
staphylococcal infection, households with healthy dogs or cats and households without pets, were
screened for MRCoNS and MRM by sampling one human, one pet (if present) and the environment.
Samples were analyzed by a selective culture-based method, and bacterial species were identified by
MALDI-TOF MS and tested for antibiotic susceptibility by the agar disk diffusion method. Following
whole-genome sequencing, a large diversity of SCCmec elements and sequence types was revealed,
which did not indicate any clonal dissemination of specific strains. Virulome and mobilome analy-
ses indicated a high degree of species specificity. Altogether, this study documents that the home
environment is a reservoir for a variety of MRCoNS and MRM regardless of the type of household.

Keywords: methicillin resistance; antimicrobial-resistant coagulase-negative staphylococci;
mammaliicocci; virulence; mobilome; home environment; pets

1. Introduction

Coagulase-negative staphylococci (CoNS) and Mammaliicoccus spp. (formerly known
as the Staphylococcus sciuri group) are a heterogeneous group of skin and mucous membrane
commensals and are also opportunistic pathogens responsible for various infections in
humans and animals [1,2]. They are considered to have a lower pathogenic potential than
the more virulent Staphylococcus aureus and Staphylococcus pseudintermedius. Still, CoNS
cause a substantial number of infections in immunocompromised as well as in otherwise
healthy patients [3]. Staphylococcus epidermidis, Staphylococcus hominis and Staphylococcus
haemolyticus are significant contributors to septicemia in neonates, while Staphylococcus
saprophyticus is one of the most common causative agents in urinary tract infections [4–6].

In addition to their opportunistic pathogenic potential, CoNS and mammaliicocci are
thought to be important reservoirs for antimicrobial resistance genes (ARGs), including the
mecA gene responsible for methicillin resistance, and mobile genetic elements associated
with ARGs [1,7]. Thus, the potential for horizontal gene transfer of these genes to more
pathogenic bacteria, such as S. aureus, is present.
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As opposed to human and animal infections caused by either methicillin-resistant
S. aureus (MRSA) or methicillin-resistant S. pseudintermedius (MRSP), methicillin-resistant
MRCoNS infections are not monitored in Norway. Hence, the knowledge of the occurrence
of MRCoNS is largely unknown. Based on reports of high rates of MRCoNS in cases of
neonatal septicemia and MRCoNS-carrying health care personnel, we can assume that
Norwegian healthcare facilities make up important reservoirs for MRCoNS [6,8]. However,
non-hospital environments may also serve as reservoirs for these bacteria [9]. High rates
of MRCoNS have been reported in public transportation systems and humans without
previous exposure to health care systems [10,11]. In a previous study on the transmission of
MR Staphylococcus spp. (MRS) from infected dogs to their owners, we found several species
of MRCoNS and MR Mammaliicoccus spp. (MRM) in the same home environments [12].
These findings led us to wonder if there was an association between the dogs’ infection
status and the existence of MRCoNS and MRM in their homes, or if MRCoNS was a
standard feature in all kinds of homes.

Thus, this study aims to gain more insight into the home environment’s role as a reser-
voir for MRCoNS by screening the environment, humans and pets in different households
for MR bacteria. Furthermore, we examine the distribution of MRCoNS and MRM by
identifying the species, sequence types and SCCmec elements in the home environment.
Finally, we screen the bacteria for virulence genes, ARGs and mobile genetic elements.

2. Results
2.1. Isolates

A total of 117 verified MRCoNS and MRM isolates constituted the sample material
for the occurrence analysis. Of these, 103 isolates were submitted for whole-genome
sequencing, of which 75 are presented in the resistome-, virulence- and SCCmec results.
Thirty-nine S. epidermidis, S. haemolyticus and S. hominis isolates were included in the in
silico MLST analysis, while 57 S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus
isolates are presented in the mobilome analysis.

2.2. Occurrence of MRCoNS and MRM

All but three households (30/33) tested positive for a minimum of one species of
MRCoNS or MRM (Table 1). The majority of the studied MRCoNS/MRM isolates were de-
tected in the home environments (n = 107/117). Overall, MR S. saprophyticus, S. haemolyticus,
S. hominis and S. epidermidis were the most prevalent species in the households. Addition-
ally, some species appeared to be more prevalent in specific households, as follows: MR
S. epidermidis (MRSE) in homes with infected dogs or healthy cats and MR S. hominis in
homes with infected and/or healthy dogs. Households with infected dogs had a higher
mean number of different species (3.13) compared to those with healthy pets (1.79) and
without pets (1.55). A one-way ANOVA revealed that there was a statistically significant
difference in the mean numbers of species between the household groups (F (2.30) = (3.487)
p = 0.04). The Tukey’s HSD test found that this difference was between the homes with
infected pets and those without pets (p = 0.03).
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Table 1. Overview of antimicrobial use (AM), hospital admission and location of methicillin-resistant coagulase-negative Staphylococcus spp. (MRCoNS) and
methicillin-resistant Mammaliicoccus spp. (MRM) in the 33 households. B = Bathroom; FB = Food bowl; FL = Floor; K = Kitchen; S = Sleeping place.

Status

H
ousehold

Pet AM Treatment
(within Months)

Human AM
Treatment
(within 12
Months)

Hospital
Admission
(within 12
Months)

Work in
Health
Care

Home Environment

Human
Carriage

Pet
Carriage

S.arlettae

S.cohniissp.cohnii

S.epiderm
idis

M
.fleurettii

S.haem
olyticus

S.hom
inis

S.pasteuri

S.saprophyticus

M
.sciuri

M
.vitulinus

S.w
arneri

H
ousehold

w
ith

dogs
w

ith
infection

A Yes B, FB,
K FB, K B, FL,

K
B Pet B, FL K

C Cefalexin (0–3)
Polymyxin B (3–6) Unknown agent B, K FB, FL B FB, S S.

epidermidis
S.

epidermidis
D Cefalexin (0–3) Pet S B, FL,

K, S B FL, S S.
haemolyticus

E Amoxicillin (0–3)
Trim/sulfa (0–3) Pet B K FB FL

F
Amoxicillin 0–3)
Cefalexin (3–6)

Enrofloxacin (3–6)
Pet.

Human Yes K, S B B FB FL, K FL, S S.
epidermidis

S.
epidermidis

G Pet FL

H Amoxicillin (0–3)
Fusidic acid (6–12) K FB, K S.

epidermidis
S.

epidermidis

H
ousehold

w
ith

healthy
dogs

1 FL, S FB FL, K
2
3 Clindamycin Human S K S. warneri
4 Amoxicillin–clav (0–3) Penicillin S

5 Fusidic acid (0–3) Chloramphenicol Pet Yes B, FL,
S

6
7 Human B FB, FL

8 Erythromycin Human
B, FB,
FL, S,

K
B FL FB

H
ousehold

w
ith

heathy
cats

9 Pivemecillinam B, FL K B, FB,
S

10 Amoxicillin (0–3) FB FL
11 FB FB, S
12 FL
13 FL, S

14 B FL FL S.
haemolyticus

H
ousehold

w
ithoutpets

I Yes B
II Yes FL, K
III B K
IV Penicillin FL B, K
V FL
VI Yes B
VII Penicillin
VIII Human B, FL FL
IX Unknown agent Human K
X FL, K
XI Tetracycline K FL, K FL K B
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As shown in Table 1, six humans and three dogs carried MRCoNS. Two of these
dogs suffered from MRSP infections, in addition to carrying MRSE, while the third dog
(household H) had an MRSE infection. Their three owners tested positive for MRSE.
Two owners carried MR S. haemolyticus, one owner of an infected dog and one owner of a
healthy cat. One owner of a healthy dog carried MR S. warneri. None of the humans in the
household without pets tested positive for MRCoNS, while all but one of the eleven home
environments tested positive for at least one species of MRCoNS.

2.3. Antimicrobial Resistance

Forty-one of the seventy-five isolates were multi-resistant, expressing resistance to
three or more classes of antimicrobials. S. cohnii ssp. cohnii, S. hominis and S. haemolyticus
were the most resistant species, expressing resistance to means of 4.3, 3.7 and 3.6 classes,
respectively (Figure 1). Following resistance to anti-staphylococcal beta-lactams, resistance
to macrolides (erythromycin) and fusidanes (fusidic acid) was most frequently observed
(Table 2). Worth noticing is the large proportion of S. hominis isolates that expressed no
phenotypic resistance to cefoxitin and amoxicillin clavulanic acid. The resistome analy-
sis supported the phenotypical resistance profile, displaying a high prevalence of genes
conferring resistance to erythromycin and fusidic acid among the MRCoNS and MRM
(Table 3) and further confirmed that all sequenced MRCoNS and MRM possessed the
mecA gene. Despite the presence of mecA, we observed a variable phenotypic expression
of resistance to beta-lactams among the isolates (Table 2). This was particularly evident
for S. hominis, with 1/11 isolates being phenotypically susceptible to oxacillin and 5/11
isolates being susceptible to cefoxitin. Furthermore, we observed phenotypic susceptibility
to amoxicillin–clavulanic acid among six MRCoNS and MRM species: S. cohnii ssp. cohnii
(2/3), S. epidermidis (8/12), S. haemolyticus (2/16), S. hominis (6/11), S. warneri (1/5) and
M. vitulinus (n = 1). In addition to mecA, the beta-lactamase-encoding blaZ gene was present
in 16 of the 20 amoxicillin–clavulanic-acid-susceptible isolates.

Antibiotics 2024, 13, x FOR PEER REVIEW 5 of 17 
 

2.3. Antimicrobial Resistance 
Forty-one of the seventy-five isolates were multi-resistant, expressing resistance to 

three or more classes of antimicrobials. S. cohnii ssp. cohnii, S. hominis and S. haemolyticus 
were the most resistant species, expressing resistance to means of 4.3, 3.7 and 3.6 classes, 
respectively (Figure 1). Following resistance to anti-staphylococcal beta-lactams, re-
sistance to macrolides (erythromycin) and fusidanes (fusidic acid) was most frequently 
observed (Table 2). Worth noticing is the large proportion of S. hominis isolates that ex-
pressed no phenotypic resistance to cefoxitin and amoxicillin clavulanic acid. The resis-
tome analysis supported the phenotypical resistance profile, displaying a high prevalence 
of genes conferring resistance to erythromycin and fusidic acid among the MRCoNS and 
MRM (Table 3) and further confirmed that all sequenced MRCoNS and MRM possessed 
the mecA gene. Despite the presence of mecA, we observed a variable phenotypic expres-
sion of resistance to beta-lactams among the isolates (Table 2). This was particularly evi-
dent for S. hominis, with 1/11 isolates being phenotypically susceptible to oxacillin and 
5/11 isolates being susceptible to cefoxitin. Furthermore, we observed phenotypic suscep-
tibility to amoxicillin–clavulanic acid among six MRCoNS and MRM species: S. cohnii ssp. 
cohnii (2/3), S. epidermidis (8/12), S. haemolyticus (2/16), S. hominis (6/11), S. warneri (1/5) and 
M. vitulinus (n = 1). In addition to mecA, the beta-lactamase-encoding blaZ gene was pre-
sent in 16 of the 20 amoxicillin–clavulanic-acid-susceptible isolates.  

 
Figure 1. Number of phenotypic resistance classes in the MRCoNS and MRM isolates, n = 75. The 
crosses represent the mean number of antimicrobial resistance (AMR) classes, the horizontal lines 
represent the median number, the boxes represent the quartiles, while the whiskers represent min-
imum and maximum number or resistance classes. 

  

Figure 1. Number of phenotypic resistance classes in the MRCoNS and MRM isolates, n = 75.
The crosses represent the mean number of antimicrobial resistance (AMR) classes, the horizontal
lines represent the median number, the boxes represent the quartiles, while the whiskers represent
minimum and maximum number or resistance classes.
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Table 2. Percentage of phenotypically expressed resistance in the 75 sequenced MRCoNS and
MRM isolates. A darker shade represents a higher percentage. Gen: Gentamicin; Chl: Chloram-
phenicol; Oxa: Oxacillin; Cfox: Cefoxitin; AmCl: Amoxicillin–clavulanic acid; Clex: Cefalexin;
Enr: Enrofloxacin; T/S: Trimethoprim sulfamethoxazole; Fus: Fusidic acid; Cli: Clindamycin; Ery:
Erythromycin; Tet: Tetracycline.

Antimicrobial Agent
Species n Gen Chl Oxa Cfox AmCl Clex Enr T/S Fus Cli Ery Tet

All isolates 75 20 5 99 88 73 95 12 21 51 21 51 20
S. arlettae 1 100 100 100 100 100 100

S. cohnii ssp.
cohnii 3 33 100 100 33 100 33 33 67 100 67

S. epidermidis 12 8 100 100 33 83 8 17 50 17 50 17
M. fleuretti 1 100 100 100 100 100 100

S. haemolyticus 16 50 6 100 88 88 100 38 25 25 31 50 31
S. hominis 11 46 91 55 46 82 18 46 55 27 64 27
S. pasteuri 1 100 100 100 100 100

S. saprophyticus 19 11 100 95 100 100 16 53 5 58 11
M. sciuri 4 100 100 100 100 100 25

M. vitulinus 2 100 50 50 100 100
S. warneri 5 20 100 100 80 80 20 80 20 20

Table 3. Percentage of the 75 isolates testing positive for antimicrobial resistance genes (ARGs). All
numbers are percentages of the number of isolates shown in column 2. A darker shade represents a
higher percentage.

Antimicrobial
Class ID

S.
ar

le
tt

ae

S.
co

hn
ii

ss
p.

co
hn

ii

S.
ep

id
er

m
id

is

M
.fl

eu
re

tt
ii

S.
ha

em
ol

yt
ic

us

S.
ho

m
in

is

S.
pa

st
eu

ri

S.
sa

pr
op

hy
ti

cu
s

M
.s

ci
ur

i

M
.v

it
ul

in
us

S.
w

ar
ne

ri

ARG
All

Isolates
n = 75

1 3 12 1 16 11 1 19 4 2 5

aac(6′)-
le/aph(2′′)-la 20 8 56 46

ant(4′)-lb 13 67 25 31
aph(3′)-IIIa 4 19

Aminoglycoside

sat4 5 8 19
cat 4 33 11

Amphenicol catA 1 6
arl 1 100

blaZ 63 33 100 94 82 32 80Beta-lactam
mecA 100 100 100 100 100 100 100 100 100 100 100 100
dfrC 27 92 9 21 80Folate pathway

antagonist dfrG 8 8 31
fosB6 4 27Fosfomycin fosD 1 25
fusB 29 50 25 36 21 80
fusC 7 8 6 27
fusD 25 100Fusidane
fusF 4 100
ermC 13 8 31 18 5 20
lnuA 15 67 27 32
mphC 29 100 17 38 9 100 47
msrA 43 100 100 42 38 42 100 46 20
salA 5 100
vgaA 4 8 9

Macrolide,
lincosamide,

streptogramin

vgaALC 5 19
mgrA 61 33 17 100 92 100 100Multidrug norA 24 100 8 100 80

Pseudomonic acid mupA 5 13 17
qacA 41 33 42 69 91 11 40Quaternary

ammonium
compounds

qacB 3 33 100
tetK 20 100 67 17 38 18 11

Tetracycline tetL 3 13
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2.4. SCCmec Cassettes and Sequence Types

Table 4 shows the predicted SCCmec cassettes based on detected genes and best homol-
ogy in the sequenced MRCoNS and MRM isolates. For four isolates (one S. epidermidis, one
S. haemolyticus and two S. hominis), the SCCmec prediction based on genes deviated from the
prediction based on homology. In these cases, the SCCmec cassettes were reported based on
the prediction of the genes. The S. epidermidis isolates were assigned three types (II (2a), III
(3A) and IV (2b)) in addition to one non-typeable (NT) isolate. In just one household, the
same SCCmec cassette was predicted in isolates of different species: an S. epidermidis and
an S. saprophyticus isolate of type III (3A). The SCCmec elements of a substantial number
of isolates (43/75) were non-typeable. Eleven of the fourteen NT S. haemolyticus isolates
showed best homology with SCCmec type V but missed either the ccrC1 or mec class C2,
or both. Three of the NT S. saprophyticus isolates had the best predicted homology to
SCCmec III (3A) but missed either ccrA3 or both ccrA3 and ccrB3, while two additional
S. saprophyticus isolates shared the best homology with SCCmec I (1B) but missed ccrA1 and
ccrB1.

Table 4. Predicted SCCmec elements based on detected genes in the sequenced MRCoNS and
MRM isolates.

Species ID II (2A) III (3A) IV (2B) IVa (2B) IVd (2B) IVc (2B) V (5C2
and 5) VIII (4A) Non-

Typeable

S. arlettae 1
S. cohnii ssp.

cohnii 3

S. epidermidis 1 1 2 6 1 1
M. fleurettii 1

S. haemolyticus 1 1 14
S. hominis 4 7
S. pasteuri 1

S. saprophyticus 10 9
M. sciuri 4

M. vitulinus 2
S. warneri 3 1 1

The sequence types (STs) were predicted by in silico MLST for 25 of the 39 S. epidermidis,
S. haemolyticus and S. hominis isolates. The 12 S. epidermidis isolates were assigned to
10 different STs (5, 35, 57, 81, 130, 218, 224, 332, 640 (n = 2) and 679) in addition to 1 non-
typeable isolate. The two MRSE ST640s were from different households. Nine of sixteen
S. haemolyticus were typed to seven STs (1, 3 (n = 2), 30, 42, 49, 52 (n = 2) and 56). Isolates
with identical STs were from different households. The remaining S. haemolyticus isolates
had combinations of allelic profiles not reported earlier. This was also the case for 6 of the
11 S. hominis isolates, while the remaining 5 were typed to two different STs (1 and 18), all
of which were from different households.

2.5. Household Analysis of Human and Pet Isolates

In households with infected pets (C, F and H), the dogs and owners concurrently
tested positive for MRSE (Table 1). In household H, the dog, owner and home environment
tested positive for MRSE ST640 with identical susceptibility profiles, resistance genes and
SCCmec elements [12]. In contrast, the dog and owner in household C carried two different
STs (MRSE ST679 and ST130), presenting different resistance genes and SCCmec types
(Supplementary Materials Table S1). MRSE isolates with identical susceptibility profiles to
the dog isolate were detected in the bathroom and kitchen. However, no isolates similar to
the MRSE found on the owner were recovered from the home environment. We observed
similar findings in household F, in which the owner and dog carried MRSE with different
STs (ST218 and ST5) and SCCmec cassettes (III (3A) and IVa (2B)). Contrary to household C,
we recovered only isolates with identical susceptibility profiles to the human isolate from
the home environment. In household D, MR S. haemolyticus ST42 and ST1 were recovered
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from the owner, while the dog tested negative for these. Only the MR S. haemolyticus ST42
was detected in the home environment.

Two owners of healthy pets carried MRCoNS. The first owner tested positive for a MR
S. warneri possessing a SCCmec cassette V (5C2 and 5). An MR S. warneri with an identical
SCCmec cassette was recovered from the household’s kitchen. The second owner carried an
MR S. haemolyticus with an NT SCCmec cassette and ST. An MR S. haemolyticus ST52 with
different resistance genes was recovered from the home environment.

2.6. Virulence Genes

The hits in the virulence gene database are presented in Table S2, and the respective
Ha scores for each virulence gene are shown. The exfoliative toxin-encoding gene etc was
detected in all sequenced isolates. Furthermore, we observed a high frequency of phenol
soluble modulin-encoding genes, thermonuclease-encoding nuc genes and siderophore-
encoding genes in most MRCoNS isolates. Overall, the MRCoNS and MRM showed a high
degree of species specificity in the virulence gene analysis, apart from S. haemolyticus and
S. hominis, which clustered together (Figure 2). We detected a high occurrence of genes
involved in adherence in the S. epidermidis isolates (atl, ebh and sdr genes). In addition, we
observed two subpopulations of S. epidermidis isolates based on the presence of Type VII
secretion-associated genes (Table S2). The tendency of two subpopulations was also evident
among the S. haemolyticus isolates. Based on Ha scores of several capsular polysaccharide
synthesis enzymes involved in immune evasion (cap genes), the group with high Ha scores
consisted of six isolates, of which three were recovered from humans and two were of
environmental origin. Isolates with low Ha scores for cap genes were solely detected in
the environment.
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Subgrouping based on the Ha scores of cap genes was also observed among the
S. hominis and S. saprophyticus isolates. The MRM had, in general, few hits with high
Ha scores, apart from the etc gene and the capO and capP genes.

2.7. Mobilome Analysis

The four most prevalent species found in the households, S. saprophyticus, S. epidermidis,
S. haemolyticus and S. hominis, were included in the mobilome analysis. Three common
gene clusters encoding an IS6 family transposase, the competence protein ComGC and an
uncharacterized SPBc2 prophage-derived protein YoqJ (annotated “Common” in Figure 3)
were identified in all the isolates. Otherwise, the mobilomes were mainly species-specific
(Figure 3). We observed a few examples of similar gene sequences in different species at
the household level. For instance, S. haemolyticus and S. saprophyticus isolates from the
same household carried phage major capsid protein-encoding genes and phage portal
protein-encoding genes with 76.8% and 80% amino acid identities, respectively. In addition,
a site-specific tyrosine-type recombinase/integrase was shared by S. epidermidis and S.
saprophyticus in two households, and an IS256-like transposase was shared by S. haemolyticus
and S. hominis in two other homes.
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encoding an IS6 family transposase, the competence protein ComGC and an uncharacterized SPBc2
prophage-derived protein YoqJ.

3. Discussion

MRCoNS are opportunistic pathogens prevalent in hospital environments, often due
to their hardy nature, ability to form biofilms and resistance to antimicrobials [13]. The
newly described genus Mammaliicoccus shares many properties with staphylococci, like
habitat and methicillin resistance [14]. In a former study of the dissemination of clinical
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MRS in households with infected pets [12], we detected a broad range of MRCoNS and
MRM in the home environments and from pets and their owners. To follow up on this
observation, we decided to screen different categories of households for the presence of
MRCoNS and MRM. To our surprise, MRCoNS and MRM were nearly ubiquitous in the
home environments regardless of the presence of pets or health status. The finding of
S. epidermidis, S. haemolyticus, S. hominis and S. saprophyticus as the predominant species in
the households is reasonable since these species are known as skin commensals in humans.
However, they can also cause infections, and the frequent occurrence of methicillin-resistant
isolates in home environments is noteworthy. To our knowledge, the home environment
has previously not been described as a reservoir for MRCoNS and MRM.

The skin, skin glands and mucous membranes of mammals are considered the main
habitats for CoNS [15]. However, in most of the households studied, both the human
and the pet tested negative for MRCoNS/MRM while the bacteria were present in the
home environment. The absence of MRCoNS/MRM in humans and pets may reflect that
the sampling sites in the humans and pets were not optimal for detecting some of the
CoNS/mammaliicoccal species. For instance, S. saprophyticus is a frequent colonizer of
the perineal region, rectum and urethra in humans, and S. hominis and S. haemolyticus are
often isolated from axillae and pubic areas high in apocrine glands [1]. These sites were
not included in the sampling procedures. On the other hand, S. epidermidis is a common
human, canine and feline nasal mucosa colonizer [16,17]. Therefore, we find it peculiar
that we identified relatively few carriers of MRSE, considering that MRSE was present in
around one-third of the households. An explanation may be that we only sampled one
human member in each household, thus missing possible carriers of the MRCoNS and
MRM. Another factor contributing to the high number of MRCoNS/MRS in the households
could be that the bacteria had been introduced via visitors, soil or other external sources.

Carriage of MRCoNS in pets was exclusively found in infected dogs. The owners
of the three MRSE-positive dogs all tested positive for MRSE. Interestingly, the isolates
from the dogs and owners differed in two of the cases, indicating a diversity of MRCoNS
not only between households but also within the household. Moreover, we observed that
homes with infected pets had a large diversity of MRCoNS species recovered from the
home environment. Five of the eight dogs in this group had been treated with beta-lactam
antimicrobials within the past three months before sampling, two of which had undergone
antimicrobial treatment several times during the past year. The carriership and the diversity
may reflect the MRCoNS’s and MRM’s competitive advantage when exposed to beta-lactam
antimicrobials. Furthermore, five dogs in this group had been hospitalized within the past
twelve months, and two owners were human health care workers. Hence, it is not unlikely
that the pets or owners have been exposed to MRCoNS/MRM in these environments
and transmitted them further to their home environment. Still, MRCoNS and MRM were
present in many households where neither humans nor dogs had been in contact with
health care facilities, again emphasizing that MRCoNS and MRM are indeed found outside
clinical environments.

The phenotypic resistance analysis revealed that just over 50% of the MRM and
MRCoNS were multidrug-resistant. This is consistent with previous reports on CoNS
and MRCoNS in non-clinical settings [9,18]. Mobile genetic elements play a central role
in spreading ARGs among bacteria [19]. Considering that MRCoNS constitute reservoirs
for ARGs, we conducted a mobilome analysis primarily to investigate whether the most
prevalent species in the households had mobile genetic elements in common, which could
indicate genetic exchange at the household level. Nonetheless, the detected mobile genetic
elements displayed mainly a species-specific profile rather than a household-related pattern.
This could indicate that mobile genetic elements are not easily transmitted between different
staphylococcal species. However, it must be emphasized that this analysis is based on
short-read data. To gain further insight in the ARGs’ location relative to the mobile genetic
elements, it would be necessary to combine short-read and long-read data.
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The inconsistent phenotypic expression of resistance to cefoxitin among the MRCoNS
isolates was noteworthy. EUCAST and CLSI operate with different zone diameters when
assessing cefoxitin resistance. By following the CLSI breakpoints rather than the EUCAST
breakpoints, eight of the ten cefoxitin susceptible CoNS isolates would have been classified
as resistant. On the other hand, two of the MRSE isolates would have been reported
susceptible to cefoxitin. According to the EUCAST guidelines, cefoxitin should be used
when screening for methicillin resistance in CoNS [20]. However, CLSI emphasizes that the
cefoxitin disk diffusion test may not perform reliably in detecting methicillin resistance for
all CoNS species (e.g., S. haemolyticus) [21]. Although cefoxitin is the recommended agent
for most CoNS when screening for methicillin resistance, our results show that oxacillin is
more reliable than cefoxitin for the purpose.

MRS are considered resistant to most beta-lactam agents, i.e., penicillins, beta-lactam
combination agents and cephems, except for ceftaroline [22,23]. However, we observed a
high frequency (20/75) of amoxicillin–clavulanic-acid-susceptible isolates. Sixteen of the
susceptible isolates carried blaZ, which encodes a beta-lactamase that inactivates amoxicillin.
Admittedly, this could be due to the lack of official breakpoints for amoxicillin–clavulanic
acid disk diffusion. Still, six of these isolates were susceptible to cefoxitin, thus demonstrat-
ing that even if the mecA gene is present, it is not necessarily expressed towards cefoxitin
and amoxicillin–clavulanic acid in vitro.

We could not predict STs or SCCmec cassettes for most MRCoNS/MRM isolates. The
pubMLST database only contains data for S. epidermidis, S. haemolyticus, S. hominis and
S. chromogenes, and the missing ST identifications may be due to a lack of characterized
environmental genomes in the database. The high proportion of non-typeable SCCmec
cassettes is consistent with previous reports [24,25]. In many cases, the cassettes shared
homology with previously described SCCmec but lacked identifiable ccr genes needed to
determine type. This was especially evident for the NT S. haemolyticus cassettes that had the
best homology with SCCmec type V. The combination of NT SCCmec elements combined
with non-identifiable STs demonstrates the large diversity among the staphylococcal and
mammaliicoccal isolates in the home environments and the gaps in knowledge about the
epidemiology/ecology of staphylococci from environmental reservoirs.

In general, CoNS and MRM are considered less virulent than S. aureus. Still, CoNS
and MRM cause a substantial number of infections, presumably possessing virulence
genes enabling them to do so. Virulence genes in CoNS and mammaliicocci are far less
studied than the virulence genes of S. aureus. Consequently, we used a database mainly
consisting of amino acid sequences from putative and known virulence factors in S. aureus
to characterize virulence genes in our MRCoNS and MRM isolates [26]. Admittedly, this is
not optimal and will cause uncertainty around the hits with low and medium Ha scores. We
focused on the highest scores within each species. However, we cannot be certain that hits
with lower scores are of limited importance. Overall, the MRCoNS and MRM displayed
species-specific virulence gene patterns, apart from the ubiquitous etc gene. The virulence
gene patterns revealed subgroups within the S. epidermidis, S. haemolyticus, S. hominis and
S. saprophyticus isolates based on the presence of type VII secretion-associated genes for
the former and cap genes for the three latter. The isolation source seemed to matter for
multiple cap genes only in the S. haemolyticus isolates, as all the human isolates were in
this subgroup.

4. Materials and Methods
4.1. Participants

Participants were recruited through social media and small animal clinics in Oslo and
the surrounding areas. All participants signed individual consent forms and completed
questionnaires regarding their professions, antimicrobial consumption and hospital ad-
missions within the past 12 months. Thirty-three households participated in the study.
Of these, eight were households with dogs diagnosed with an MRS infection; eight were
households with clinically healthy dogs; six were households with clinically healthy cats;
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and eleven were households without pets. The inclusion criteria included cats with MRS
infections. However, during the time we recruited participants for the study, no cats with
MRS infections were diagnosed in our recruiting clinics. One human and one pet from each
home participated in the study. The inclusion criteria for healthy pets were the following:
clinically healthy pets without symptoms of infection when examined by a veterinarian.
The humans sampled were healthy according to their own statements.

4.2. Sampling

The samples were collected in the period from October 2019 to October 2021. The
same veterinarian was responsible for sampling all the household environments and the
participating pets. Pets diagnosed with an MRS infection were sampled from the infection
site, the perineum and the oral mucosa using nylon flocked swabs (Eswab™ 480C, Copan
group, Brescia, Italy). These dogs participated parallelly in another study [12]. Healthy
dogs and cats were sampled from the oral mucosa and perineum. Human participants
collected swab samples from their nostrils and throats according to the instructions of
the veterinarian present at the time of sampling. The home environments were sampled
using cloths (Sodibox® Swab cloth, Nevez, France) for swabbing of the most relevant areas
such as the pets’ food bowls and sleeping areas, living room floors, bathrooms (sink faucet
and hand towel) and kitchens (kitchen counter, dish towel, cloth and sink faucet). In the
households without pets, the three latter locations were sampled.

4.3. Culturing and Identification

The samples were cultured as described by Røken et al. [12]. Briefly, all samples were
enriched overnight in Müller–Hinton (MH) broth supplemented with 6.5% NaCl. Then,
20 µL of MH broth was inoculated on Oxacillin Resistance Screening Agar Base (ORSAB,
Oxoid, Basingstoke, UK) supplemented with 2 µg oxacillin and incubated for 24 h at
35 ◦C. Blue, blue-white and white colonies growing on the ORSAB agar were sub-cultured
on 5% bovine blood agar overnight. The species were identified using Matrix-assisted laser
desorption/ionization (MALDI-TOF MS) (VITEK® MS, bioMérieux, Craponne, France).
Isolates were tested for the presence of the mecA gene by PCR on a Bio-Rad T100 Thermal
cycler (Bio-Rad, Hercules, CA, USA) [27].

4.4. Susceptibility Testing

Isolates were susceptibility tested against 12 antibiotics using the agar disk diffusion
method [28]. The test panel included aminoglycoside (gentamicin 10 µg), amphenicol
(chloramphenicol 30 µg), beta-lactams (amoxicillin–clavulanic acid 20/10 µg, oxacillin
1 µg, cefoxitin 30 µg, cefalexin 30 µg), fluoroquinolone (enrofloxacin 5 µg), fusidane (fusidic
acid 100 µg), folate pathway antagonist (trimethoprim/sulfamethoxazole 1.25/23.75 µg),
macrolide (erythromycin 15 µg), lincosamide (clindamycin 2 µg) and tetracycline (tetra-
cycline 30 µg). When testing resistance to oxacillin, we used Müller–Hinton agar supple-
mented with 4% NaCl. Müller–Hinton plates were incubated at 35 ◦C for 18–20 h before
reading the zone diameters. As there are no official breakpoints for amoxicillin–clavulanic
acid and cefalexin, we used the breakpoints ≥25 mm for susceptible and ≤24 mm for resis-
tant. Isolates displaying intermediate resistance to antimicrobial agents were registered as
resistant in the phenotypic analysis. Isolates expressing resistance to three or more classes
of antimicrobials were defined as multidrug-resistant [29].

4.5. Selection of Isolates

One MRCoNS/MRM from each species was included from each sampling location.
Based on the phenotypic resistance profiles, species and households, isolates were selected
for whole-genome sequencing (WGS). All WGS isolates went through an additional species
identification checks using the Microbial Genomes Atlas (MiGA) webserver against the
TypeMat database [30] (Table 5). If the species identities differed between the MALDI-
TOF and TypeMat databases, we used the TypeMat output. Furthermore, all sequenced
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isolates were included in the resistome, virulence gene and SCCmec analyses. However,
isolates that turned out to be redundant were excluded when presenting the results (isolates
from the same household, identified as the same species with identical resistance genes,
virulence genes, SCCmec elements and sequence types (STs)). Non-redundant sequenced
S. epidermidis, S. hominis, S. haemolyticus and S. saprophyticus isolates were included in an
additional mobilome analysis.

Table 5. Criteria for including isolates in the different analyses.

Analysis Isolates Included in the Analysis Isolates Presented in the Results
Section

mecA PCR All cultured isolates

Species identification
(MALDI-TOF MS) All cultured isolates

Susceptibility testing All cultured isolates Non-redundant WGS isolates

Whole-genome sequencing (WGS)
Non-redundant isolates based on

phenotypical resistance profiles, species
and household

Additional species identification
(in silico, TypeMat) All WGS isolates

Resistome analysis All WGS isolates Non-redundant WGS isolates

Virulence gene analysis All WGS isolates Non-redundant WGS isolates

SCCmec typing All WGS isolates Non-redundant WGS isolates

Sequence typing
(in silico MLST)

All WGS S. epidermidis, S. hominis and S.
haemolyticus isolates

Non-redundant WGS S. epidermidis, S.
hominis and S. haemolyticus isolates

Mobilome analysis
All whole genome-sequenced S.

epidermidis, S. haemolyticus, S. hominis and
S. saprophyticus isolates

Non-redundant S. epidermidis, S.
haemolyticus, S. hominis and S.

saprophyticus isolates

4.6. DNA Extraction, Library Preparation, Sequencing and Assembly

DNA was extracted using a modified version of the Master Pure™ Gram-Positive
DNA Purification protocol (Lucigen Corporation, Middleton, WI, USA) [12]. The DNA
quality was assessed by NanoDrop® ND-1000 (Thermo Scientific, Wilmington, CA, USA),
and the DNA quantity was determined using a Qubit fluorometer with the dsDNA Broad
Range Assay kit (Invitrogen, Eugene, OR, USA). Quality-controlled DNA was submitted to
the Norwegian Sequencing Centre for library preparation and sequencing. The library prep
was performed in two batches using Swift Turbo 2s flex DNA library prep on batch one and
Nextera DNA Flex Prep on batch two. The samples were sequenced on the Illumina MiSeq
platform v3, resulting in 300 bp paired-end reads. The fastq files were quality checked
using FastQC version 0.11.9. Adapters and low-quality sequences were removed using
Trim Galore version 0.6.7 [31]. We used SPAdes version 3.15.3 for genome assembly [32].

4.7. Bioinformatics

We used ABRicate version 1.0.1 for the resistome analysis [33]. The assembled se-
quences were run against the CARD database with cutoff values of 80% nucleotide iden-
tity and 80% coverage [34]. We used SCCmecFinder v. 1.2 with default settings (nu-
cleotide identity 90% and minimum sequence length of 60%) to type SCCmec elements [35].
S. epidermidis, S. hominis and S. haemolyticus assemblies were run against a default PubMLST
scheme using MLST version 2.19.0 [36].

For the virulence gene analysis, we aligned a custom database containing amino acid
sequences of staphylococcal virulence factors [26] against assembled staphylococcal and
mammaliicoccal genomes using tblastn (v. 2.5.0) with the default settings, except for high-
scoring segment pair (HSP) set to 1 and the culling limit of 1. The resulting sample/VF
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matrix values were expressed as Ha scores ranging from 0 to 1 [26]. Briefly, the scores were
calculated using the following formula:

Ha = (pident × length)/(qlen × 100)

where “pident” represents the proportion of amino acid sequence identities between the VF
query and translated proteins from the bacterial genomes in this study, “length” represents
the alignment length of a hit and “qlen” is the length of the query sequence drawn for
each VF.

The mobilome analysis was conducted using Anvi’o bioinformatics suite version
7.1. [37]. Before the pangenome analysis, we excluded one S. saprophyticus from the dataset
due to a high number (>2000) of partial genes. We created the Anvi’o contigs database
with the “anvi-gen-contigs-database” program using Prodigal to identify open reading
frames [38]. The resulting genes were associated with the functions from the NCBI’s
Clusters of Orthologous Groups (COGs) database [39]. The pangenome was computed
by the core Anvi’o program “anvi-pan-genome” (default settings), which in turn utilized
DIAMOND [40] and MCL [41]. Metadata were integrated into the pangenome results with
the “anvi-import-misc-data” program. After the pangenome visualization, we extracted all
gene clusters annotated with the “Mobilome” COGs category with the “anvi-split” program
for further manual inspection. We used COG annotations or an ad hoc protein web-blast
search to characterize the gene clusters of the staphylococcal mobilome.

4.8. Statistical Analysis

We used one-way ANOVA to compare the number of different MRCoNS and MRM
species between the households with infected pets, with healthy pets and without pets.
Tukey’s honest significant difference (HSD) test was applied to test the pairwise difference
between the three household groups. The significance level was set to 0.05.

The virulence factor (VF) matrix was transferred to R version 4.1.0 for further principal
component analysis (PCA) using the “prcomp” function of the “stats” package (v. 4.0.1),
followed by a visualization using the “fviz_pca” function of the “factoextra” package
(v. 1.0.7).

5. Conclusions

In conclusion, we have documented that the home environment is a reservoir for
MRCoNS and MRM regardless of the type of household and the carrier status of humans
and pets. However, homes with infected pets had a larger diversity in MRCoNS and
MRM species than households without pets, which might be due to the recent use of
antimicrobials and contact with human and veterinary hospitals. The large diversity in
SCCmec elements and sequence types among and within the households indicates no clonal
spread of specific strains. The limited common virulomes and mobilomes indicate a high
degree of species specificity rather than exchanges of genetic elements between species in
the home environment.
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