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Abstract: The use of antibiotics in animal husbandry has long been associated with the 

appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the 

number of cases of human infection involving resistant or virulent microorganisms that 

originate in farms is increasing. While many antibiotics have been banned as dietary 

supplements in some countries, other additives thought to be innocuous in terms of the 

development and spread of antibiotic resistance are used as growth promoters. In fact, 

several clay materials are routinely added to animal feed with the aim of improving growth 

and animal product quality. However, recent findings suggest that sepiolite, a clay additive, 

mediates the direct transfer of plasmids between different bacterial species. We therefore 

hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance 

determinants in the digestive tract of farm animals. 
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1. Introduction 

The exposure of bacteria to inhibitory concentrations of antibiotics results in the selection of resistant 

sub-populations. In addition, sub-inhibitory levels of many antibiotics raise mutation and recombination 

rates in bacteria, increasing the probability of resistance acquisition, even to unrelated antibiotics [1,2]. 

Antimicrobial agents also promote the acquisition of DNA sequences from other organisms via 

horizontal gene transfer (HGT) [1,3]. HGT plays a major role in pathogen evolution by allowing bacteria 

to evade the immune response and distributing genes that increase virulence or provide increased 

resistance to antibiotics [4]. Indeed, there is now much concern surrounding the huge quantity of 

antimicrobial agents used as livestock growth promoters and the possibility that they select for  

resistance determinants, which can spread by different routes to human pathogens compromising 

antibiotic efficacy [5,6]. Furthermore, antibiotic resistance genes conferring resistance to several 

antimicrobials have been used for the construction of some genetically modified plants which are used 

as animal feed [7]. The possibility of gene transference via HGT to the microbiota and subsequently to 

the community must therefore be examined [8]. 

Animal feed also contains other supplements such as certain clays. Sepiolite, for example, was 

authorized for use by the European Union in 1990 and registered as technological additive E-562. The 

purpose of these minerals is to make digestion more efficient. These additives are believed to improve 

growth and animal product quality, and are widely used in feed for broiler chickens [9] and pigs [10]. 

Such practices are considered innocuous. Clays, including sepiolite, have also been proposed for use in 

a large number of pharmaceutical applications [11,12]. Interestingly, due to their excellent adsorption 

capacities, clays have been proposed as carriers for antibiotics among other compounds [11]. 

Furthermore, certain clays present some antibacterial effects, due to the presence of bactericidal metallic 

cations (mostly Fe2+ or Cu2+) [13] either of natural origin [14], or adsorbed artificially [15]. Scientific 

literature states that they fulfill all safety, stability, and chemical inertia requirements, and their presence 

in tablets used in human medicine has been established as safe and without side effects [11]. 

A relationship between the presence of sand or clay minerals and bacterial genetic exchange has been 

reported, and the possibility that mineral-mediated DNA transfer between different bacterial species 

plays a role in the evolution of antibiotic resistance has received some attention [16]. Transformation of 

bacteria by foreign DNA in the presence of friction forces and clay materials is known as the Yoshida 

effect [17]. This transformation relies on the ability of mineral nanofibers (or nanoneedles), such as those 

formed by sepiolite, to adsorb DNA and form a chestnut burr-shaped complex when a sliding friction 

force [18] or even vibrations [16] are applied. These complexes can penetrate the bacterial cell wall and 

membrane, releasing DNA into the cytoplasm [19]. This effect was observed in many bacterial species 

(Table 1). 
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Table 1. Bacterial species in which clay-mediated transformation has been examined. 

Bacterial Species References 

Pseudomonas aeruginosa [20] 

Salmonella enterica Serovar Typhimurium [20] 

Mycobacterium smegmatis [20] 

Pseudomonas putida [21] 

Escherichia coli (several strains) [21–23] 

Yersinia enterocolitica [23] 

Acinetobacter baumannii [23] 

Bacillus subtilis [16] 

Pseudomonas elodea [16] 

Here we propose that “recipient” bacteria can be transformed by DNA fragments or plasmids from 

“donor” bacteria adsorbed onto mechanically-penetrating mineral nanofibers. Laboratory work has 

already provided proof of concept of this idea; the exclusive combination of friction forces and  

sepiolite allows plasmids to be easily transferred between bacterial species, including strains of 

Escherichia coli, Salmonella enterica (serovar Typhimurium), Pseudomonas aeruginosa and 

Mycobacterium smegmatis [24]. These experiments were designed in such a way that different 

antibiotic-resistance markers could be used to counterselect donor bacteria. The results clearly 

demonstrated that DNA transfer between bacteria was mediated by sepiolite. 

2. The Hypothesis 

The combination of clays present in animal feed, the presence of both pathogenic and commensal 

bacteria in the animal gut, the mechanical friction provided by peristalsis in the rumen and intestines  

(or the strong abrasive action of the gizzard in poultry), and the routine administration of antibiotics to 

livestock (providing the selective force required for the fixation of antibiotic resistance), led us to hypothesize 

that clay-mediated DNA transfer among bacteria may occur in farm animals. This phenomenon could 

provide an additional HGT mechanism able to disseminate antibiotic resistance and virulence genes 

across species (Figure 1). 

 

Figure 1. Clay-mediated DNA transfer in livestock. Clay additives in animal feed form 

complexes due to friction forces that may promote the release of DNA from bacteria.  

This free DNA can then be adsorbed by clay (a). The resulting DNA-clay complexes (b) 

penetrate other microbes, internally delivering the carried DNA (c). This may result  

in the acquisition of new virulence genes and/or antibiotic resistance determinants (d).  

Both commensal and pathogenic bacteria may act as recipients or donors and acquire traits 

that compromise the treatment of infections. 
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The presence of antibiotics would not only provide the selective pressure to fix transformed cells in 

their populations, but is also an additional source of DNA via cell lysis. Plasmid DNA, which does  

not need to integrate into a recipient bacterium’s chromosome, might be efficiently introduced by  

clay-mediated transfer. Mobile elements such as transposons or integrons also become active in the 

presence of antibiotics [25] and could be transferred with the help of clays. The fact that antibiotics 

increase rates of exogenous DNA recombination (i.e., the frequency of integration of foreign DNA into 

the bacterial chromosome) [4,26] might indeed improve the likelihood of transformation. 

Clay-mediated transfer of DNA have been experimentally demonstrated in vitro and the parameters 

necessary for its occurrence are relatively well characterized [17,22,27]. Despite the obvious differences 

with the environment found in the laboratory, the key conditions required for clay-mediated transference 

could be found in the gastrointestinal tract of farm animals. For example, the optimum temperature for 

DNA adsorption by clay materials is 37 °C [27], which is within the body temperature range of cattle. 

The friction forces required for transformation driven by clay-DNA complexes are common in the 

gastrointestinal tract of livestock. In vitro, an optimum transformation pressure of 3.9 kPa has been 

recorded [22]; such a pressure could easily be achieved in the gastrointestinal tract of most farm animals 

(Table 2). 

Table 2. Pressure values exerted in different parts of the digestive tract of several livestock 

species. The optimal pressure for the clay-mediated transformation of bacteria by plasmid 

DNA is reported to be 3.9 kPa [22]. The numbers shown have been converted to the 

international system unit for pressure. 

Average Pressure of 

Digestive Tract (kPa) 
Species 

Digestive Tract 

Section 
References 

2.7 humans jejunum [28] 

2.7 humans pylorus [29] 

10.7 humans oesophagus [30] 

37.3 geese gizzard [31] 

3.1 turkeys muscular stomach [32] 

0.5–39.9 chickens gizzard [33] 

3.9 chickens muscular stomach [32] 

4.7 pigs stomach [34] 

The gut environment is generally characterized by a low pH and an elevated osmolarity.  

These circumstances could, in principle, hamper DNA transfer, but clay-mediated transformation has 

been shown to be robust to such conditions as clay materials can adsorb DNA over a wide range of pH. 

Since DNA stability is compromised at highly acidic conditions, clay-adsorbed DNA is unable to 

transform bacterial cells at pH lower than 3 [27]. However, pH values found in the stomach of mammals 

and the gizzard of poultry are high enough (4.4 in pigs [35] and 3.5 in broiler chickens [36]) to allow 

DNA adsorption and transformation [27]. Furthermore, the pH in the intestine of livestock rises up  

to ~6 [35,36], a closer value to the adsorption and transformation optimum found in vitro [27].  

Regarding salinity, clay-mediated transformation has been reported to occur at a range of 0–0.3 M of 

NaCl without a significant loss of efficiency in vitro [17]. The osmolarity in the gut, based on a complex 

mixture of salts, has been estimated to be equivalent to 0.3 M NaCl [37], which is, again, within the 
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limits for optimal transformation in vitro. Taken together, the confluence of in vitro and in vivo data 

suggests that gastrointestinal tract is a plausible scenario for clay-mediated DNA transfer. 

One might argue that if free DNA fragments were present in the digestive tract of animals, they  

would be rapidly degraded. On the other hand, it has been shown that clay-adsorbed DNA is very 

resistant to degradation in the gut and soil [16]. Additionally, it has been reported that DNA  

adsorption by clays provides protection against nucleases [27,38]. However, this protection seems  

to be only partial: it has been shown that clay-adsorbed plasmidic DNA treated with DNase I  

displayed a restricted availability for transformation, suggesting that DNA molecules were not intact. 

Yet, even partially degraded DNA could still serve as a substrate for integration into the recipient 

chromosome by recombination [38]. This protected DNA therefore provides a reservoir of genetic 

material that could benefit naturally-occurring competent bacteria in the digestive tract and allow  

clay-mediated transformation. 

Previously discussed arguments and laboratory results obtained to date, provide sufficient evidence 

to recommend examining clay-mediated DNA transfer in vivo. Thus, we propose that the role of sepiolite 

and other clays as promoters of antibiotic resistance and virulence trait transfer in farm animals should 

be investigated. To what extent the proposed mechanism of clay-mediated HGT could operate in vivo is 

difficult to answer. Conjugation consists of transferring DNA fragments ranging from a few base pairs 

to large chromosomes or plasmids. The process of conjugation requires cell-to-cell contact, mating pair 

formation and transfer of plasmid DNA through a conjugative pilus. The genes for conjugative machinery 

are encoded by autonomously replicating plasmids or by integrative conjugative elements in the 

chromosome [39]. Conjugation rates in literature tend to vary a lot. One of the highest conjugation rates 

observed for plasmids is around ~10−3 transconjugants per recipient per hour in bacterial biofilms  

in vitro. According to the authors, these values are from one to three orders of magnitude greater than 

those reported by other studies [40], while the picture in vivo is slightly different. Conjugation rates have 

been examined using mice, yielding highly dissimilar results that vary from very low frequencies [41] 

to as high as ~7 × 10−1 transconjugants per donor cell, a value that was much higher than the rate found 

in vitro (~6 × 10−8) using the same strains [42]. These results suggest that the in vitro measured rates of 

genetic exchange are poor estimators of the in vivo frequencies. 

In our previous experiments we found frequencies ranging from 10−6 to 10−8, which are comparable 

to most of conjugation experiments [24]. However, the experiments were carried out applying friction 

forces during one minute only. In the intestinal tract, discontinuous, but frequent friction forces of 

different intensities and duration are expected. Then, our in vitro results may underestimate the 

frequencies of this atypical HGT if it indeed occurs in vivo. Nevertheless, even very low frequencies of 

DNA transfer should be taken into consideration, as the possible consequences for human and animal 

biosafety could be of great importance. Furthermore, risk assessment should not be based solely on the 

observed frequencies, as they are not good predictors of long-term effects on bacterial communities [43]. 

3. Testing the Hypothesis 

An ideal testing framework for our hypothesis may consist in a double blind, stratified experiment in 

which four groups of gnotobiotic animals are given feed containing or lacking sepiolite, an appropriate 

bacterial donor strain and antibiotics acting as selective force (Figure 2). 
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Figure 2. Ideal experimental model for testing the stated hypothesis. All germ-free animals 

in all groups should be given feed containing a safe bacterial strain harboring a resistance 

marker integrated in the chromosome or a known plasmid that cannot be transferred by 

conjugation (non-conjugative and non-mobilizable ones); this bacterium should carry an 

auxotrophy to allow for the counterselection of donors. A known recipient (for instance an 

E. coli strain different from the donor) could be used to easily verify transfer. 

Faecal samples would then be collected to isolate bacteria in a medium designed to counterselect 

donor strains. Differences in the transfer of resistance genes would reflect the effect of the clay. 

Available reports on the efficiency of sepiolite in promoting bacterial transformation [24], the high 

sepiolite content of animal feed and the high bacterial content in faecal samples; it is expectable that 

even at low in vivo transfection efficiency and wide margins of error, this hypothesis might be accurately 

tested in a cost-effective way. However, a testing scenario would be strongly limited by the fact that 

experiments would require an S1 security level, and this is difficult to achieve with livestock animals. 

We should also admit that it is enormously difficult to detect rare HGT events and the resulting bacterial 

transformants within large heterogeneous microbial communities [44], which confer a poor resolution 

to this experimental approach. One possibility is the use of an animal model like in one study reporting 

vancomycin resistance gene transfer between enterococci of human origin in the gut of mice harbouring 

human microbiota [45]; although this would only provide an indirect evidence for livestock in case of 

positive results. 

Epidemiological observations correlating the use of clay supplements with higher incidence of 

antibiotic resistance can be useful to initiate additional studies. In near future, the possibility of doing 

large comparative metagenomic studies in the microbiome of livestock may help to correlate the use of 

clay with altered frequencies of HGT. If our hypothesis is correct, “remodeled” bacteria are being 

transmitted from farms to communities. Clay materials in animal feed perchance significantly contribute 

to the spread of antibiotic resistance and virulence genes, increasing the problems of antibiotic 

ineffectiveness in the treatment of human and animal infections. This new mechanism of HGT may 

promote the acquisition of virulence factors and antibiotic resistance by gut pathogens with broad 

implications for humans and animals. 

4. Conclusions 

Here, we present a hypothesis raising the concern that under a livestock feeding regime, the 

confluence of factors such as antibiotic pressure, diversity and size of bacterial populations, the presence 
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of potential pathogens, the particular physiology of digestive tract of cattle and clay present as a feed 

additive might favor clay-mediated horizontal gene transfer. The kind of transferred materials may 

consist of plasmids, and more importantly fragments of genomic DNA that may spread both antibiotic 

resistance and virulence factors between potential animal and human bacterial pathogens and transmit 

them to the community. We encourage the scientists from related disciplines to be aware about this 

possible mechanism and perform additional studies to see to what extent this HGT is operating. 
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