Supplementary Materials: The Peptidoglycan Pattern of *Staphylococcus carnosus* TM300—Detailed Analysis and Variations Due to Genetic and Metabolic Influences

Julia Deibert, Daniel Kühner, Mark Stahl, Elif Koeksoy and Ute Bertsche

Bacterial Strain	Relevant Genotype	Source	
Escherichia coli BTH101	Bacterial-Two-Hybrid strain F-, cya-99 araD139 galE15 galK16 rpsL1 (Str ^r) hsdR2	(Karimova <i>et al.,</i> 2005)	
	mcrA1 mcrB1		
Escherichia coli NEB 5-alpha	Electrocompetent cloning strain	New England Biolabs	
	$(A2\Delta(argF-lacZ)U169 phoA glnV44 \Phi 80\Delta (lacZ)M15 GmbH GmbH$		
	gyrA96 recA1 relA1 endA1 thi-1 hsdR17		
	Cloning strain		
Escherichia coli XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17(rK⁻, mK⁺) supE44 relA1	Promega GmbH	
	lac [F′ proAB lacIqZ∆M15::Tn10(tetr)]		
Escherichia coli DH5α	General cloning host		
	((φ 80d lacZ Δ M15) Δ (lacZYA-argF) recA endA1 hsdR17	(Hanahan, 1983)	
	supE44 thi-1 gyrA96 relA1 deoR)		
Escherichia coli DC10B	dam+ Δ dcm Δ hsdRMS endA1 recA1	(Monk <i>et al.,</i> 2012)	
Staphylococcus carnosus	IACI J Lawrence (CTV211)	(Schleifer & Fischer,	
TM300	wild type (SK311)	1982), (Götz, 1990)	
Staphylococcus aureus	Mothicillin registrant strain isolated in 1982	(Verna da et al. 2001)	
N315	Methicilini resistant strant isolated in 1962	(Kuloda et ul., 2001)	
Staphylococcus aureus	<i>rsbU tcaR agr</i> mutant and three prophages, Φ 11, –12,	(Lowbout et al. 2010)	
SA113 ∆spa	and –13 protein A deletion mutant (spa)	(Herbert <i>et ul.</i> , 2010)	
Staphylococcus aureus	Derivative of S. aureus NCTC 8325-4, acceptor for	(Iordanescu &	
RN4220	foreign DNA	Surdeanu, 1976)	

Table S1. Bacterial strains.

Table 32. Flashilts.					
Plasmid	Relevant Marker	Source			
pJET	High efficiency vector system for positive selection of PCR products	Thermo Fisher Scientific			
pKT25	Derivative of low copy-number pSU40, carrying the first 224 amino acids of <i>B. subtilis</i> CyaA (T25 fragment), upstream of a multiple cloning site; Kan ^R	(Karimova <i>et al.,</i> 2005)			
p25N	Derivative of low copy-number pSU40, carrying gene encoding the first 224 amino acids of CyaA (T25 fragment), downstream of a multiple cloning site; Kan ^R	(Claessen <i>et al.,</i> 2008)			
pKT25-zip	Derivative of low copy-number pSU40, carrying the first 224 amino acids of <i>B. subtilis</i> CyaA (T25 fragment), upstream of a multiple cloning site; 35-aa-long leucine zipper derived from protein GCN4, Kan ^R	(Karimova <i>et al.,</i> 2005)			
pKT25-genomic library fragment	Genomic library of <i>S. carnosus</i> TM300 harboring gene fragments of 1000–3000 bp to cover up most of the genes involved in cell wall biosynthesis	This work			
pUT18C	Derivative of high copy-number pUC19, carrying gene encoding amino acids 225 to 399 of CyaA (T18 fragment), upstream of a multiple cloning site; Amp ^R	(Karimova <i>et al.,</i> 2005)			
pUT18	Derivative of high copy-number pUC19, carrying gene encoding amino acids 225 to 399 of CyaA (T18 fragment), downstream of a multiple cloning site; Amp ^R	(Karimova <i>et al.,</i> 2001)			
pUT18C-zip	Derivative of high copy-number pUC19, carrying gene encoding amino acids 225 to 399 of CyaA (T18 fragment), upstream of a multiple cloning site; 35-aa-long leucine zipper derived from protein GCN4, Amp ^R	(Karimova <i>et al.,</i> 2001)			
pUT18C- Sca_1084	pUT18C containing T18 fused in frame to the 5' end of <i>S. carnosus pbp2</i> ; Amp ^R	This work			
pUT18C- Sca_1995	pUT18C containing T18 fused in frame to the 5' end of <i>S. carnosus</i> hypothetical protein Sca_1995; Amp ^R	This work			
pUT18C- Sca_1996	pUT18C containing T18 fused in frame to the 5' end of <i>S. carnosus</i> hypothetical protein Sca_1996; Amp ^R	This work			
pUT18C- Sca_1997	pUT18C containing T18 fused in frame to the 5' end of <i>S. carnosus</i> hypothetical protein Sca_1997; Amp ^R	This work			
pKT25- Sca_1084	pKT25 containing T25 fused in frame to the 5' end of <i>S. carnosus pbp2;</i> Kan ^R	This work			
pKT25- Sca_1995	pKT25 containing T25 fused in frame to the 5' end of <i>S. carnosus</i> hypothetical protein Sca_1995; Kan ^R	This work			
pKT25- Sca_1996	pKT25 containing T25 fused in frame to the 5' end of <i>S. carnosus</i> hypothetical protein Sca_1996; Kan ^R	This work			
pKT25- Sca_1997	pKT25 containing T25 fused in frame to the 5' end of <i>S. carnosus</i> hypothetical protein Sca_1996; Kan ^R	This work			

Table S2. Plasmids.

Table S3. Oligonucleotides

Primer	Sequence	Restriction Enzyme	Construct Description	
pUT18C for	AGCGGACGTTCGAAGTTCTC		_	
pUT18C rev	GGAGCAGACAAGCCCGTCAGG		_	
pUT18 rev	CTCGGTGCCCACTGCGGAAC		Sequencing	
pKT25 for	ATTATGCCGCATCTGTCC		-	
pKT25 rev	TGCTGCAAGGCGATTAAG		-	
Sca_1084 for	TATATA <u>GGATCC</u> GCGTATGACGGAA AG	BamHI	pUT18-Sca-pbp2 and pKT25-Sca-pbp2	
Sca_1084 rev	TATATA <u>GAGCTC</u> TATAAAACGCGAC AAGC TC	SacI		
Sca_1995 for	TATATA <u>GGATCC</u> AAGAGGTGGTACG ATGA AT	BamHI	pUT18-Sca_1995 and pKT25-Sca_1995	
Sca_1995 rev	TATATA <u>GGTACC</u> TCCCAACTTCCTTT ATTT GA	KpnI		
Sca_1996 for	TATATA <u>GGATCC</u> AATGATTAAATTA AAGC ATGTC	BamHI	pUT18-Sca_1996 and pKT25-Sca_1996	
Sca_1996 rev	TATATA <u>GGTACC</u> ATTCATCGTACCA CCTCT TC	KpnI		
Sca_1997 for	TATATA <u>GGATCC</u> CTTGAAGAAGAAA TTGA TTTG	BamHI	pUT18-Sca_1997 and pKT25-Sca_1997	
Sca_1997 rev	TATATA <u>GGTACC</u> TGACATGCTTTAA TTTA ATC	KpnI		
Sca_1995–1997 up for	<u>GGTACC</u> ATATCAATTCGGCTGTATC	KpnI	Sca_1995–1997 knock out construct upstream fragment	
Sca_1995–1997 up rev	atgtcccaa <u>CCCGGG</u> CTCCTATCCATATT ATT C	SmaI	Sca_1995–1997 knock out construct upstream region; overlap region to downstream fragment	
Sca_1995–1997 down for	ggataggag <u>CCCGGG</u> TTGGGACATGTTG AAT AC	Smal	Sca_1995–1997 knockout construct downstream region; overlap region to upstream fragment	
Sca_1995–1997 down rev	<u>GTCGAC</u> CCCTTCCCTTAATTTAATTG	Sall	Sca_1995–1997 knockout construct; downstream fragment	
ermB-for	<u>CCCGGG</u> TACCGTTCGTATAGCATAC A	SmaI	<i>ermB</i> cassette binding at <i>lox71</i>	
ermB-rev	<u>CCCGGG</u> TACCGTTCGTATAATGTAT G	SmaI	<i>ermB</i> cassette binding at <i>lox66</i>	
Sca_1997 for-TTG	<u>GGATCC</u> TAAATT AGGAGG TATTAAT T <i>TTG</i> A AGAAGAAATTGATTTGG	BamHI	native start codon TTG, full operon Sca_1995–1997	
Sca_1997 for ATG	<u>GGATCC</u> TAAATT AGGAGG TATTAAT T <i>ATG</i> A AGAAGAAATTGATTTGGA	BamHI	optimized start codon ATG; full operon Sca_1995–1997	
Sca_1996 for	<u>GGATCC</u> TAAATT AGGAGG TATTAAT TATGA TTAAATTAAAGCATGTC	BamHI	truncated operon Sca_1995– 1996	
Sca_1995 rev	<u>CCCGGG</u> TTATTTGATAATATCAATC AATTC	SmaI	full and truncated operon	
Sca_1995–1997 for pRAB11-EF-Tu	ttaaatattatttttaattagaacttactaacaaacaagga ggaaagaacaTTGAAGAAGAAATTGATT TGGATA ATTTC		Complementation for cloning • into pRAB11-EF-Tu	
Sca_1995–1997 rev pRAB11-EF-Tu	aaacgacggccagtgttaTTATTTGATAATAT CAA TCAATTCTTTTTTAG		r	
Sca_0214 KO Down-for	tcgagctcggtacccTAAAGATGGACCGTT TGC		overlapping region to pGS1	

Table S3. Cont.

Primer	Sequence	Restriction Enzyme	Construct Description	
Sca_0214 KO Down-rev	gtttcttttg <u>cccggg</u> CGTTTATTATTCCTCC TAAC TATG	SmaI	overlapping region to upstream fragment; additional <i>SmaI</i> restriction site	
Sca_0214 KO Up- for	ataataaacg <u>cccggg</u> CAAAAGAAACATTA ATAT GACCG	SmaI	overlapping region to downstream fragment; additional <i>Smal</i> restriction site	
Sca_0214 KO Up- rev	ctctagaggatccccAGCGATAACAGTCTT ACG		overlapping region to pGS1	
Sca_0214 SD BamHI for	<u>GGATCC</u> TAAATT AGGAGG TATTAAT TATGA AGAATTTGATTAAAC	BamHI	Complementation and overexpression construct for pPTX	
Sca_0214 SmaI rev	CCCGGGTTATGAACATCCACTCTC	SmaI		
KO Sca_0214 flanking for	TGGCGCACTAGGCCAAATC		KO confirmation primer	
KO Sca_0214 flanking rev	ACCGCAGCAGTACCTGTTC			
Up SAOUHSC01850 for	tagaattcgagctcccATTCCAAATTGGTGC ACG		Up overlap Down	
Up SAOUHSC01850 rev	ttttgtgaatAATTTCCTCCTTGTAAACGT TTTAT TC		Up overlap pMAD	
Down SAOUHSC01850 for	gaggaaattATTCACAAAATTAGGCATT CATC		Down overlap pMAD	
Down SAOUHSC01850 rev	catgccatggtacccCAGATAAGTTATTAC AATAT CGATTTC		Down overlap Up	
SAOUHSC01850 for BglII	agatetettaetaacaaacaaggaggaaagaacaAT GA CAGTTACTATATATGATGTAG	BglII	Complementation for cloning	
SAOUHSC01850 rev <i>EcoRI</i>	gaattettaTTATTTTGTAGTTCCTCGGTA TTC	EcoRI	into pRAB11-EF-Tu	
SAOUHSC01850 flanking KO for	TTAAACCACGTACATCAC		• KO confirmation primer	
SAOUHSC01850 flanking KO rev	CATTAGAACAGCAACAAG			

Notes: Restriction sites used for cloning procedure are underlined. Overlapping regions are shown in small form letters. Shine-Dalgarno sequence is highlighted in bold letters.

Figure S1. Muropeptide structures of *S. aureus* and *S. carnosus* TM300. The PGN can be isolated and enzymatically digested into monomeric or oligomeric muropeptides. Monomeric muropeptides contain a disaccharide moiety (β -1,4-linked GlcNAc-MurNAc) and stem peptide, which in the case of *S. aureus* consists of L-Ala – DiGlu – L-Lys – D-ALA – D-Ala. Most of the D-iGlu had been amidated to D-iGln. Both are referred to as D-iGlx. The stem peptides can be cross-linked resulting in oligomeric muropeptides. The necessary transpeptidation reaction is performed between D-Ala on position four of the donor stem peptide and the N-terminal Gly of the interpeptide bridge of the acceptor stem peptide by the expense of the last D-Ala of the donor stem peptide. The resulting tetra stem peptide of the original donor can serve as an acceptor for further cross-linking reactions. In *S. carnosus* TM300 the penta stem peptide of the first acceptor or of free acceptors is shortened to a tripeptide. GlcNAc: N-Acetylglucosamine; MurNAc: N-Acetylmuramic acid.

Figure S2. Growth behavior of *S. carnosus* TM300 $\Delta hlyD$ -ftsEX. (**A**) The *S. c.* $\Delta hlyD$ -ftsEX strain grown in B media showed no difference in growth behavior under standard conditions compared to *S. c.* TM300. (**B**) Limitation of nutrients has no influence on the growth behavior of *S. c.* TM300 $\Delta hlyD$ -ftsEX compared to the wild type strain *S. c.* TM300. Minimal media was supplemented with 25 mM glucose. (**C**) Different NaCl concentrations did not influence the growth behavior of *S. c.* TM300 $\Delta hlyD$ -ftsEX compared to the wild type. Growth curves were performed with B media containing either 0%, 0.5% or 1% NaCl. Black circles: *S. carnosus* TM300; Grey circles: *S. carnosus* TM300 $\Delta hlyD$ -ftsEX.

Figure S3. Deletion of *hlyD-ftsEX* and overexpression of single genes does not influence the peptidoglycan pattern. Main cultures were grown in B media with 25 mM xylose and cells were harvested after 8 h of growth. PGN was isolated and analyzed by UPLC. (**A**)No difference between the wild type strain and the *hlyD-ftsEX* deletion mutant could be detected. (**B**) PGN is not altered when either *hlyD* or *ftsEX* alone are overexpressed in *S. c.* TM300.

А

300 mAU

0

В

Figure S4. Analysis of the *S. carnosus* TM300 $\Delta 0214::ermB$ mutant and localization of the encoded protein. (**A**) Main cultures were grown for 8 hours in BM supplemented with 5 mM glucose. Deletion of Sca_0214 had no effect on the PGN pattern. (**B**) The putative LD-CP (Sca_0214) was overproduced in *S. carnosus* TM300 to investigate its localization. Protein production in *S. c.* TM300 pPTX-Sca_0214 was induced by 25 mM xylose (Xyl) or repressed by 5 mM glucose (Glc). Cells were harvested after 8 hours of growth and cytoplasmic (C) and extracellular proteins of the supernatant (S) were isolated and analyzed by SDS-PAGE. The LD-CP was localized in the cytoplasm (box). The calculated mass of the LD-CP is 39 kDa. In addition, the extracellular (S) protein fractions did not differ in the wild type, the *S. c.* TM300 $\Delta 0214::ermB$ mutant and the Sca_0214 overproduction strain, indicating that Sca_0214 has no influence on protein secretion.

Figure S5. Influence of different sugars on the peptidoglycan of *S. carnosus* TM300. Main cultures were grown for 8 h in B0 media supplemented with either 25 mM glucose (panel 2), fructose (panel 3), glycerol (panel 4), ribose (panel 5), or xylose (panel 6), or without an additional carbon source (panel 1). Peptidoglycan analysis showed clearly enlarged peaks in the monomer to trimer fractions when cells had been grown in the presence of 25 mM glucose or fructose (arrows in panels 2 and 3). Glycerol, ribose and xylose did not lead to an altered peptidoglycan pattern, nor were the cells affected when no additional carbon was added to the medium (panel 1).

Figure S6. Influence of glucose on the peptidoglycan of *S. aureus* SA113 *Aspa.* Main cultures were grown for 8 h in B0 media supplemented with either 5 or 25 Mm glucose. PGN was isolated and analyzed by UPLC. The muropeptide pattern of *S. aureus* SA113 *Aspa* showed no difference when grown in low (panel 1) or high (panel 2) glucose concentrations.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).