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Abstract: Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi.
Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of
antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the
possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms.
Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of
B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known
component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined
with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to
standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were
recently found to be effective against Borrelia persisters. Our findings showed that both bee venom
and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control
antibiotics when used individually or even in combinations had limited effects on the attached biofilm
form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial
agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo,
as well as their safe and effective delivery method for their therapeutic use.
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1. Introduction

Through the years, the severity of infectious diseases and the inability to effectively treat them with
antibiotics have become a rapidly growing epidemic. One such disease that has spread across the United
States, Europe, Asia, Australia and in some parts of Africa is Lyme borreliosis, alternatively known as
Lyme disease [1,2]. The known causative agent of Lyme disease is Borrelia burgdorferi, which is transmitted
primarily through Ixodid ticks [1,3]. According to the Center of Disease Control, the United States has
approximately 300,000 newly reported Lyme disease cases every year [4]. Successfully diagnosed individuals
are often prescribed antibiotics such as Doxycycline, Amoxicillin and Ceftriaxone; however, recent studies
demonstrated that these antibiotics are insufficient in eliminating certain forms of Borrelia spp. in vitro and
in vivo [5–13].

Borrelia spp., by its traditional definition, is a spirochetal bacterium with internalized flagella [14,15],
however, other morphological forms were also identified such as round bodies, stationary phase
persisters and biofilm forms [16–22]. B. burgdorferi can transform between these morphologies depending
on its environment [23]. Some factors that cause these different forms are certain unfavorable conditions
such as changes in pH, nutrient starvation, host immune system attacks, or even antibiotics could
promote these morphological changes [16,17,20,22,24]. These defensive forms were reported to have
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high resistance to the antimicrobials agents that are currently used to treat Lyme disease (7, 21, 22).
For example, while Doxycycline is very effective eliminating spirochetes in vitro, it did not reduce
antibiotic resilient persisters and/or biofilms [6,7,22,25]. Furthermore, it was demonstrated that none
of the antibiotics currently used to treat Lyme disease effective against the “persister” and attached
biofilm forms of Borrelia [7–10,22,25,26]. It was also reported that several antibiotics (Cefoperazone,
Daptomycin) might have potential in effectively eliminating Borrelia persisters especially when in
combination with Doxycycline [8,10]. Unfortunately, attached Borrelia biofilms, which were recently
proven to be present in infected human skin tissues, did not respond well to these new antibiotic
combinations [26].

Considering the limiting effects that standard antibiotics may have on the Borrelial morphologies, our
research group began searching for potential alternative antimicrobials. In a recent study, Stevia rebaudiana
leaf extract was found to be very effective in eliminating all known Borrelia morphological forms including
attached biofilms [26]. Based on these findings, we looked for additional alternative agents that may
also have similar effect. One alternative agent is apotoxin—also known as bee venom—derived from the
insect Apis mellifera better known as the honeybee. The use of this venom has been documented for its
medicinal purposes for approximately 6000 years ago and several studies have proven its antimicrobial
effects [27,28]. In a previous study, bee venom’s component melittin was shown to have significant effects
on Borrelia spirochetes at MIC concentrations of 100 µg/mL [29]. Recent data shows similar MIC values
for melittin when used to treat several other gram-negative microorganisms such as Salmonella enterica and
Yersinia kristensenii [30]. In this report, we expanded these findings by testing the sensitivity of different
forms of B. burgdorferi to bee venom and its component melittin in comparison to antibiotics recently
found effective against Borrelia persister forms [7–10]. To assess antimicrobial sensitivity of bee venom
and melittin, previously published methods such as SYBR Green I/PI assay combined with total direct
live cell counting were used for log phase spirochetes and stationary phase persisters [6,31], while attached
biofilms were analyzed by crystal violet and LIVE/DEAD staining techniques [6]. Fluorescent and atomic
force microscopy methods were also employed to further visualize the effect of these antimicrobial agents
on Borrelia.

2. Results

Prior to testing the potential antimicrobial effect of bee venom on B. burgdorferi using SYBR Green
I/PI assay, bee venom, melittin and all the antibiotics used in this study were analyzed for auto
fluorescence due to reported findings of potential auto-fluorescence issues of certain antimicrobials
in previous studies [24,29,31]. Values from auto fluorescence detected from any of the antimicrobials
were deducted from future experiments. However, due to reports of cellular auto fluorescence
from antibiotic treated bacterial cells following intracellular damage [32] all results from the SYBR
Green I/PI were confirmed using the direct counting method of live/dead cells using the Live/Dead
assay [6–10,26,31].

In the first set of experiments, antibiotics recently reported to be effective for several Borrelia forms
were tested to confirm the previous findings [31]. Doxycycline, Cefoperazone, Daptomycin, as well as
the combination of the three-antibiotics (D + C + D), were used in concentrations reported effective on
both logarithmic phase (spirochetes) and stationary phase (persisters) cells of B. burgdorferi. To determine
the long-term effects of all antimicrobials, recovery cultures were used in which treated cells were further
cultured in antibiotic free media for 7 days as described previously [7–10,26,31]. Furthermore, because
our previous research shows that the free floating and surface bound aggregate forms could have
different antibiotic sensitivity [6,26], we separately studied the effect of bee venom and melittin on the
surface attached biofilm form as well as the free-floating aggregates. As a negative control, appropriate
amounts of sterile PBS buffer were used in all experiments. To determine the effectiveness of the
different antimicrobials, SYBR Green I/PI assay and direct counting methods were used in parallel
and results are depicted in Figure 1A,B respectively. Data generated from both methods were in good
agreement to previously reported data for all the antibiotics tested [31], i.e., Doxycycline significantly
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reduced the number of spirochetes but not the persisters (Figure 1A). In contrast, Cefoperazone,
Daptomycin and the three-antibiotic combination (D + C + D) significantly reduced viable spirochetes
and persisters (Figure 1A). However, results from SYBR Green I/PI assay and direct counting were
significantly different. The direct counting method indicated a higher cell death rate for Daptomycin
and the three-antibiotic combination (D + C + D) treatments (Figure 1A,B respectively).
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Furthermore, due to the unknown half-life of the potentially active components in bee venom
on Borrelia, we compared the effect of bee venom administered in both a single treatment and daily
regimens for 3 days (Figure 1 and Figures S1–S4, Table S1 in Supplementary Materials). The daily
treatment protocol was found to be significantly more effective and is shown in Figure 1 and used in
future experiments.

When SYBR Green I/PI assay was used, bee venom data showed that the number of viable
logarithmic phase spirochetes were significantly lower at all concentrations (p value ≤ 0.01) than the



Antibiotics 2017, 6, 31 4 of 19

PBS treated negative control or any of the antibiotic treated cultures except Doxycycline (p value ≤ 0.01)
(Figure 1A). When bee venom was used at a concentration above 100 µg/mL, bee venom, the results
demonstrated a greater reduction in spirochetes than the Doxycycline treated cultures. Stationary phase
persisters treated with bee venom concentrations above 100 µg/mL were significantly reduced
compared to the negative control and Doxycycline (p value ≤ 0.01) (Figure 1A). In addition, the effect
of bee venom treatment was comparable to Cefoperazone and the three antibiotics combination
(D + C + D) at concentrations at greater than or equal to 400 µg/mL (Figure 1A). In the 7-day subculture
experiments testing for cells, which were able to recover after antimicrobial treatments, there was a
significant decrease (p value ≤ 0.01) in the number of viable cells compared to the negative control and
Doxycycline (p value ≤ 0.01).

In parallel experiments, one of the major antimicrobial components of bee venom, melittin,
was tested first using SYBR Green I/PI assay (Figure 1A). Bee venom is comprised of 50% melittin,
therefore the concentrations used for testing melittin were 50% less than when whole bee venom
was used. Melittin was administered daily at concentrations shown previously to have significant
effect on Borrelia spirochetes [29]. Results from this study showed that melittin could significantly
decrease the numbers of persisters (p value ≤ 0.05) compared to the negative control (Figure 1A).
Melittin, at concentrations below 400 µg/mL however, showed significantly higher viable spirochete
numbers (p value ≤ 0.05) than Doxycycline (p value ≤ 0.01). In the 7-day recovery subculture there
were significantly fewer cells (p value ≤ 0.01) when concentrations above 200 µg/mL of melittin
were used compared to the negative control and Doxycycline (Figure 1A). Melittin was significantly
less effective on recovered subculture cells (p value ≤ 0.01) in comparison to the three-antibiotic
combination treatment (D + C + D).

To confirm B. burgdorferi viability after bee venom and melittin treatment, all SYBR Green I/PI assay
results were confirmed via a total viability direct counting method as described previously [6–8,26].
In these experiments, a significant reduction of viable cells was found when exposed to whole bee
venom at all concentrations compared to the negative control and Daptomycin (p value ≤ 0.01)
(Figure 1B). Similarly, exposure with concentrations >100 µg/mL of whole bee venom resulted in
significantly fewer persisters in comparison to the negative control, Doxycycline and Cefoperazone
(p value ≤ 0.01) in a dose-dependent manner (Figure 1B). The 7-day subculture experiments showed
that doses above 400 µg/mL of bee venom effectively eliminated live cells similarly to Cefoperazone
and to the three-antibiotic combinations (D + C + D) (Figure 1B).

When the effectiveness of melittin on B. burgdorferi was tested using a direct counting approach,
there was again a significant difference between the results from the SYBR Green I/PI assay and total
direct counting method (Figure 1B). Results showed that melittin significantly reduced the numbers
spirochetes (p value ≤ 0.01) at all concentrations compared to the negative control and Doxycycline
(p value ≤ 0.01) (Figure 1B). Persisters treated with melittin showed significant reduction at all
concentrations (p value ≤ 0.01) compared to the negative control, Doxycycline and the three-antibiotic
combination (D + C + D) (Figure 1B). The 7-day recovery subcultures exposed to all concentrations of
melittin were also significantly reduced (p value ≤ 0.01) compared to the negative control, bee venom
and all used antibiotics (Figure 1B). In summary, we concluded that the MIC concentration of bee
venom on Borrelial spirochetes is 200 µg/mL and the MIC for melittin is 100 ug/mL.

To further verify the effectiveness of all antimicrobial agents, the viability of the different
morphological forms and cultures of B. burgdorferi were evaluated by a LIVE/DEAD staining method
combined with fluorescent microscopy imaging. Representative images visualize the effects of these
treatments on spirochetes (Figure 2), persister cells (Figure 3) and 7-day recovery subcultures (Figure 4).
Panel As in Figures 2–4 depict the negative control (PBS control), while positive controls (antibiotics
and antibiotic combinations) were shown in panels (B–F) in Figures 2–4. For the individual antibiotics
and the antibiotic combination, the obtained images were in agreement with the direct counting data.
For example, Cefoperazone and three-antibiotics combination (D + C + D) were very effective in
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eliminating spirochetes, a data which was found by the direct counting data but not with SYBR Green
I/PI method (Figure 1A,B).Antibiotics 2017, 6, 31 5 of 19 
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the Methods and representative images were taken at 100× magnification. Panel (A) Borrelia culture 
treated only with PBS was used as a negative control. Panel (B) Doxycycline (DOXY) treated; Panel 
(C) Cefoperazone (CEFO) treated; Panel (D) Daptomycin (DAPTO) treated and Panel (E) 
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Figure 2. Representative Live/Dead staining images of B. burgdorferi log phase spirochetal cultures treated
with different antimicrobial agents. Cells were stained with SYBR Green I/PI as outlined in the Methods
and representative images were taken at 100× magnification. Panel (A) Borrelia culture treated only
with PBS was used as a negative control. Panel (B) Doxycycline (DOXY) treated; Panel (C) Cefoperazone
(CEFO) treated; Panel (D) Daptomycin (DAPTO) treated and Panel (E) Three-antibiotic combination
(D + C + D). Panels (F–H) Bee venom (BV) was used in increasing concentrations while Panels (I–K)
depicts melittin (M) treated cells. Live cells are stained with green color while dead cells are stained red.
Scale bar: 100 µm.
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Figure 3. Representative Live/Dead staining images of B. burgdorferi stationary phase persister
cultures following treatment with different antimicrobial agents. Cells were stained with SYBR
Green I/PI as outlined in the Methods and representative images were taken at 100× magnification.
Panel (A) Borrelia culture treated only with PBS was used as a negative control. Panel (B) Doxycycline
(DOXY) treated, Panel (C) Cefoperazone (CEFO) treated, Panel (D) Daptomycin (DAPTO) treated
and Panel (E) Three-antibiotic combination (D + C + D). Panels (F–H) Bee venom (BV) was used in
increasing concentrations while Panels (I–K) depicts melittin (M) treated cells. Live cells are stained
with green color while dead cells are stained red. Scale bar: 100 µm.
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Figure 4. Representative Live/Dead staining images of B. burgdorferi 7-day recovery cultures
following treatment with different antimicrobial agents. Cells were stained with SYBR Green I/PI as
outlined in the Material and Methods and representative images were taken at 100× magnification.
Panel (A) Borrelia culture treated only with PBS was used as a negative control. Panel (B) Doxycycline
(DOXY) treated, Panel (C) Cefoperazone (CEFO) treated, Panel (D) Daptomycin (DAPTO) treated
and Panel (E) Three-antibiotic combination (D + C + D). Panels (F–H) Bee venom (BV) was used in
increasing concentrations while Panels (I–K) depict melittin (M) treated cells at different concentrations.
Live cells are stained with green color while dead cells are stained red. Scale bar: 100 µm.

B. burgdorferi cultures treated with various concentrations of bee venom were shown in the
subsequent panels (G–I) (Figures 2–4), while cultures treated with melittin were shown in panels
(J–L) (Figures 2–4). As previously mentioned, results from these images supported the total direct
count numerical data but not the SYBR Green I/PI assay. For example, bee venom exposure showed
a significant decrease in the number of spirochetes, persisters, as well as 7-day recovery subculture
in comparison to the negative and positive controls (Panels (G–I) in Figures 2–4). Similarly, melittin
treatment demonstrated a dramatically significant decrease in live cell numbers for both log phase,
stationary phase and recovery cultures, which agreed with the direct counting data (Panels (J–L),
Figures 2–4). Table 1 summarizes the effects of various antimicrobial agents on B. burgdorferi as
determined by SYBR Green I/PI (Panel (A)) or direct counting assays (Panel (B)).
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Table 1. The effects of various antimicrobial agents on B. burgdorferi as determined by SYBR Green I/PI assay (Panel (A)) or direct counting assay (Panel (B)).
Doxycycline, Cefoperazone, Daptomycin and their combination (D + C + D) as well as different concentration of bee venom and melittin were tested on B. burgdorferi
logarithmic phase (spirochetes) culture and stationary phase (persisters) cultures as well as in 7-day recovery subculture as described previously [6–8,26]. n = 9.

A. SYBR Green I/PI Assay Spirochetes Persisters 7 Day Subculture

Treatments % Control % SD % Median % Control % SD % Median % Control % SD % Median

Control 100 11 100 100 12 100 100 16 100
Doxycycline (10 µg/mL) 33 4 33 83 3 86 122 2 83

Cefoperazone (10 µg/mL) 67 1 66 38 22 41 4 9 3
Daptomycin (10 µg/mL) 108 2 107 113 32 120 52 8 43

D + C + D (10 µg/mL) 66 1 65 32 7 34 3 9 2
Bee venom (100 µg/mL) 61 11 63 62 7 74 88 29 141
Bee venom (400 µg/mL) 45 11 37 44 25 43 59 19 115
Bee venom (800 µg/mL) 33 8 32 32 2 35 95 31 55

Melittin (50 µg/mL) 65 1 67 105 6 91 113 3 103
Melittin (200 µg/mL) 65 24 67 106 0 94 75 0 69
Melittin (400 µg/mL) 49 6 54 61 2 57 87 1 80

B. Direct Counting Assay Spirochetes Persisters 7 Day Subculture

Treatments % Control % SD % Median % Control % SD % Median % Control % SD % Median

Control 100 19 100 100 5 100 100 8 100
Doxycycline (10 µg/mL) 5 6 5 62 10 67 72 12 60

Cefoperazone (10 µg/mL) 1 1 0 43 4 43 2 6 2
Daptomycin (10 µg/mL) 65 7 73 34 5 36 35 6 175

D + C + D (10 µg/mL) 0 0 0 17 3 17 2 6 0
Bee venom (100 µg/mL) 5 6 4 80 10 79 79 5 65
Bee venom (400 µg/mL) 0 0 0 22 4 21 47 2 29
Bee venom (800 µg/mL) 0 0 0 8 3 7 1 1 0

Melittin (50 µg/mL) 0 0 0 13 5 13 0 0 0
Melittin (200 µg/mL) 0 0 0 0 0 0 0 0 0
Melittin (400 µg/mL) 0 0 0 0 0 0 0 0 0
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In the past several years, a novel aggregate form, called biofilm, was found for Borrelia and was
shown to be very antimicrobial resistant vitro and in vivo especially in attached forms [6,22,25,26,33].
Therefore, in subsequent experiments we tested all antimicrobials for effectiveness in eliminating the
attached biofilm form. To evaluate the effect of antimicrobial agents on the attached Borrelia biofilms,
first we used crystal violet quantitative biofilm assay as described previously [6,26]. As negative
control, the appropriate amounts of PBS were used (control vehicle) and all presented data were
normalized to the negative control. Bee venom exposure at >100 µg/mL but none of the antibiotics
or their combination (D + C + D), significantly reduced Borrelia biofilm mass (p value ≤ 0.01)
in comparison to the negative control (Figure 5). Melittin also reduced Borrelia biofilm mass at different
concentrations compared to the negative control (p value ≤ 0.05), or Doxycycline (p value ≤ 0.01),
or the three-antibiotic combination (D + C + D; p value ≤ 0.01) but were found less effective than whole
bee venom at >100 µg/mL (Figure 5). To verify these findings, LIVE/DEAD staining method combined
with fluorescent microscopy imaging was used. Representative microscopy images confirmed the
decreased size of Borrelia biofilm with the bee venom (Figure 6, panels (F–H)) and melittin treatment
(Figure 6, panels (J–L)). Interestingly, melittin also significantly reduced biofilm viability (red stain
Figure 6, panels (I–K)). Some of the antibiotics (Cefoperazone and Daptomycin and the three antibiotic
combination (D + C + D); Figure 6, panels (C–E) respectively) also showed some reduction in biofilm
sizes, which were not detected with the crystal violet assay; however, those remaining biofilms were
stained green suggesting that they are viable (Figure 6, panels (A–J)).
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Figure 5. Effect of different antimicrobial agents on attached B. burgdorferi biofilms. Susceptibility of
attached B. burgdorferi biofilms to antimicrobial agents after a three-day treatment was analyzed by
crystal violet method as described in Material and Methods. Doxycycline, Cefoperazone, Daptomycin
and their combination (D + C + D) as well as different concentration of bee venom and melittin were
tested on attached Borrelia biofilms. Significance against PBS buffer (negative control vehicle) with
the p value of <0.05 and <0.01 are indicated in * and ** respectively. Significance against Doxycycline
with the p value of <0.05 and <0.01 are respectively indicated in
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Panel (A) Borrelia culture treated only with PBS was used as a negative control. Panel (B) 
Doxycycline (DOXY) treated, Panel (C) Cefoperazone (CEFO) treated, Panel (D) Daptomycin 
(DAPTO) treated and Panel (E) Three-antibiotic combination (D + C + D). Panels (F–H) Bee venom 
(BV) was used in increasing concentrations while Panels (I–K) depict melittin treated cells at 
different concentration. Live cells are stained with green color while dead cells are stained red. Scale 
bar: 100 μm.  

Finally, the ultrastructure of attached B. burgdorferi biofilms treated with different 
antimicrobials were studied using atomic force microscopy. In these experiments, attached Borrelia 
biofilms were exposed to the different antimicrobials as described above then analyzed for changes 
in topography and size (Figure 7). The atomic force microscopic images are 3D rendered and 
digitally colored for improved visualization (Figure 7). The negative control was shown in Figure 7 
panel (A) followed by the positive controls in panels (B–E). Subsequently, the effects of bee venom 
and melittin were shown in panels (F) and (G) respectively. The drug-free control had a very 
compact and rigid structure (Figure 7, panel (A)) similarly to the biofilms treated with Doxycycline, 
Cefoperazone, Daptomycin and three-antibiotic combination (D + C + C) respectively (Figure 7, 

Figure 6. Representative Live/Dead images of the viability of attached Borrelia biofilms following
treatment with different antimicrobial agents. Biofilms were stained with SYBR Green I and PI as
outlined in the Material and Methods and representative images were taken at 100× magnification.
Panel (A) Borrelia culture treated only with PBS was used as a negative control. Panel (B) Doxycycline
(DOXY) treated, Panel (C) Cefoperazone (CEFO) treated, Panel (D) Daptomycin (DAPTO) treated
and Panel (E) Three-antibiotic combination (D + C + D). Panels (F–H) Bee venom (BV) was used in
increasing concentrations while Panels (I–K) depict melittin treated cells at different concentration.
Live cells are stained with green color while dead cells are stained red. Scale bar: 100 µm.

Finally, the ultrastructure of attached B. burgdorferi biofilms treated with different antimicrobials
were studied using atomic force microscopy. In these experiments, attached Borrelia biofilms were
exposed to the different antimicrobials as described above then analyzed for changes in topography
and size (Figure 7). The atomic force microscopic images are 3D rendered and digitally colored for
improved visualization (Figure 7). The negative control was shown in Figure 7 Panel (A) followed
by the positive controls in Panels (B–E). Subsequently, the effects of bee venom and melittin were
shown in Panels (F) and (G) respectively. The drug-free control had a very compact and rigid structure
(Figure 7, Panel (A)) similarly to the biofilms treated with Doxycycline, Cefoperazone, Daptomycin
and three-antibiotic combination (D + C + C) respectively (Figure 7, Panels (B–E)). Bee venom and
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melittin treated biofilms however, revealed a very loose structure suggesting the effectiveness of those
agents against biofilm structure (Figure 7, Panel (F,G)).
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3. Discussion 
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antibiotics, there has been a rise in antibiotic resistance in recent years [34]. Therefore, extensive 
effort has been made in finding novel antimicrobial compounds that can assist in the treatment of 
Lyme disease. In this study, whole bee venom, as well as its component, melittin, were tested on 
different forms of Borrelia. This idea was based on a promising earlier study, which showed that 

Figure 7. Representative atomic force microscopy images showing the ultrastructural details of Borrelia
biofilm before and after treatment with antimicrobial agents. The preparations of B. burgdorferi strain
B31 biofilms on chamber slides are described in Methods section. All biofilms were scanned at 0.4 Hz
using contact mode and the individual Z ranges (height) are indicated next to each panel by means
of a scale. The images were scanned using the Nanosurf Easyscan 2 software and the images were
processed using Gwyddion software. Scale bar located on the side of corresponding AFM scan indicate
the height changes of the topography of the biofilm. Darker colors (black and blue) indicate the
surface of the slide while lighter colors (yellow to white) indicate high points of attached biofilms.
Attached Borrelia biofilms treated with Panel (A) PBS (control), Panel (B) Doxycycline (10 µg/mL),
Panel (C) Cefoperazone (10 µg/mL), Panel (D) Daptomycin (10 µg/mL), Panel (E) Three antibiotic
combination: Doxycycline + Daptomycin + Cefoperazone (DCC, 10 µg/mL/each), Panel (F) Bee venom
(400 µg/mL) and Panel (G) Melittin (200 µg/mL).

3. Discussion

The spirochetal bacterium B. burgdorferi sensu lato is the main pathological agent of Lyme disease
in North America and Europe [1,2]. While this infectious disease may be treated with antibiotics,
there has been a rise in antibiotic resistance in recent years [34]. Therefore, extensive effort has been
made in finding novel antimicrobial compounds that can assist in the treatment of Lyme disease.
In this study, whole bee venom, as well as its component, melittin, were tested on different forms of
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Borrelia. This idea was based on a promising earlier study, which showed that melittin significantly
affected B. burgdorferi sensu stricto spirochetes by decreasing the bacterium’s motility as well as its
growth [29]. The effects of bee venom and melittin were compared against antibiotics from a study
that used the FDA drug library to find highly effective agents for B. burgdorferi [7]. The study also
confirmed several previous findings that not all antibiotics being used for Lyme disease treatment
are effective on all morphological forms of B. burgdorferi [6–8,26]. A later study showed that newly
discovered antibiotic combinations that were effective for Borrelia persisters [7–10] had limited effect
on attached Borrelia biofilms [26]. Therefore, our study aimed to evaluate whether bee venom and
melittin could be effective for all morphological forms of Borrelia.

We utilized several different methods to evaluate the effect of all antibiotics and antimicrobials
and found that certain techniques such as SYBR Green I/PI needed to be confirmed by additional
assays. A potential explanation for the findings is that the SYBR Green I/PI assay could be affected by
auto fluorescent components of the dying cells as previously reported for Escherichia coli treated with
antibiotics [32]. It was suggested that cell death could trigger changes in intrinsic cellular constituents
and produce fluorescent chemical compounds [35].

Based on findings from different techniques, we concluded that both whole bee venom and
melittin could have significant effects on all Borrelia morphological forms including inhibiting the
recovery of spirochetal cells and persisters as evidenced by recovery cultures in antimicrobial free media.
Whole bee venom and melittin also significantly reduced the number and/or viability of attached
biofilms, which based on previous research, is the most antibiotic resistant form of B. burgdorferi [6,25,26].
The MIC concentration values for melittin, for example, were in good agreement with previous studies
that evaluated melittin on Borrelia spirochetes [29] and on several other gram-negative microorganisms
such as S. enterica and Y. kristensenii [30].

Comparison of the observed effects of whole bee venom and melittin on Borrelia showed some
differences, however. For example, ultrastructure analyses using atomic force microscopy revealed
that whole bee venom treatment had more of an effect on the morphology and size of the biofilms
than its viability, suggesting the complexity of biofilm responsiveness to antimicrobial agents, which
requires further investigation. Differences in bee venom and melittin effectiveness on B. burgdorferi
suggest that there may be other components within the whole bee venom, that also have an effect on
Borrelia biofilms. Similar findings were reported by a recent study testing different whole leaf Stevia
extracts on B. burgdorferi [26], which found that while whole Stevia leaf extracts were effective, its known
component stevioside was not. The results suggested that other components within the whole Stevia leaf
extract might affect Borrelia either individually or in a potentially synergistic capacity with stevioside.
In addition, the standard antibiotics used in this study had little or no effect on attached biofilm forms
of B. burgdorferi. Similar findings were observed in previous studies on Pseudomonas aeruginosa and
Staphylococcus aureus, which found that antibiotics could not eliminate the biofilm form and in some
cases, could even increase its size [36–39]. In our study, a similar result was found for Doxycycline;
it actually increased the attached Borrelia biofilm mass, an observation that agreed to previously
published findings [6,25,26].

Bee venom has been shown in past studies to have a wide range of applications in reducing or even
eliminating ailments [28,40–44] which can be explained by the multitude of components of bee venom
that give it its properties. One type of component, called antimicrobial peptides, could not just eliminate
pathogens but could also affect inflammation, enhanced would healing and even had anti-biofilm
behavior on different microorganisms [30,42,45–49]. Furthermore, these specific peptides could also
affect the bacteria’s ability to create fully functional biofilms [50]. Thus, it is vital to understand the
components used within the study to comprehend its significance as an antimicrobial treatment.

Melittin is a small, amphipathic α–helical antimicrobial peptide of 26 amino acids and comprises
approximately 50% of the whole bee venom used within our study [40,41,43,44,51]. The antimicrobial
peptides in bee venom, including melittin and phospholipase A2, have been a topic of interest within
the scientific community, due to the versatility in its function in innate immunity, as well as minimizing
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chances of adverse immunological reactions when used in combination with other compounds. In this
study, Phospholipase A2 was also tested at different concentrations but did not show any significant
effect on any of the morphological forms of Borrelia (data not shown).

In recent years, there has been a focus on melittin and its mechanism of action for targeting
different microbes [27,42]. This antimicrobial peptide, similar to most of its kind, is amphipathic.
This allows for melittin integration into target phospholipid bilayers in low concentrations, while in high
concentrations it homodimerizes to form pores, releasing Ca2+ ions or disrupting phospholipid head
groups [27,38,52–54]. In B. burgdorferi, the Ca2+ ions are used for the development of a protective outer
shell for mature biofilms, for the evasion of potential host resistance [22,25]. The specific mechanism
of action of melittin, much like other antimicrobial peptides, are dependent on the target bacteria’s
phospholipid bilayer composition, as well as evasion of common antimicrobial treatments which could
affect the binding locations of peptides to the cell membrane [45,54,55].

Antimicrobial peptides are well known to have very high activity towards microbial membranes
with low antimicrobial resistance development [48,56–58]. One of the important reasons that biofilm
structure could provide high resistance to antibiotics is mainly due to the presence of dormant
microbial populations (sleepers) inside the biofilms. These biofilms are very difficult to kill with
standard antibiotics, which often relies on actively growing cells [59]. The use of certain antimicrobial
peptides such as mellittin could eliminate this problem by permeabilizing microbial membranes,
which results in membrane disruption and cell death even for those dormant cells in the center of the
biofilm [48,49]. Interestingly, however, recent findings indicate that antimicrobial peptides can also
have intracellular targeting that affects nucleic acid and/or protein synthesis even protein foldings [60].
However future studies are necessary to evaluate whether this is true for melittin.

Another focus in recent publications on bee venom or melittin is the clinical effectiveness of these
natural antimicrobials on different diseases. Melittin, for example, was shown to have a very strong
immunoregulatory activity, anticancer effect and even shows promise as chemotherapy of human
immunodeficiency virus (HIV) infection [41,43,61,62]. Unfortunately, several issues were raised as to
the safe administration of melittin in the clinical setting, due its cytotoxicity to human cells; for example,
it has the ability to lyse human erythrocytes, exhibits necrotic activity against gastrointestinal and
vaginal epithelial cells and can trigger severe allergic reactions [43,63–65]. To reduce it cytotoxic affects,
recent studies showed that melittin could be paired with various pharmaceutical agents to specifically
eliminate cancer cells, which led to further promising clinical trials [51,66]. In another effort of reducing
melittin cytotoxicity, melittin was bound to a nanoparticle, which protected normal human cells while
it efficiently attacks HIV infected cells (Hood et al., 2013). The findings from these studies could help
promote the design of a novel approach for the successful application of bee venom or melittin in the
treatment against B. burgdorferi, as well as other pathogenic microbes.

4. Materials and Methods

4.1. Bacterial Culture

Borrelia burgdorferi strain B31 was obtained via American Type Culture Collection (ATCC, #35210).
Bacteria were maintained at low passage isolates (≤4) in Barbour-Stoner-Kelly H (BSK-H) media
(Sigma, St. Louis, MO, USA) supplemented with 6% rabbit serum (Pel-Freez Biologicals, Rogers, AR,
USA) free from antibiotics in sterile glass 15 mL tubes and incubated at 33 ◦C with 5% CO2.

4.2. Antimicrobial Agent Preparation

Apis mellifera venom for in vitro testing and prepared using sterile 1× phosphate buffer saline
pH 7.4 (PBS) (Fisher, Waltham, MA, USA). Natural melittin extracted from bee venom was purchased
(Sigma, St. Louis, MO, USA) and prepared for testing as directed by the manufacturer. The antibiotics
(Doxycycline, Cefoperazone, Daptomycin) were purchased from Sigma and prepared at 10 mg/mL
stock per manufacturer’s instructions. In addition, Doxycycline, Cefoperazone and Daptomycin were
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also combined (D + C + D) to test on B. burgdorferi for the treatment of persister cells. All antimicrobial
agents were sterilized using a 0.1 µm filter unit (Millipore, Billercia, MA, USA), aliquoted and stored
at −20 ◦C before further use.

4.3. Antimicrobial Testing

4.3.1. Bacterial Preparation

Antimicrobial treatment effectiveness was tested on logarithmic phase and stationary phase
of B. burgdorferi spirochetes using SYBR Green I/PI assay and direct counting method [6,26,31].
Spirochetes in logarithmic phase were seeded at 1 × 105 cells/mL on 96-well sterile tissue culture
plates (BD Falcon, Frankline Lakes, NJ, USA) then incubated for 48 h prior to antimicrobial treatment.
Stationary phase cultures were seeded at 5 × 106 cells/mL in a 96-well sterile tissue culture plate for
5 days prior to treatment. Spirochetes for surface attached biofilms were seeded at 5 × 106 cells/mL
in 4-well Permanox chamber slides (Thermo Scientific, Waltham, MA, USA) for 5 days to establish
biofilm form. Floating spirochete cells and aggregates from the supernatant were removed to ensure
only surface attached biofilms will be analyzed.

4.3.2. Subculture Experiments

Experiments were prepared with a 1:75 dilution of antimicrobial treated stationary culture placed
into antimicrobial agent free media and incubated for 7 days using standard culture conditions.
Following incubation, the viability was assessed using the SYBR Green I/PI assay and direct counting
method as described below.

4.3.3. SYBR Green I/Propidium Iodide Assay

To analyze antimicrobial agent effectiveness, a standard SYBR Green I/Propidium Iodide assay
(SYBR Green I/PI) was performed as previously described [26,31]. Staining mixture was prepared
using sterile nuclease free water (Fisher, Waltham, MA, USA), SYBR Green I (10,000× stock, Invitrogen,
Grand Island, NY, USA) and propidium iodide (20 mM, Thermo Scientific) before being used on
B. burgdorferi samples. Stained culture was incubated in the dark for 15 min on a rocking platform before
being measured on a fluorescent reader (BioTek FL×800) at 485 nm (setting excitation), the absorbance
wavelength at 535 nm (green emission) and 635 nm (red emission). Standard curves were generated
for spirochetes, persisters and 7-day subculture cells by preparing live:dead samples. Dead cells
were prepared by adding 70% isopropyl alcohol for 15 min (Fisher Scientific, Waltham, MA, USA)
while live cells were left untreated. To generate a standard curve, different ratios of live and dead cell
suspensions (live:dead ratios = 0:10, 2:8, 5:5, 8:2, 10:0) were added to the wells of the 96-well plate and
stained as aforementioned. Using least square fitting analysis, the regression equation was calculated
between the percentage of live bacteria and green/red fluorescence ratios. The regression equation
was used to calculate the percentage of live cells in each sample of the screening plate. Also, images of
the treated sample were taken using fluorescent microscopy (Leica DM2500, Leica Microsystems, Inc.
Buffalo Grove, IL, USA) at 100× magnification.

4.3.4. Direct Viable Cell Counts of B. burgdorferi

As a confirmation test, the SYBR Green/PI stained cultures were assessed for cell growth by
directly counting live and dead bacteria using a bacterial counting chamber (Hausser Scientific,
Horsham, PA, USA) using fluorescent microscopy (Leica DM2500). As above, using least square fitting
analysis the regression equation was calculated and used to calculate the percentage of live cells in
each sample.
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4.3.5. Autofluorescence of Antimicrobials

All antimicrobial agents were tested for auto fluorescence due to previously reported issues in
SYBR Green I/PI assay for detection potential auto fluorescence of the agents [7,26]. In a 96-well
plate, antimicrobials were tested in 100 µL of BSK-H media using the SYBR Green I/PI assay and the
obtained auto fluorescence values were subtracted from the obtained experimental values.

4.3.6. Quantitative Assay for Attached Biofilms.

The efficacy of antimicrobial agents on attached biofilms were quantified by measuring the total
biomass using crystal violet staining before and after antimicrobial treatments. All centrifugation steps
were performed at 12,000× g at room temperature for 5 min. At the end of the treatment regimen,
culture media was discarded and attached biofilms were collected by adding 500 µL of 1× PBS before
being pelleted. Supernatant was discarded and 50 µL of (0.01% w/v) crystal violet (Sigma, St. Louis,
MO, USA) was added to biofilms prior to a 10-min incubation at room temperature. Unbound stain
was removed by centrifugation before the biofilm pellet was washed with non-sterile 1× PBS and
re-centrifuged. The resulting supernatant was discarded and 200 µL of 10% acetic acid (Sigma, St. Louis,
MO, USA) was added to the pellet to release and dissolve excess crystal violet stain during a 15-min
incubation period at room temperature. Following incubation, the biofilms were centrifuged and the
remaining crystal violet staining was extracted, transferred to a 96-well plate and read at 595 nm using
a BioTek Spectrophotometer (BioTek, Winooski, VA, USA).

4.4. Atomic Force Microscopy

Further visualization of Borrelia biofilm structure after antimicrobial treatments (Thermos Scientific,
Waltham, MA, USA) were performed using atomic force microscopy. BSK-H media was removed
immediately before biofilms were analyzed. All scans were conducted using contact mode AFM
imaging in air using the Nanosurf Easyscan 2 AFM (Nanosurf, Woburn, MA, USA) using SHOCONG
probes (AppNANO, Mountain View, CA, USA) Images were processed using Gwyddion software
(Department of Nanometrology, Czech Metrology Institute. Brno, Czech Republic) [67].

4.5. Statistical Analysis

Quantitative results were analyzed using the median value of all the readings from antimicrobial
screen in addition to a two-tailed Student’s t-test (Microsoft Excel, Redmond, WA, USA) as well as graphed
using Microsoft Excel software. All experiments were performed a minimum of four independent times
with at least three samples per experiment. Data represents the mean ± SD.

5. Conclusions

In conclusion, the findings from this study showed that whole bee venom and melittin were
effective against all B. burgdorferi morphological forms in vitro, including antibiotic resistant attached
biofilms. Though the findings from this in vitro study cannot be applied directly to clinical practice,
it gives insight into the potential use of bee venom and its components against B. burgdorferi.

Supplementary Materials: The following are available online at www.mdpi.com/2079-6382/6/4/31/s1,
Figure S1: The single dose effects of various antimicrobial agents on B. burgdorferi for as determined by SYBR
Green I/PI assay (Panel A) or direct counting assay (Panel B). Figure S2: Representative Live/Dead staining
images of B. burgdorferi log phase spirochetal cultures following single dose treatment with different antimicrobial
agents. Figure S3: Representative Live/Dead staining images of B. burgdorferi stationary phase persister cultures
following single dose treatment with different antimicrobial agents Figure S4: Representative Live/Dead staining
images of B. burgdorferi 7-day recovery cultures following single treatment with different antimicrobial agents.
Table S1: The single dose effects of various antimicrobial agents on B. burgdorferi as determined by SYBR Green
I/PI assay (Panel A) or direct counting assay (Panel B).
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