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Abstract: Biocolourants have been investigated as alternatives to synthetic dyes. However, natural
origin per se is not a label of harmlessness and research is needed to obtain safe dyes. We studied
the cytotoxicity of the extracts from fungal (Cortinarius semisanguineus, Tapinella atrotomentosa) and
plant (Tanacetum vulgare, Salix phylicifolia) sources and the woollen fabrics dyed with the extracts.
Cytotoxicity in vitro using hepa-1 mouse hepatoma cells for 24 h and 72 h exposure was observed
as the highest tolerated dose. All biocolourants produced intensive colour on fabrics with fastness
properties from moderate to good. The Salix and Cortinarius samples did not show any cytotoxic
effects, whereas the Tanacetum and Tapinella samples had slightly higher test values but were not
interpreted as being significantly toxic. Higher than zero values of the undyed fabrics showed the
importance of examining their toxicity as well. It was found that the cytotoxicity of the samples dyed
with the biocolourants did not differ significantly from the undyed wool fabric. The concentrations
of dyes used in the assays were very low, imitating the dose of the user. In addition to colouring
properties, natural dyes may have pharmaceutical and antibacterial properties which would enhance
the interest in using them in products for added value.

Keywords: natural dye; biocolourant; secondary metabolite; in vitro; cytotoxicity; mouse hepatoma
cell; highest tolerated dose; HPLC-UV/Vis-MS

1. Introduction

1.1. Background

The environmental disadvantages of synthetic dyes are well known. The textile industry discharges
large amounts of highly coloured effluent wastewater, the dyes of which severely affect photosynthesis
and aquatic life. Effluents may also contain toxic amounts of metal ions and chlorine [1]. In textile
workers and end-users, synthetic colourants may cause adverse reactions, such as allergies, urticaria
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and dermatitis, or respiratory difficulties like asthma, in addition to cytotoxic, genotoxic, carcinogenic
and mutagenic effects [2–5].

Alternative colourants among secondary metabolites from plant and microbial sources such as
fungi, yeast and algae have been explored. The natural origin does not automatically mean non-toxicity.
Also, the different stages of the textile production process have an impact on the final product, its safety
to the consumer, and the environmental load. The degradability of biocolourants is a positive feature
in circular material production, whereas in the textile dyeing process, the requirements of colourants
are set in high affinity to fibres and stability under end-use conditions. Thus, the utilisation of
bio-based colourants requires careful consideration of dye technical and toxicological properties as
well as economic feasibility, in which the multi-functionality through antimicrobial and UV-protective
properties can create interesting prospects.

Our aim in this article is to examine the information about the safety of natural colourants and
the results from the preliminary tests of a few dyes of fungal and plant origins. In this study, fungi
surprise webcap [Cortinarius semisanguineus (Fr.) Gillet] and velvet roll-rim [Tapinella atrotomentosa
(Batsch.) Šutara] and plants tansy (Tanacetum vulgare L.) and willow bark (Salix phylicifolia L.) were
used as sources of biocolourants for dyeing of woollen fabrics.

1.2. Safety and Medicinal Use Related to Fungal and Plant Colourants

Correct identification and characterisation of the biocolourant’s source is crucial when assessing
potential toxicity, as toxic compounds are concentrated in certain taxa [6,7]. Different taxa, whether
fungi or plants, also have their own typical colourants [8–11]. For Rubia and Cortinarius genera,
the anthraquinones provide a variety of red hues, whereas yellow-orange flavonoids and carotenoids can
be obtained from Tanacetum species, and bluish-violet terphenyl quinones from Tapinella fungi [12,13].

Plant parts such as stems, leaves, flowers, roots, bark, berries, and cones vary in the composition
and contents of biocolourants according to the developmental stage and harvesting time [6,10,14–17].
The contents may also vary depending on the geographical area, cultivation practices and storage
conditions [18–22].

The pre-handling steps such as drying and grinding and subsequent extraction conditions
(e.g., solvent) affect the content of biocolourants [13,23–25]. However, after drying at 45 ◦C for 1 week,
milling to a powder and storage for more than a year, at least two native enzymes in madder roots
(Rubia tinctorum L.) were still highly active upon addition of water, and depending on the conditions,
caused conversion of molecules into forms, some of which were toxic [26].

Natural dyes are complex mixtures of dye components, setting challenges for industrial utilisation.
Repeatable colour can be achieved by using standardised extraction and quality analyses of the dye
components in the mixtures or by producing single component purified dyes [13,25]. The improved
repeatability of colour components will also minimise variation of other secondary metabolites and
risks of toxic properties.

By understanding reaction mechanisms and how the reactions can be controlled [26], the safety
risks can be minimised. Those reactions may also affect the dyeing potential, as the products of
hydrolysis, i.e., aglycone structures, differ in their properties and affinities to various materials
compared to their derivatives [9,13]. The historical background does not necessarily give any guarantee
of safeness as even widely-used dye sources can contain toxic secondary metabolites: madder root
extracts (R. tinctorum) having alizarin (1) as the main anthraquinone aglycone, also contained toxic
lucidin (2), rubiadin (3) and xanthopurpurin (4) (Table 1) [26–30], of which lucidin and xanthopurpurin
were hydrolysis and decarboxylation products of lucidin primeveroside and munjistin. Furthermore,
it has been proposed that lucidin is converted into other compounds, such as nordamnacanthal or
quinone methide [26,28,31] or degrade to xanthopurpurin.
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Table 1. Chemical structures of some natural anthraquinones.

Chemical Compound Structure

Alizarin (1)
C14H8O4

M = 240.21 g mol−1
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Toxicity studies of colour providing secondary metabolites, e.g., those of anthraquinones,
have given somewhat contradictory results. Jäger et al. [27] detected lucidin (2), rubiadin (3) and
xanthopurpurin (4) being mutagenic, but not alizarin (1) (Table 1), in madder root extracts (EtOAc).
However, all the madder dyed wool samples had mutagenic effects in Ames assays (strain TA100).
Previously, Yasui and Takeda [29] had found that the madder root extracts (EtOAc) were mutagenic for
both strains of S. typhimurium (TA100 and TA98). They concluded that all mutagenic activity found in
the EtOAc extracts was due to lucidin. However, Kawasaki et al. [32] suggested that the mutagenicity
of the extracts of R. tinctorum was not exclusively due to lucidin but also a result and contribution of
other mutagenic compounds.

The chemical structures of secondary metabolites and their functional groups, for example,
hydroxyl, alkyl, alkoxy or chlorine, attached at specific positions, can confer different biological activities
and genotoxicity profiles [33–35]. Lucidin (2) and rubiadin (3), which are 1,3-dihydroxyanthraquinones
possessing a methyl or hydroxymethyl group at carbon 2, showed strong mutagenicity, whereas
alizarin (1), 1,2-dihydroxyanthraquinone without other substituents, had no mutagenicity. Further,
4,5-dihydroxylation of 2-methyl anthraquinones did not have any apparent effect on the mutagenicity.
The results suggested that both the number of OH-groups and their positions are relevant for the
mutagenicity [32].

Many studies have found antimicrobial properties in biocolourants [36–38]. When testing toxicity
in vitro, it is important to analyse the conditions and observed changes in detail to distinguish between
toxic and non-toxic antimicrobial activity. Antimicrobial activity can be considered toxic (i.e., cytotoxic)
if it induces changes at the level of cell structure [39].

1.3. Flavonoids and Carotenoids in Tanacetum Vulgare

T. vulgare L., commonly called tansy (Table 2), is a flowering herbaceous plant widely distributed
in the Northern Hemisphere and known for its curing properties for colds and fevers [39].

Tansy has been reported for its variety of chemotypes based on the most predominant constituent
in the essential oil, which may change according to its growth stage [16]. In addition to typical
monoterpenes, less volatile sesquiterpenes, sesquiterpene lactones, non-volatile terpenes, flavonoids,
and phenolic acids are also present [15,40–45]. Flavonoids and carotenoids are the major colouring
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constituents in T. vulgare. For dyeing purposes, the whole plant can be used, resulting in a
greenish-yellow colour, while flower heads produce bright yellow [13,46].

In the flower heads, luteolin (5), quercetin (6), violaxanthin (7), β-carotene (8) (Table 2) and their
derivatives are dominating colourant components [12,13], whereas caffeic, ferulic and neochlorogenic
acid and their derivatives occur in all plant parts [12,37,47–49]. The amounts of potentially harmful
alkaloids and terpenes (e.g., sesquiterpene lactones) depend largely on the chemotype. Exo-methylene
group in the lactone is regarded to be essential for the cytotoxicity, but also the presence of the
O=C-C=CH2 system has been shown to be responsible [40,42,50].

Devrnja et al. [37] identified neochlorogenic acid, 3,5-O-dicaffeoylquinic acid, dicaffeoylquinic
acid and quercetin-3-O-glucoside as the main secondary metabolites from the MeOH extracts of
tansy flower heads. The extracts exhibited a strong antiproliferative effect on human cervical
adenocarcinoma (HeLa) cells causing cell shrinkage and detachment but did not lead to a significant
cell detachment of human non-tumour cells (MRC-5) under the same conditions. The tansy was
categorised as trans-chrysanthenyl acetate chemotype with low proportions (< 10%) of generally
harmful monoterpenes trans- and cis-thujone [37]. The water extract of tansy leaves possessed a strong
diuretic action but no renal toxicity or other detrimental effects in tests on rats [51–54].

1.4. Tannins in Salix spp.

Salix species (Table 2) are deciduous shrubs, trees or subshrubs occurring mainly in the temperate
and arctic areas of the Northern Hemisphere. Leaves and bark are rich in secondary metabolites such
as condensed tannins, constituting approx. 2–3% of dry weight (dw) [10,23,55,56] but even 10% (dw)
in twigs (Salix pyrolifolia Ledeb.) [10]. Tannins bind to proteins and carbohydrates and accumulate
alkaloids and metals (e.g., Al, Fe, Cu). Traditionally, willows (Salix spp.) have been considered safe,
as they have been used as a medicine to reduce fever, inflammation and pain. Adverse effects of bark
extracts appear to be minimal. The primary risk may relate to allergic reactions in salicylate-sensitive
individuals [57,58].

The composition of secondary metabolites varies highly among Salix species, between genotypes
and hybrids [10,14,56,59,60]. The condensed tannins in willow bark are procyanidins, which consist
of chains with varying numbers of flavan-3-ol monomers linked to each other. The bark contains
higher amounts of phenolics and higher diversity of glycosides than the leaves [14,59,61,62]. In dyeing,
tannins produce browns and can be used as biomordants [13].

Salix bark contains simple phenolic glucosides like picein (9), triandrin (10), catechin (11) and
salireposide (12) as main colourants reported by Dou et al. [63]. Salix spp. also contain other phenolics,
such as phenolic acids, flavones and chalcones and yellow providing flavonols, especially quercetin
(6) derivatives.

1.5. Anthraquinones in Cortinarius Semisanguineus

Cortinarius spp. are ectomycorrhizal fungi growing mainly in coniferous forests. Of the secondary
metabolites, fungi Cortinarius, subgroup Dermocybe, are rich in monomeric anthraquinones also
containing dimeric pre-anthraquinones of flavomannin type [13,64–68].

The fruiting bodies of C. semisanguineus (Table 2) are relatively small (< 10 cm, cap ∅ 3–9 cm),
but are produced in large numbers by the mycelia. Among the more abundant compounds are
emodin (13), emodin-1-glucoside, dermocybin (14), dermocybin-1-glucoside and dermorubin (15).
Also, physcion (16), dermolutein, 5-chlorodermolutein, 5-chlorodermorubin, dermoglaucin, endocrocin,
and erythroglaucin have been found [68]. Anthraquinones from Cortinarius species have inhibited
the growth of Staphylococcus aureus and P. auerugosa [69], and many anthraquinones have bioactive
properties [70].

Macromycetes have mostly been studied for their oral toxicity in humans [71]. Highly nephrotoxic
bipyridine orellanine, which is a good aluminium ion chelator, has been found in Cortinarius orellanus
from Europe and Cortinarius armillatus native to North America [67,72,73]. Because Cortinarius fungi
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are endemic, it should not be assumed that toxins in European species are similarly present or absent
in species of other regions, even if they appear morphologically similar [72,73]. Orellanine has not
been found in the European species of C. armillatus, nor in Cortinarius sanguineus (syn. Dermocybe
sanguinea) [74] or C. semisanguineus [75], which all contain anthraquinones and have been used for
dyeing [13].

Toxicity tests for anthraquinones [33,37] show that the structural requirements for their
mutagenicity in Salmonella typhimurium are not so clear. It has been suggested that the presence
of alkyl or alkoxy groups in the anthraquinone structure, e.g., of chrysophanol, emodin (13), icelandicin,
lucidin-2-ethyl ether, dermoglaucin, catenarin, and cynodontin, results in changes in cell tests [33].

Emodin (13) and dermoglaucin were found to be non-toxic for Bacillus subtilis in rec-assay and
E. coli in pol A assay. However, dermocybin (14) showed very slight mutagenicity for B. subtilis, but no
toxicity for E. coli [33]. There are an increasing number of reports regarding adverse effects of emodin
(13). It has been reported to induce genotoxicity, reproductive toxicity, and also hepatotoxicity and
nephrotoxicity, presumably connected to high doses and long-term use [76,77].

Von Wright et al. [78] studied the genotoxicity of the crude fractions from the extracts of
C. sanguineus using an in vitro bacterial repair assay (E. coli; strains WP2 and CM871), a sister-chromatid
exchange (SCE) test and a mouse hepatoma cell assay (Hepa-1c1c7). Emodin (13) was the most
abundant (44%) compound in Fraction I. Analysis showed that standard emodin was not toxic to either
of the E. coli strains. However, it induced more SCEs than Fractions I and IV. Fraction I was clearly
positive in both SCE- and Hepa-1 tests and in E. coli assays, indicating that other emodin-related but
yet unidentified compounds were responsible for the observed cytotoxic and clastogenic effects. It was
concluded that the different test results had somewhat contrary results and discrepancies existed
between SCEs and E. coli assay tests results.

1.6. Terphenyl Quinones in Tapinella Atrotomentosa

T. atrotomentosa (syn. Paxillus atrotomentosus) (Table 2) is a sturdy dark brown-capped wood
rotting fungus, with a dark brown, velvety stalk, and rim of the unsymmetrical cap. It is common on
moss-covered pine stumps in boreal forests, pine moors and forest edges in Europe, North America
and Asia [13,38]. The easily harvestable pale flesh fruiting body can grow to a relatively large size
(cap ∅ ≥ 20 cm) and is rich in colourants. T. atrotomentosa has not proved to be toxic but no dietary use
has been recommended [36,79].

The colourants isolated from its fresh fruiting bodies typically have a terphenyl quinone structure [80].
The p-terphenyl core (Table 2, 17) is essentially restricted to fungi and lichens and the structure was found
to possess notable antiproliferative, antibacterial, antioxidant, and anti-inflammatory activities [38].

Atromentin (17) isolated from T. atrotomentosa is responsible for the brown colour. It occurs as
colourless precursors, leucomentins 2 and 3 (18, 19) in the flesh [38,80], and its content may be ca. 2%
of the fungal mass (dw), those of leucomentins about 5% [80]. Orange-yellow flavomentins and violet
spiromentins (20) [81,82], osmundalactones and ergostane-type ecdysteroids (e.g., paxillosterone and
atrotosterones A–C) have also been found [38,82].

T. atrotomentosa has a broad-spectrum of antimicrobial activity against Gram+ and Gram-

pathogens, and a significant inhibitory activity against resistant bacterial strains, e.g., MRSA [38].
A recent investigation showed that violet colour providing spiromentins B and C (spiromentin core (20),
Table 2) have strong antibacterial activity against multiresistant Acinetobacter baumannii and E. coli [38].
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Table 2. Sources used in this research, their main colouring compounds as aglycones and dyeing results on wool as CIELab coordinates L, a*, b*. (Photos: Riikka
Räisänen, except Salix phylicifolia by Jouko Rikkinen [74]).

Scientific Name Tanacetum vulgare L. Salix phylicifolia L. Cortinarius semisanguineus
(Fr.) Gillet

Tapinella atrotomentosa
(Batsch.) Šutara

Common names Tancy, golden buttons Willow, tea-leaved willow Surprise webcap Velvet roll-rim

Appearance
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Table 2. Cont.

Scientific Name Tanacetum vulgare L. Salix phylicifolia L. Cortinarius semisanguineus
(Fr.) Gillet

Tapinella atrotomentosa
(Batsch.) Šutara

Quercetin (6)
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Quercetin (6) 

 
C15H10O7 M = 302.24 g·mol−1 

Triandrin (10) 

C15H20O7 M = 312.31·g mol−1 

Dermocybin (14) 

 
C16H12O7 M = 316.27 g·mol−1 

Leucomentin 2 (18) 

 
C30H28O10 M = 548.54 g·mol−1 

 

Violaxanthin (7) 

 
C40H56O4 M = 600.88 g·mol−1 

(+) Catechin (11) and epicatechin 

differentiate in stereochemistry 

of C2 OH-gr

 
C15H14O6 M = 290.27 g·mol−1 

Dermorubin (15) 

 
C17H12O8 M = 344.28 g·mol−1 

Leucomentin 3 (19) 

 
C36H34O12 M = 658.66 g·mol−1 

 

β-Carotene (8) 

C40H56 M = 536.89 g·mol−1 

Salireposide (12) 

 
C20H22O9 M = 406.37 g·mol−1 

Physcion (16) 

 
C16H12O5 M = 284.27 g·mol−1 

Spiromentin (20) 

 
C22H14O7 M = 390.35 g·mol−1 

 

C15H10O7 M = 302.24 g·mol−1

Triandrin (10)
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1.7. Objectives

Our aim with this paper was to discuss the toxicity of the examined biocolourants, their sources
and the dyed textile samples. We evaluated the results of cytotoxicity tests when two plant species,
T. vulgare and S. phylicifolia, and two fungal species, C. semisanguineus and T. atrotomentosa, were used
as natural dye sources. The extracts were obtained directly from plant and fungal material and the
wool fabrics dyed with them. Preliminary toxicity screening was performed using Hepa-1 mouse
hepatoma cell tests in vitro and examining the highest tolerated dose (HTD) after exposures of 24 and
72 h. The data obtained were analysed by statistical means.

Common natural dye sources T. vulgare, S. phylicifolia, C. semisanguineus, and T. atrotomentosa were
chosen due to their high colouring and pharmacological potential, and the information we already
had gained of their characteristics and dyeing properties [13,18,46,63,68,83,84]. The characteristic
colourants of the studied plants and fungi are described in Table 2.

2. Results

2.1. Colourants and Colourfastness

The main colourants of the fungal and plant species under study were tentatively identified and the
results can be seen in the HPLC-UV/Vis-MS spectra in Figure 1 and Table 3. Our analysis is in accordance
with the previously published works as described in Introduction. The tentative identification of
flavonoids (T. vulgare) from the MS data revealed the presence of several flavonol and flavone glycosides
such as the derivatives of quercetin, apigenin and luteolin. Furthermore, caffeoylquinic acid isomers
and dicaffeoylquinic acids were tentatively identified, which is in accordance with the literature [37].

Table 3. The results of the HPLC-UV/Vis-MS data of Tanacetum vulgare, Cortinarius semisanguineus and
Tapinella atrotomentosa. The chemical structures and the calculated MS of the numbered compounds are
found in Table 2. The MS data for C. semisanguineus refers to our earlier data published in [68] and [85].

Ret. Time UV/Vis
λmax [nm]

MS Data: m/z
[M − H]/[M + H]+

and Main Fragment
Molecular Formula Compound

Tanacetum vulgare, Figure 1, chromatogram (370 nm) and spectra A

13.61 218, 244, 298 sh ‡, 328 353.0864; 191.0535 C16H18O9 Caffeoylquinic acid isomer I
25.42 204, 256, 366 463.0878; 301.0331 C21H20O12 Quercetin (6) derivative
27.10 218, 244, 298 sh, 328 515.1186; 353.0859 C25H24O12 Caffeoylquinic acid isomer II
29.75 200, 266, 336 445.0759; 269.0428 C21H18O11 Apigenin derivative
30.13 218, 244, 300 sh, 328 515.1191; 353.0863 C25H24O12 Caffeoylquinic acid isomer III
31.55 204, 254, 266, 346 639.3185; 285.0378 - Luteolin (5) derivative
40.09 206, 266, 336 269.0427 C15H10O5 Apigenin
41.13 204, 254, 266, 346 285.0388 C15H10O6 Luteolin (5)

Cortinarius semisanguineus, Figure 1, chromatogram (440 nm) and spectra B

15.91 224, 286, 438 327; 283 C17H12O7 Dermolutein
16.64 250, 285, 434 - C17H11ClO7 5-Cl-Demolutein
18.16 224, 288, 439 684 C21H20O10 Emodin-1-glucoside (13) *
18.86 231, 278, 482 343; 299 C17H12O8 Dermorubin (15)
20.23 229, 285, 452 303; 239 C15H9ClO5 7-Cl-Emodin
23.03 211, 283, 431 283; 240 C16H12O5 Physcion (16)
26.28 263, 484 770 C22H22O12 Dermocybin-1-glucoside (14) #

Tapinella atrotomentosa, Figure 1, chromatogram (370 nm) and spectra C

07.40 263, 371 325.07; 307.06 C18H12O6 Atromentin (17)
‡ shoulder, * Emodin-1-glucoside heksaacetate, # Dermocybin-1-glucoside heptaacetate.
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Figure 1. HPLC chromatogram, UV/Vis and MS spectra of the main compounds of (A) Tanacetum
vulgare (HPLC detection at 370 nm), (B) Cortinarius semisanguineus (HPLC detection at 440 nm) and (C)
Tapinella atrotomentosa (HPLC detection at 370 nm) extracts. Detailed data is in Table 3.

In C. semisanguineus dermolutein, physcion, dermocybin-1-glucoside, and dermorubin were
identified together with three other antraquinones and the results follow our previous findings [68].
In HPLC, T. atrotomentosa showed one major peak which was identified as atromentin with the UV/Vis
and mass spectrometric data (Table 3).

The colours of the dyed woollen samples are shown in Table 2 and the colour fastness results
in Table 4. The results presented in Table 4 show that mordant increases the stability of the dye
structure, which can be seen from the higher light fastness values compared to the non-mordanted
samples. The use of iron mordant gives slightly higher values, which can be explained by its ability
to form stabilising coordination complexes [86]. Washing fastness tests reveal that staining is quite
low, but highly basic (pH ~10) washing liquor results in colour changes that are particularly visible
in yellow and red hues. In all cases, colour after washing was stronger than before, and its hue was
different. This is due to bathochromic change of the dye molecule’s absorption maxima as a result
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from the ionisation of the free OH-groups. Metal complexes formed by Al3+ and Fe3+ ions stabilise the
structure and decrease colour change as seen from their higher values.

Table 4. Colour fastnesses to light (scale 1−8) and washing (scale 1−5). LF = light fastness (200 h
without side change), Cc = colour change, s = staining, NM = no mordant.

Dyeing LF Washing Fastness
Cc s, WO s, CO

Tanacetum

NM, direct dye 6 1 5 4/5
Alum mordant 7 3/4 5 4
FeSO4 mordant 7 2/3 5 4

Salix

NM, direct dye 5 1 5 5
Alum mordant 6 2/3 5 5
FeSO4 mordant 6 2 5 5

Cortinarius

NM, direct dye 3 3/4 4/5 4/5
Alum mordant 4 4 4/5 4/5
FeSO4 mordant 5 4 4/5 4/5

Tapinella

NM, direct dye 2 3 5 4/5
Alum mordant 4 3/4 5 4/5
FeSO4 mordant 5 3/4 5 5

2.2. Toxicity

In the HTD tests, the limit of significant toxicity was placed at EC50 [52]. Thus, if over 50% of
the exposed cells exhibited changes in cell morphology and viability (i.e., HTD value was 3 or 4),
the influence of the sample was interpreted as being toxically significant. HTD value 2 was regarded
as the result of a low toxic effect, and subsequently, the value of 1 as a non-toxic, harmless effect.

EtOH controls (0.5, 1, 2, 4%) in parallel were first tested on cells. It was found that no cell changes
were observed (i.e., HTD values 0) at the EtOH concentrations up to 2% after exposure of 24 h. However,
when the EtOH concentration rose to its highest (4%), one of the parallel samples had undergone mild
cell changes (< 25%), indicating non-toxic, harmless effect.

After longer exposure time (72 h) with similar parallel EtOH concentrations up to 2%, no cell
changes were observed. However, with the highest EtOH concentration (4%), the quantity of cell
changes rose to the next level (< 25%), similarly than in the shorter time of exposure, but now both of
the parallel samples had undergone changes, indicating non-toxic effect.

Although the quantity of cell changes (< 25%) with the HTD value 1 had been regarded as harmless
by Klemola (2008), excluding any possible toxicity caused by the solvent was wanted, and therefore,
EtOH concentrations 0.5, 1 and 2% were selected for further inspections.

2.2.1. The Effect of EtOH Concentration on the Cell Morphology and Viability

EtOH extracts were diluted to the concentrations of 0.5, 1 and 2% EtOH with α-MEM. The results
showed the stronger the EtOH concentration was, the higher the amount of change in the morphology
and the loss of viability% (HTD value) in exposed cells, showing a highly significant correlation
(Figure 2a).
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deviations (SD) at the bottom. The results (n = 195) include EtOH concentrations of 0.5, 1 and 2%. 
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None of the dye sources (Tanacetum, Salix, Cortinarius and Tapinella) were significantly toxic 
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compounds in the amounts and composition, which was some kind of threshold value. The changes 
in the cell morphology and the losses of viability, which the diluted 1% EtOH extract induced, were 
< 50% (i.e. HTD value was 2 at the maximum). 

According to our results, Tanacetum and Tapinella extracts were the most toxic samples. If the 
extracts were diluted to 2% EtOH, they caused changes in the cell morphology in the quantity of 75% 
(i.e. HTD values were 4), indicating significant toxicity (Figure 2a). 

Time did not have any effect on toxicity i.e. the cell morphological changes were at the same 
quantities (Figure 2b) when comparing exposure times of 24 h and 72 h of plant and fungal material. 
However, there were slightly more cell changes with increased exposure time caused by Cortinarius 

Figure 2. The Toxicity of the Plant and Fungal Materials. (a) The effect of EtOH concentration on the
average changes in the morphology and the loss of viability% for the different EtOH dilutions. Samples
of 24 h and 72 h exposure times are included. (rs = 0.863, p < 0.0005, n = 192). (b) The effect of time on
the HTD values (changes in morphology and loss of viability (%) where 1 < 25%, 2 = –50%, 3 = –75%,
4 > 75%). The ranges and average values are marked in the columns and standard deviations (SD) at
the bottom. The results (n = 195) include EtOH concentrations of 0.5, 1 and 2%.

2.2.2. The Toxicity of the Plant and Fungal Materials

None of the dye sources (Tanacetum, Salix, Cortinarius and Tapinella) were significantly toxic when
the EtOH concentration was 1% or less. This indicated that 1% EtOH contained extracted compounds
in the amounts and composition, which was some kind of threshold value. The changes in the cell
morphology and the losses of viability, which the diluted 1% EtOH extract induced, were < 50%
(i.e., HTD value was 2 at the maximum).

According to our results, Tanacetum and Tapinella extracts were the most toxic samples. If the
extracts were diluted to 2% EtOH, they caused changes in the cell morphology in the quantity of 75%
(i.e., HTD values were 4), indicating significant toxicity (Figure 2a).

Time did not have any effect on toxicity i.e., the cell morphological changes were at the same
quantities (Figure 2b) when comparing exposure times of 24 h and 72 h of plant and fungal
material. However, there were slightly more cell changes with increased exposure time caused
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by Cortinarius extracts, but the difference was statistically insignificant compared with the other
samples (Mann–Whitney U-test, p > 0.05, n = 44).

2.2.3. The Toxicity of the Undyed Fabrics

Unmordanted and mordanted undyed fabric samples diluted to 0.5% EtOH did not show any
changes indicating non-toxicity (i.e., HTD value was 0). However, when these samples were diluted to
1% and 2% EtOH, exposed cells showed changes in morphology and viability in the quantity of < 50%,
indicating a low toxic effect at the maximum.

A longer time of exposure slightly increased changes in exposed cells, but the results were still
below toxicity, i.e., average HTD values were 1.0 after exposure of 24 h, and 1.3 after 72 h (Figure 3).
The difference between the two timespans was statistically insignificant (Mann–Whitney U-test,
p > 0.05, n = 24).
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Figure 3. The effect of time on the changes in the morphology and the loss of viability (%) for the
mordanted but undyed fabrics, where the HTD value of 1 indicated < 25% loss of viability and
2 between 25–50%. The results contain the values of 1 and 2% EtOH dilutions. NM = no mordant,
SD = standard deviation.

Iron (FeSO4) mordanted fabric samples induced the least cell changes, as HTD values were 2 at
the maximum indicating from non-toxic to low toxic effects, but the differences compared to alum
(KAl(SO4)2) or unmordanted samples were insignificant (Kruskal–Wallis-test, X2 = 3.37, p > 0.05,
n = 24) (Figure 3).

2.2.4. The Toxicity of the Dyed Fabrics

The CIELab values of the colours obtained from dyeing are shown in Table 2. The dyed fabric
samples induced slightly more changes to exposed cells than undyed fabric samples, but the differences
were insignificant (Kruskal–Wallis test, X2(1.120) = 1.339, p > 0.05 (p = 0.247), n = 360) (Figure 4).

When the dyed fabrics were diluted to 0.5% or 1% EtOH, their effect on the morphology and
viability of the exposed cells was < 25%, i.e., HTD values were 1 at the highest, indicating the diluted
dyed fabric samples were non-toxic.

All the dyed fabric samples caused changes on exposed cells when they were diluted to 2% EtOH.
In that case, at least one of the two parallel samples induced 25–50% losses of morphology and cell
viability, i.e., HTD values were 2, indicating a non-significant but still low toxicity.

Iron mordanted dyed samples induced the least changes on exposed cells i.e., low toxic effects
at the maximum, after exposure of 24 h. However, after exposure of 72 h, the differences between
iron mordanted dyed samples and undyed controls became smaller, and the iron mordanted samples
obtained HTD values similar to all others (Figure 4).
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Figure 4. The effect of dye source, mordant and time on the HTD values (changes in morphology and
loss of viability%) after 24 h (above) and 72 h (below) exposure times. EtOH dilutions of 1% and 2% are
included (n = 152). NM = no mordant, SD = standard deviation.

In the case when all the samples were examined, it was observed that the dyed fabrics induced
slightly more changes to exposed cells than the undyed fabrics. Those changes indicated harmless,
non-toxic, or low toxic effects at the maximum. However, the difference between these two groups was
statistically insignificant (Kruskal–Wallis test, X2 = 1.34, p > 0.05, n = 192).

The length of the exposure time did not increase the difference in inducing cell changes caused by
the dyed fabrics compared to the undyed controls.

Interestingly, for diluted undyed fabric samples and diluted Tanacetum-, Salix- and Tapinella-dyed
fabric samples, effects on exposed cells increased with time, whereas for Cortinarius the situation was
contrary: The longer the exposure time, the fewer changes were observed in the exposed cells. This was
shown by the lower HTD values after the exposure of 72 h.

2.2.5. The Effect of Mordant on the Toxicity

The effect of the mordant on the colour can be seen of the CIELab values in Table 2. Iron mordant
obviously darkened colours.

The analysis showed that iron mordant induced the fewest changes to exposed cells compared to
other mordants, as shown by the lowest HTD values (Figure 4). In all the samples there was slightly
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more variation (max and min values) observed after the exposure time of 24 h than 72 h, showing time
evening out the differences.

Unmordanted but biocoloured fabrics (Tanacetum, Salix and Tapinella) did not produce any
difference in the HTD values at either exposure times; nor did they produce any difference compared
to the unmordanted undyed fabric sample. When examining the HTD values of unmordanted
samples after the exposure of 24 h, it was observed that the dyed fabrics received slightly higher
values than the undyed controls, but after 72 h, the differences between dyed and undyed fabrics had
disappeared. The only exception was Cortinarius, which received lower HTD values after 72 h than
24 h, with all mordants.

The alum mordanted Tanacetum fabric samples differed slightly from other dyed samples and
the undyed controls by causing fewer cell changes at both exposure times, the difference being
statistically insignificant.

The samples that were mordanted with iron and dyed with different biocolourants did not differ
significantly from each other.

When examining differences between the mordants, it was observed that iron induced the least
change in exposed cells, although the differences compared to other mordants were insignificant
(Kruskal-Wallis, X2 = 3.33, p > 0.05, n = 120). The most changes were observed after the exposure of 24 h,
but the Kruskal–Wallis test revealed that the differences between all the mordants were insignificant
(X2 = 5.73, p > 0.05, n = 60).

3. Discussion

The sample extracts (99.5% EtOH) were diluted to three EtOH concentrations (0.5, 1.0, 2.0%) and
the results showed that the higher the EtOH concentration, the more changes in the morphology and
viability of exposed cells were observed. This was likely because of the increase in the concentrations
of compounds extracted with EtOH from the plant and fungal material.

With the lowest EtOH concentration, no cytotoxicity was observed, indicating that the type and
number of toxicity-inducing compounds in the sample was low. However, further studies would be
needed to analyse these compounds, their character and behaviour more precisely.

Both the plant and fungal extracts and dyed fabrics of Tanacetum and Tapinella showed the most
change in the morphology and viability of the exposed cells. If their extracts were diluted to 2% EtOH,
the changes were toxically significant.

The studied sample of T. vulgare (Finland) was a camphor chemotype (71% camphor), but had
no quantifiable thujones [18,41], which are regarded at high concentrations to exhibit toxicity [40];
so, we suppose there are some other components than thujones that are responsible for the observed
low to moderate cytotoxicity. Furthermore, the tansy used in this research was collected and dried
years ago and long storage time may have affected the composition and content of colourants and other
compounds. Our qualitative HPLC-UV/Vis-MS analysis showed that the majority of the secondary
compounds had preserved well over the years.

According to previous studies that used the same solvent as we did, i.e., EtOH, or similar
EtOH:H2O, extracts obtained from the aerial parts of Tanacetum species contained secondary metabolites
from the groups of sesquiterpene, non-volatile sesquiterpene lactones, coumarins, phenolic acids,
and flavonoids [49,87–89]. Previously, the essential oils of tansy have shown cytotoxicity. The oil
distilled from the aerial parts of T. vulgare (Canada) with camphor (31%), borneol (15%) and 1,8-cineole
(i.e., eucalyptol) (11%) as the major components were slightly cytotoxic against human healthy cell line
WS1 and human keratinocytes (HaCaT). Furthermore, its minor components, α-humulene (0.21%) and
caryophyllene oxide (1.13%), possessed a moderate cytotoxicity against both of these [90].

The recent results [44] strongly implied that the toxicity of T. vulgare (β-thujone chemotype)
essential oil, obtained from its aerial parts with hydrodistillation, should not be associated exclusively
with thujones. The tests using the Artemia salina model indicated that some other (minor) constituents
of the oil were responsible for the observed more pronounced acute toxicity. For example, sabinene,
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terpinen-4-ol and caryophyllene oxide showed very strong negative correlations (r > −0.8) with the
live nauplii after 48 h, while all other constituents (e.g., linalool, intermedeol, sabinyl acetate) showed
strong (r > −0.6) negative correlations [44]. Previously, it has been shown that a linalool rich oil
was more toxic in this brine-shrimp bioassay than the sample that did not contain this monoterpene
alcohol [44].

Rosselli and coworkers [42] isolated five sesquiterpene lactones with the eudesmanolides skeleton
from the dried flowers of T. vulgare ssp. siculum (Guss). All of them (douglanin, ludovicin B, ludovicin
A, 1α-hydroxy-1-deoxoarglanine, 11,13-dehydrosantonin) had high time- and concentration-dependent
cytotoxic activity against in vitro cultured cancer and healthy cell lines (V79379A), being more effective
against the latter ones.

As far as we are aware, there have been no previous cytotoxicity studies concerning T. atrotomentosa,
which would have shown significant toxicity when the extract was diluted to 2% EtOH. Despite this,
its chemistry holds great potential, as atromentin, the central terphenylquinone intermediate of a large
family of homobasidiomycete secondary metabolites, represents the generic precursor molecule for the
entire terphenylquinone and pulvinic acid family of colourants.

Atromentin may be modified by oxidative ring splitting into atromentic acid (yellow), or by
dihydroxylation and symmetric heterocyclisation to thelephoric acid; or by reduction and esterification
to produce leucomentins, which can upon saponification, release osmundalactones [91].

The terphenylquinone compounds have gained pharmaceutical attention due to their multiple
bioactivities and have been produced under laboratory conditions [91]. The significant cytotoxicity we
found in these preliminary studies would need further research. T. atrotomentosa holds great potential
as a source of colourants, but also due to its manifold other properties. In recent years, a lot of effort
has been focused on the development of cultivation of fungi for colourant production [11,92,93].

For Salix and Cortinarius, the HTD values caused by their extracts and dyed fabrics were quite
similar. Both showed low cytotoxicity when diluted to 2% EtOH. The observed toxicity changes did
not alter after exposure of 72 h.

The compounds and interactions that lie behind the observed toxicity of Cortinarius extracts are
probably due to anthraquinones, the chemistry and toxicity of which were found in previous studies,
are presented in Section 1.5. Natural anthraquinones are interesting compounds in many applications
and they need more detailed studies.

The low cytotoxicity of Salix extracts was presented for the first time. Generally, the extracts of Salix
bark have been regarded as being safe, although sensitive individuals may get allergic reactions due to
salicylates. Studies have also shown that there are other salicin-related compounds that contribute to
various effects, which may also concern cytotoxicity [57].

Textile production procedures are complex. During the procedures, many different auxiliary
chemicals are used, and extracts may contain remnants of them. In our study, the undyed fabrics were
not interpreted as being cytotoxic; however, they caused effects from non-toxic to low toxic, depending
on the concentration of EtOH, for both unmordanted and mordanted fabrics, indicating that it is also
important to analyse the toxicity of the undyed fabric itself.

All unmordanted and alum (KAl(SO4)2) and iron (FeSO4) mordanted fabrics showed slight
changes (≤ 50%) in cell structures when diluted to 1 or 2% EtOH and interpreted toxically insignificant
changes. The study showed that iron mordanted fabric samples induced the least cell changes, but the
differences compared to alum (KAl(SO4)2) or unmordanted samples were insignificant. The reason for
this is not known, but leucomentins of Tapinella may act as iron chelators [94], and condensed tannins
of Salix species form complexes with metal ions [60].

In these cell tests, the concentration of plant/fungal material was approx. 50–800 µg/mL of α-MEM.
If organic material contains approx. 4% of biocolourants, a maximum of 2–32 µg pure dye/mL of
α-MEM was used in the cell tests. This is considerably less compared with Klemola [52] who used
50–1600 µg pure synthetic dye/mL medium in the studies. In the future studies, higher concentrations
of plant/fungal material should be tested.
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Using pure dyes in tests would give less ambiguous results. On the other hand, it is difficult
to predict the toxicity of a dyed material from just testing the dye, because one chemical itself may
be non-toxic but the chemicals and materials together may have a totally different effect [95]. Also,
differences exist between a plant material extract which contains all soluble compounds and an extract
from a dyeing when only the portion of substances which had been adsorbed during dyeing and
released in later extraction are present. Development of biocolourants would be more economic if crude
extracts were used instead of fractions or purified compounds. If additional values of biocolourant are
to be developed, it is essential to consider whether the product would be purified or a mixture, as in
the purification step, activities may be lost or decreased [96].

The cell tests can give information about the potential toxicity of extracts from textile materials.
However, the cell type and test method used have an impact on how the analysis results may be
interpreted. Only one type of cell, Hepa-1, was used in this research, and conclusions are only directly
applicable to this cell type. The cases in which one cell line analysis shows slight cytotoxicity may
appear to be harmless to humans. To draw a more reliable picture, several different cell lines should
be used, and the total impact evaluated based on all results. Nonetheless, Hepa-1 cells have been
observed to predict potential cytotoxicity in humans better than rat cells [52]. Hepa-1 cytotoxicity
test can give useful information about the overall toxicity of extracts from textiles and can help in the
development of safe textile products [97].

When considering the harmful effects of dyes, discussion is most often focused on environmental
effects and the elimination of dyes from textile effluents, instead of the direct influence of textile dyes
on human health [5]. The biocolourants are biodegradable, but their production, usage at a larger scale,
and safety needs much more research.

We tested four extracts of plant/fungal sources and dyed fabrics to answer the question whether it
is safe to wear natural dyed textile. The amounts of natural colour compounds in textile after dyeing
are low. Washing fastness tests reveal that minimal amounts of colourants were removed during these
simulated standardised use phases. This preliminary study showed that risk for harmful effects of
natural dyes when wearing textiles are low among the tested dye sources.

4. Materials and Methods

4.1. Plant and Fungal Material

Tansy flower heads (Tanacetum vulgare L.), obtained from Natural Resources Institute Finland
(Jokioinen, Finland), were harvested in 2000. The plant previously studied by Keskitalo [18] was
classified as camphor chemotype. Flowers were dried and stored in the dark at room temperature (RT)
until used in June 2010. A 1:1 mass ratio of dried flower heads to textile material was used for the
dye liquor.

Willow (Salix phylicifolia L.) was gathered from Sipoo, Finland, in May 2008. Bark was separated
and left to dry in a dark place at RT until used in June 2010. To prepare the dye liquor, a 5:1 mass
ratio of dried bark to textile material was used. The bark was soaked in water for 2 days before
heated extraction.

Fruiting bodies of surprise webcap [Cortinarius semisanguineus (Fr.) Gillet] were collected from
Jyväskylä, Finland, in 2005. They were dried at 60 ◦C and stored in a dark place at RT until used in
June 2010. To prepare the dye liquor, a 1:1 mass ratio of dried fungi to textile material was used.

Velvet roll-rims [Tapinella atrotomentosa (Batsch.) Šutara] were gathered from Espoo, Finland, in
September 2009 and deep-frozen until used in June 2010. To prepare the dye liquor, a 10:1 mass ratio of
defrosted fungi to textile material was used.

The preparation of dye liquors followed the traditional dyeing recipes in which 1:1 dried
plant/fungi for textile material and 10:1 fresh fungi/textile material were used. For Salix, a five times
greater amount of material was used to obtain an identically deep colouration of textile [13].
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4.2. Methods for Compound Identification

Qualitative analysis of the main colourants of each studied species was performed using HPLC
combined with UV/Vis and MS detections.

The phenolic compunds in Tanacetum flowers were analysed by HPLC-DAD and UHPLC-QTOF
MS/MS analytical equipments and methods described in Pihlava et al. [98]. Briefly, 300 mg of ground
sample was extracted with 10 mL of MeOH for 1 h in an ultrasonic water bath. An aliquot of extract
was filtered through a 0.20 mm membrane filter into an autosampler vial for the analysis.

Anthraquinones of Cortinarius were analysed with methods described earlier by Vanden
Berghe et al. [99].

The ground fungal material of Tapinella (100 mg) was extracted with 1 mL of MeOH using
ultrasonication for 15 min where after centrifuged and the liquid phase was transferred to another tube.
The material was re-extracted twice with 1 mL of MeOH; extracts were combined and evaporated to
dryness. The samples were reconstituted in 0.2 mL of 50% aqueous MeOH. Analysis was performed
on an Acquity UHPLC system (Waters, Milford, MA, USA) equipped with a Waters Synapt G2-S
MS system and Waters Photodiode Array (PDA) Detector. The analytical column ACQUITY UPLC
BEH HSS T3 (1.8 µm 2.1 × 100 mm) was kept at 30 ◦C. The experiment was carried out at a flow rate
of 0.4 mL/min with mobile phase A (0.1% formic acid in water) and B (0.1% formic acid in MeOH).
The gradient elution started at 20% B (0–0.2 min), was increased linearly to 100% B within 28 min and
after this returned within 0.1 min to initial percentage where it was maintained for 2 min. The injected
sample amount was 2 µL. Mass spectrometry was carried out using electrospray ionization (ESI) in
positive polarity, and leucine enkephalin was used as the lock spray reference compound. The capillary
voltage was 2.0 kV, cone voltage 40 kV, source temperature 150 ◦C, and desolvation temperature 500 ◦C.
The cone and desolvation gas flow were set at 60 L/h (nitrogen) and 1000 L/h (nitrogen), respectively.
The data was collected at a mass range of m/z 50–800 with a scan duration of 0.2 sec. The PDA detection
wavelength range was 200–500 nm.

4.3. Dyeing of Fabric Samples and the Colour Fastness Testing

Technical grade alum (KAl(SO4)2) and FeSO4 (TetriDesign, Helsinki, Finland) and tap water
(pH ~7.8; Helsinki Region Environmental Services Authority HSY, Helsinki, Finland) were used
for dyeing. Pre-mordanting and dyeing were performed in an Original Hanau Linitest machine
(Hanau, Germany). The colour was measured as CIE L*, a* and b* values [100] using a Konica Minolta
(Tokyo, Japan) CM-2600d spectrophotometer (D65, 10◦). Unbleached 100% wool fabric (plain weave,
warp and weft densities 6.5 yarns/cm, 84 g/m2) (HAMK/Wetterhof, Hämeenlinna, Finland) was made
of the SportLoden yarn (Nm 28/2, with Öko-Tex 100 and Bluesign labels) (Schoeller, Germany).

To prepare the dye extracts, the amount of dried or defrosted plant or fungal material, as in
Section 4.1, was weighed, chopped or crushed, and boiled in water covering the organic material. After
boiling (80−90 ◦C, 60 min), the extract was filtered. Organic material was discarded and the filtrate
used as a dye liquor.

The fabric samples (á 20 g) were pre-mordanted with 10% on the weight of the fibre alum or 2%
FeSO4 in a 1:40 material to liquor ratio. The mordant was diluted in water, wetted fabric was added
and the vessel closed. The temperature was increased to 80 ◦C and held there for 60 min, continuously
agitating the liquid. The samples were squeezed, left to dry at RT and stored in the dark until used.
The pH for alum mordant liquor was 3.3–3.9 and for FeSO4 4.5–5.3. The samples without mordant
were treated similarly as the pre-mordanted samples.

The volume of the prepared dye extract was measured, and water was added to meet the 1:20
ratio for dyeing. Pre-mordanted samples were dyed at 90 ◦C for 60 min and then rinsed until no
colour was observed in the water. The samples were left to dry at RT. The colour of each sample was
measured as CIELab coordinates (L*, a*, b*) (Table 2). L* obtains values from zero for black to 100
for white; a* > 0 describes the redness, a* < 0 the greenness, b* > 0 the yellowness, and b* < 0 the
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blueness of the colour [100]. Colour fastness to light and laundering were studied according to the ISO
105-B02/A1-1994 and ISO 105-C06-1997 standards, respectively (Table 4).

4.4. Preparation of Plant, Fungal and Fabric Extracts for Toxicity Testing

Plant or fungal material was ground in a mortar (Tanacetum and Cortinarius) or cut into small
pieces (Salix and Tapinella) and 1.5 g was placed in a 100 mL flask; 37.5 mL EtOH (99.5%, Altia, Helsinki,
Finland) was added and the materials were extracted for 24 h at RT. Thereafter, the extract was filtered
and refrigerated until use. The colour of the Tanacetum extract was light green, Salix bright green,
Cortinarius orange, and Tapinella black.

The dyed woollen fabrics and undyed controls were cut into 1 cm × 1 cm pieces and treated
similarly to the plant/fungal samples.

4.5. Cytotoxicity Assays

The cell tests were performed as described earlier [53,101]. The effects of each sample extract
on the morphology and viability of the cells were evaluated using phase contrast microscopy by
observing possible alterations in cell shape, e.g., cell rounding, swelling, cell shrinkage, vacuolization,
growth inhibition, attachment, cell lysis, and cell death. Hepa-1 cells containing cytochrome P4501A
(Department of Physiology, University of Kuopio, Kuopio, Finland) from mouse liver were used in
HTD tests.

Cell culture reagents wereα-MEM (Minimum Essential Medium) without glutamine, endotoxin-free
FBS (Fetal Bovine Serum), penicillin-streptomycin solution 100×, l-glutamine 100× (200 mM),
PBS (Phosphate-Buffered Saline, pH 7.2) 10× without Ca2+ and Mg2+, and trypsin 0.05%/EDTA
(ethylenediaminetetraacetic acid) 0.02% in PBS (EuroClone, Milan, Italy).

EtOH was used as a solvent control in concentrations of 0.5, 1 and 2% and α-MEM as a negative
control and solvent medium. Hepa-1 cells were grown in α-MEM supplemented with 1% l-glutamine,
10% endotoxin-free FBS and 1% penicillin-streptomycin solution.

A short-term cytotoxicity test was carried out in 96-well microplates. Hepa-1 cells were left to
grow for 2–3 days in cell culture flasks. Erythrosin B (Sigma, Darmstadt, Germany) was used to release
the cells from the flasks: a 1:4 dilution was prepared using a 20 µL volume of cells and that of 80 µL of
Erythrosin B, which were adjusted to the concentration of 5 × 104 cells/mL. A volume of 200 µL from
this dilution was pipetted into each well, resulting in 10,000 cells/well. A Bürker counting chamber
measured the number of cells and cell density in each well.

Cells were exposed to the extracts prepared as explained in Section 4.4. EtOH extracts were
diluted to the concentrations of 0.5, 1 and 2% with α-MEM and a sample (200 µL) was pipetted in a
well. Non-exposed cells with α-MEM were used as negative controls. DNP (2,4(α)-dinitrophenol,
pH 2.8−4.7, Merck, Kenilworth, NJ, USA) was used as a positive control and was diluted in DMSO
(dimethylsulphoxide, pH 2.8−4.7, Riedel-de Haën, Seelze, Germany). A stock solution of DNP
(100 mg/mL) was diluted with α-MEM to the concentrations of 0.5, 0.05 and 0.005 mg/mL. All results
were compared with the controls.

After exposures of 24 and 72 h, the cells were washed twice with PBS-buffer. The possible
alterations of cells were observed with phase-contrast microscopy and compared to the control cells,
which were without exposure. The alterations were described and the quantity of changes was
evaluated with a five- step-scale: (0) no changes, (1) < 25%, (2) 25−50%, (3) 50−75%, and (4) > 75% of
cells had changed.

Each plant, fungal and fabric sample was studied using 0.5, 1 and 2% concentrations of EtOH
extracts diluted with α-MEM and incubation times of 24 h and 72 h as two parallel samples in different
places in the 96-well microplates. Four parallel wells were studied from each sample. The results of
parallel wells were reported as a single value. These values (1−4) were the basis for the statistical
analysis. For a few samples, two values were reported (e.g., 0/1); in these cases, the mean value (0.5)
was used for statistical calculations.
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4.6. Statistical Analyses

The SPSS program (IBM SPSS Statistics for Windows, Version 24.0, Armonk, NY, USA) was used for
quantitative data analysis. Statistical significance was placed at p < 0.05. The differences were evaluated
using non-parametric Kruskal–Wallis one-way analysis of variance and the Mann–Whitney U-test.

5. Conclusions

The dilution concentration was shown to be of high importance concerning the toxicity issue.
The highest HTD values were observed when the samples were diluted to 2% EtOH concentration,
which is due to higher concentrations of compounds including biocolourants. EtOH was used because
it dissolves polar and somewhat lipophilic biocolourants, as well as those of potential toxins. Pure 2%
EtOH was observed as being harmless.

The most cytotoxic effects were induced by the extracts of Tanacetum and Tapinella. With 2% EtOH,
the HTD values were at the highest 4, which means that over 75% of the tested cells had changes in
morphology and loss of viability, indicating significant toxicity; the extracts of Salix and Cortinarius
induced barely perceptible cytotoxicity when diluted to the same EtOH concentration.

When examining all the data, Salix induced the least toxic effects of the tested biocolourant sources.
Tanacetum showed some toxicity, but the effect declined when the time of exposure increased from 24 h
to 72 h. Interpretation of the results could be more feasible if there were standardised methods for
biocolourant production, extraction and in vitro testing.

In this research, Salix and Cortinarius semisanguineus were at most mildly harmful. Tapinella
atrotomentosa and Tanacetum vulgare induced the most changes. At the highest non-toxic EtOH
concentrations (2%), all dyed fabrics were interpreted as being not significantly toxic. It seems that
biocolourants may be a less harmful alternative to dyes. In all, the cytotoxicity of samples dyed with
natural dyes did not differ from untreated wool. When developing the larger scale utilisation of
biocolourants, profound bioassays and chemical analyses are necessary from single purified compounds
to track the possible hazardous pathways of dyes in the human metabolism and environment.
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