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Abstract: In this work High Velocity Oxy-fuel (HVOF) thermal spray techniques, spraying 
process optimization, and characterization of coatings are reviewed. Different variants of the 
technology are described and the main differences in spray conditions in terms of particle 
kinetics and thermal energy are rationalized. Methods and tools for controlling the spray 
process are presented as well as their use in optimizing the coating process. It will be shown 
how the differences from the starting powder to the final coating formation affect the 
coating microstructure and performance. Typical properties of HVOF sprayed coatings and 
coating performance is described. Also development of testing methods used for the 
evaluation of coating properties and current status of standardization is presented. Short 
discussion of typical applications is done. 
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1. Introduction to Thermal Spray Processes 

Thermal spraying is a general term to describe all methods in which the coating is formed from 
melted or semi-melted droplets. In thermal spraying the material is in the form of powder, wire or rod 
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and is fed into the flame produced by a spray gun, where it melts and the formed droplets are 
accelerated towards the substrate to be coated. The thermal and kinetic energy of the flame can be 
produced either with burning mixtures of fuel gas and oxygen, or by using an electrical power source. 
Based on the energy source, thermal spray methods can be divided into a few main groups: plasma 
spray methods (atmospheric plasma APS, vacuum plasma VPS, and low pressure plasma LPPS), 
combustion flame spray methods (flame spray), high velocity oxy/air-fuel methods (HVOF/HVAF), 
electrical arc methods (wire arc), detonation method (D-Gun), and, as the latest technology, cold gas 
methods (CGS). 

Since coating is built up from flattened, fast solidified droplets the velocity plays an important role 
for the obtained density of the lamella structured coating. Temperature of the flame has a strong effect 
on the suitable materials to be sprayed. Ceramic coatings are mainly manufactured by using 
atmospheric plasma spray method, while temperature sensitive materials, such as cermets, are more 
preferably sprayed by methods with a lower flame temperature. In Figure 1 the typical operation 
ranges for various spray systems are presented. 

Figure 1. Typical flame temperature and particle velocity operation ranges for various 
thermal spray systems. 

 

Thermal spray coatings are often applied for better corrosion and wear resistance. Therefore, low 
porosity and good adhesion are desired properties for the coating. High velocity processes—especially 
HVOF (High velocity oxy-fuel) spraying—are the preferred methods for producing coating with low 
porosity and high adhesion. In HVOF spraying, heat is produced by burning mixture of oxygen and 
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fuel such as hydrogen, kerosene, propane, propylene, natural gas, ethylene, or acetylene. Due to the 
special nozzle design, a jet with supersonic speed is produced. 

The ability to produce dense coatings with low amount of degradation, oxidation of metallic 
materials, and phase transformations is the main feature of the HVOF process. This is due to the short 
dwell time of the particles in a relatively cold flame. It is widely used to produce cermet and metal 
coatings, but the HVOF process has also been demonstrated to be able to deposit dense  
ceramic coatings. 

In the HVOF process, fuel and oxygen are introduced to the combustion chamber together with the 
spray powder. The combustion of the gases produces a high temperature and high pressure in the 
chamber, which causes the supersonic flow of the gases through the nozzle. The powder particles melt 
or partially melt in the combustion chamber and during the flight through the nozzle. The flame 
temperature varies in the range of 2500 °C–3200 °C, depending on the fuel, the fuel gas/oxygen ratio 
and the gas pressure. In the HVOF process the particles melt completely or only partially, depending 
on the flame temperature, particle dwell time, material melting point and thermal conductivity. 

A few different HVOF spray systems exist with partly different gun designs and capacities. Each 
one has differences in design, but all are based on the same fundamental principles. The combination 
of high pressure (over 3 bar) and gas flow rates of several hundred liters per minute generate 
supersonic gas velocities. These systems can be roughly divided into the first, second and third 
generation. In all first and second generation guns, the pressurized burning of gaseous fuel with 
oxygen is used to produce an exhaust jet traveling at a speed of about 2000 m/s. The main fundamental 
difference between first and second generation is the design of the nozzle. In the first generation 
HVOF systems there is typically relatively large combustion chamber and a straight nozzle. With this 
design maximum of 1 Mach (gas velocity related to the sonic speed) velocities can be produced. The 
second generation is based on the de Laval nozzle, which enables over 1 Mach velocities at the 
diverging part of the nozzle. Under standard spray conditions the systems are operated at a power level 
of about 100 kW and are capable of spraying about 2–3 kg/h of WC-Co. The third generation systems 
are for power levels ranging from 100 to 300 kW and for higher chamber pressures ranging from 8 bar 
up to as far as 25 bars, being capable of spray rates up to about 10 kg/h. Table 1 summarizes the key 
differences between generations. 

Table 1. The differences between three generations of HVOF systems. 

 Nozzle type Power level (kW)* Chamber pressure (bar) Kg/h (WC-Co) 
1st generation straight 80 3 to 5 2 to 6 
2nd generation De laval 80 to120 5 to 10 2 to 10 
3rd generation De laval 100 to 300 8 to 12 (up to 25) 10 to 12 

*Total Heat Output 

From a scientific point of view, particle velocity (v) and particle temperature (T) together with 
substrate characteristics are the main parameters affecting the deposit formation. They determine the 
deposit build-up process and deposit properties. Particle velocity and temperature affect the deposit 
efficiency as well as the microstructure. Trend in HVOF process development has been towards higher 
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gas pressures, faster particle velocities and lower particle temperatures as shown schematically in 
Figure 2. This has a clear influence on the coating microstructure, where amount of oxidation in the 
lamella boundary is decreased and flattening rate is increased, and due to this the coating density is 
improved generation by generation, as presented in the Figure 3. 

Figure 2. The trend in HVOF process development has been towards higher gas pressures, 
faster particle velocities and lower particle temperatures. 

 

Figure 3. Faster particle velocities and lower particle temperatures in HVOF process have 
a clear influence on the coating microstructure, where amount of oxidation in the lamella 
boundary is lowered, the flattening rate increased, and due to this the coating density  
is improved. 
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2. HVOF Process Optimization 

HVOF spraying is a very complex process, which has a large variety of variables affecting the 
deposit formation and hence coating properties. These variables include hardware characteristics (e.g., 
nozzle geometry and spraying distance) and process parameters, e.g., fuel gas, gas flow density, and 
powder feedstock. In the spray process, the powder particles experience very high speed combined 
with fast heating up to its melting point or above. This high temperature may cause evaporation of the 
powder or some components of it, dissolution, and phase transformations. Due to this complex nature 
of HVOF technique, the control and optimization of the process in order to achieve coating with 
desired properties is a highly challenging task. There are different ways of optimizing and analyzing 
the thermal spray processes and deposit formation. These include statistical methods such as Taguchi 
and design of experiments (DoE), numerical modeling and simulation, and FE methodology [1-5]. In 
the Taguchi method, for example, the test matrix can be significantly reduced and the relative 
importance between variables can be determined sufficiently. The result in Taguchi is dependent on 
the design and selection of variables and their levels and the result may therefore be misleading. 
Determining the importance and weight of a large number of variables is very difficult with the HVOF 
process. This applies to different modeling procedures as well. 

Good coating quality with suitable properties and required performance for specific applications is 
the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the 
spray process as a whole is needed. Starting material, spray process and particle-substrate interactions 
all affect the formation of coating with different microstructure and hence the coating properties and 
eventually the coating performance. Use of submicron and nanostructured powders sets demands for 
the coating process in order to maintain the fine-scaled structures and enhance the coating properties. 
For better control of thermal spraying, different sensing devices have been developed during the last 
decade. These diagnostic tools have enabled better investigation and measuring of the spray process, 
and helped to understand the impact of different process variables on in-flight particle state (flux, 
temperature and velocity). In tandem with the diagnostic tool development, a novel comprehensive 
optimization tool has been developed for thermal spray processes. The process mapping concept was 
first introduced by Professor Sanjay Sampath [6], and its use has increased since introduction [7-10]. 
In this chapter the diagnostic equipments are introduced, as well as the process mapping tool and 
factors related to it. Examples of applying the process maps for process control and coating design  
are presented. 

2.1. Diagnostic Tools for Process Optimization 

For the last fifteen years active development of spray process sensing systems has taken place. 
These diagnostic tools are nowadays robust, user-friendly and cost-effective, and therefore their use 
has increased strongly. Principle objectives of diagnostic tools are to measure the variables of particles 
within the spray stream, i.e., velocity, temperature, flux, trajectory, and size distribution, which all 
have influence on the microstructure and properties of sprayed coatings [9]. The sensors are mainly 
based on two-wavelength pyrometry and time triggered measurement of velocity. Examples of sensors 
for thermal spraying are Tecnar DPV2000, Oseir SprayWatch, Tecnar Accuraspray, Inflight Particle 
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Pyrometer, and Spray Position Trajectory sensor. These are based on either individual particle 
(DPV2000) or ensemble (group of particles) measurement (SprayWatch, Accuraspray). In its simplest 
form, the sensors are used for measuring the temperature and velocity of the powder particles in the 
spray stream. The placing of the sensors can either be fixed on the spray torch or on the side of it. With 
the former sensors, it is possible to monitor the process continuously, and any variation can be 
instantly detected. Ensemble measurement is the faster of the two, a few seconds against a few  
minutes [11]. The diagnostic tools have differences in measuring the spray stream, including volume, 
number of particles and the ability to scan the spray stream. These differences with single particle and 
ensemble sensors may lead to different results when measuring temperature and velocity. Comparison 
with single and ensemble sensors has shown good relation for ceramic and metallic coatings when 
velocity was measured [12]. However, average particle temperature measured by single and ensemble 
sensors did not correlate for metallic materials. The reason for this might be that high-temperature 
ceramic materials have higher total radiated intensity due to higher temperature and higher emissivity, 
but metals are influenced by oxidation and change of emissivity [12]. Therefore the results of 
diagnostic tools need careful consideration. 

2.2. Process Optimization Procedures 

The spraying process is monitored with diagnostic sensors, which measure the particle surface 
temperature and velocity in the spray stream. It is very important to place the equipment correctly  
in-line with the spray stream. By controlling the gas flow, the fuel/oxygen ratio, or back-pressure of 
the chamber, different particle states are formed. In order to examine coating formation in detail, 
individual splats can be sprayed in parallel with using diagnostic tools. By splat studies on the polished 
substrate, the particle melting state can be analyzed, and hence it is possible to get more information of 
the diverse coating build-up process. With splat analysis, it has been shown e.g., that small NiCr 
particles suffer more oxidation when particle temperatures are high [10]. It is common that high speed 
particles form air pockets when deposited on the substrate, especially when particles are not fully 
melted. Fully molten NiCr particles have formed smaller grain sized splats compared to feedstock 
material [10]. Examples of splats of Al2O3 are presented in Figure 4, showing different melting states 
of sprayed particles resulting from different spray parameters. Characterization of the formed coating 
by microscopic means and testing the coating after spraying, thickness, porosity, lamellar structure 
with fully or partially molten particles, flattening ratio, oxidation level, bonding, hardness, elastic 
modulus etc. are revealed, and can be linked to process variables. When the linkages between process 
variables, coating microstructure and properties are done, the reverse deduction is also possible. When 
a certain property is the goal, it is possible to go backwards by process maps and identify the correct 
process parameters in order to achieve the desired property. 
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Figure 4. In the SEM figures of splats different melting, flattening and splashing behavior 
of HV2000 (Praxair) sprayed Al2O3 particles can be detected. The used spray parameters 
have been (a) 776 L/min H2 / 272 L/min O2 / 20 L/min N2 (fuel ratio 2.85), 150 mm  
stand-off distance, (b) 776/272/20 (2.85) 200 mm, (c) 699/349/20 (2.00) 150 mm, and (d) 
747/301/20 (2.48) 150 mm. 

 

Three operational gas/liquid flow variables can be used for the control of HVOF process: (i) choice 
of used gases/liquids; (ii) total volume flow of gases/liquids; and (iii) the ratio between them 
(oxygen/fuel). All these have influence on particle velocity (backpressure of the chamber) and particle 
temperature. Independent operational parameters with HVOF can be oxygen, fuel, nitrogen and air 
flow. Other variables, which play an important role, include spray distance and deposition rates 
(combination of e.g., feed rate and robot speed). Gas flow control can be used as a tool for particle 
state measurements (T, v), as well as a tool for using different fuels, chamber and nozzle designs, 
which change the particle state significantly. 

The spraying process must be calibrated, so that errors in the measurement can be prevented or 
estimated. Use of feedback control in the process enables this. Repeating a certain condition whilst 
performing the process map procedure indicates the data scatter and error, both to temperature and 
velocity measurement. Errors rise from input parameters (emissivity), instruments, control of gas flows 
and feed rate, and degradation effects of nozzle and injection wear [8]. These may have influence on 
the achieved temperature-velocity values during a long process time, and therefore calculation,  
re-calculation and re-adjusting of spraying parameters are needed throughout the spraying process. 
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An example of the HVOF spraying of NiCr powder has shown the influence of oxygen-rich flame, 
resulting in higher temperature and lower velocity [10]. When fuel-rich flame was used, the 
temperature decreased (as the flame energy decreased), and particle velocity increased. Kinetic and 
thermal energy transferred to the particles is dependent on the flame energy (enthalpy of the used fuel, 
fuel density, and ratio of fuel to oxygen). Higher energy levels of the flame yield higher kinetic and 
thermal energies to the particles. Increment of airflow to the flame decreases the temperature and 
increases the particle velocity slightly by increasing the drag force to the particles and shortening of 
their dwell time. Changes in fuel-oxygen mixture cause stronger effect. Feed rate plays also a role on 
the kinetic and thermal energy. A flame quenching effect has been observed when increasing the feed 
rate of NiCr powder [10] 

The oxide content of the coatings is predominantly determined by the in-flight reactions. Longer 
flame protects the particles from oxidation by shortening the interaction with the surroundings, and by 
burning the oxygen within the flame, a so-called shielding effect. Therefore the fuel-rich conditions 
produce metallic coatings with less oxidation [10]. Higher particle speeds reduce particle overheating, 
thus preventing the oxidation and decarburization of carbides [13]. On the other hand, higher particle 
temperature leads to slightly higher oxide content [10]. 

2.3. Process Mapping 

Particle state is influenced by fuel gas chemistry (fuel/oxygen ratio), total gas flow, and energy 
input, which affect the particle temperature, velocity and hence coating formation dynamics and 
properties. The process-structure-property relations can be presented by process maps, which can be 
used as design tool for coating processing. Process maps are interrelationships among the process 
variables and output responses [12]. The process mapping optimization tool has been widely applied 
for plasma spray process [12,14], but it can be successfully used for HVOF process as well [10,15]. 

2.3.1. Concept of Process Mapping 

The process map methodology is developed for process control and coating properties optimization. 
In the process mapping concept, the diagnostic tools are used for understanding the fundamentals of 
relationships in the thermal spray process, starting from powder to thermal spraying process, to deposit 
formation, to coating characteristics, and finally to coating performance. In Figure 5, the process map 
concept for HVOF spraying is presented. A first order process map expresses the relationship between 
torch parameters and particles in the spray stream, which are measured by diagnostics. A second order 
process map represents relationship between the spray stream measured responses and coating 
properties. Systematic evaluation of the processes, eventually leading to optimization of coating 
properties for specified performance and an assessment of process reliability, can be performed by 
creating first and second order maps for certain material and thermal spray process. A third order 
process map, which links coating microstructure and properties to coating performance can also  
be constructed. 
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Figure 5. The process map concept for the HVOF process. The relationship between 
process parameters, measured particle state, coating microstructure and coating properties 
are described as process maps of different order. The goal of process mapping is to 
understand the process-structure-properties in order to be able to use the tool for  
coating design. 

 

2.3.2. First-Order Process Map 

A first order process map relates the process variables to particle state (temperature and velocity). 
The results acquired with diagnostic tools are plotted in a T-v diagram, which is called a first order 
process map. An example of first-order (T-v) process map is shown in Figure 6, which presents 
different temperature and velocity ranges for two different fuel mixtures for HVOF sprayed  
Al2O3 [15]. A generalized first-order process map in Figure 1 for different thermal spray processes, 
presenting the typical temperature and velocity ranges. In the figure it can be seen that HVOF process 
has moderate temperature and high velocity compared to other common thermal spray processes.  
First-order process map helps to understand how the particle state influences on the formation of the 
coating microstructure. 
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Figure 6. A first-order process map for HVOF alumina, showing particle temperature and 
velocity ranges for propylene-oxygen and hydrogen-oxygen fuel mixtures [15]. 

 

2.3.3. Second-Order Process Map 

A second-order process map links the process and deposit interactions. It describes the influence of 
coating microstructure on the coating properties. In order to produce a second-order map, a certain T-v 
process window from the first-order map is selected. After the spraying, the coating properties, such as 
weight, elastic modulus and thermal conductivity, are measured, and thus linked to the process 
parameters (temperature, velocity). The purpose of the second order map is to provide a tool for 
designer to choose coatings of selected combination of properties and specify the values of T-v of the 
particle state. Actual operational parameters are specified from the first-order map. A second-order 
process map for HVOF sprayed NiCr is presented in Figure 7, showing values of elastic modulus and 
hardness reflected with different particle temperature and velocity values [10]. A schematic illustration 
of an idea of the second-order process map is presented in Figure 3, where different HVOF processes 
are compared in T-v diagram, linking the formed microstructure to the process parameters. 

Figure 7. Second-order process maps for HVOF NiCr of elastic modulus and hardness 
with different particle temperatures and velocities [10]. 
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2.4. Reliability through Process Optimization 

More stringent requirements for coatings in different applications enhance the use of process 
optimization, repeatability, reproducibility and reliability (3 R’s) of the coating process as a goal [16]. 
However, reliance and manufacturing reproducibility is a complex task due to the multitude of 
interrelated parameters that influence spraying process and the deposit formation dynamics. The 
complexity of the process and material variables has made it difficult to understand the  
process-structure-property relationships as well as industry/application related attributes, such as 
coating design, property characterization and reliability [8]. Process optimization is used for process 
development by parameter improvement, tracking instabilities and examining reproducibility, and that 
way for improved coating manufacturing. A strategy for coating design can be obtained by careful use 
of process maps, because process parameters can be linked to coating characteristics and hence 
understanding of the process-microstructure-property relationships is possible [12]. Through process 
optimization it is possible to produce reliable and reproducible coatings with designed performance 
together with predictable life of operation [15]. Therefore the process map concept is an excellent tool 
for analyzing and controlling the effects of spraying parameters in production of coatings. The method 
can be applied for any thermal spray technology [10]. Also deposition efficiency (DE) can be 
improved, as well as process efficiency. Materials usage and the amount of defective coated 
components can be minimized, and that way it is possible to lower the coating production costs.  

2.5. Case Studies of Process Optimization with Process Map Concept 

Challenges arise when spraying nanoscale carbides, because with fine carbide sizes the dissolution 
of carbides and carbon loss becomes easier. The powder quality is important, as the size distribution, 
density, carbon and oxygen content have influence on the deposit formation. Choosing right spray 
process and optimizing control parameters are essential in generating good coating quality. 
Agglomerated and sintered WOKA 3652, −45+45 µm WC-10Co4Cr powder was sprayed with DJ 
Hybrid HVOF spray, with hydrogen as fuel gas. The goal was to increase both wear resistance and 
fracture toughness. As can be seen in the generalized second order process map for WC-CoCr in 
Figure 8, a small process window to achieve such characteristics combination was found. The goal of 
using WC-CoCr with nanoscale carbides was to achieve high hardness combined with good fracture 
toughness. Thermico CJS (carbide jet spray), a colder HVOF thermal spray process with broader 
process window, was applied for maintaining the nanoscale carbides within the matrix. With careful 
process optimization, both the characteristics were enhanced [17]. 
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Figure 8. A generalized second order process map for WC-CoCr HVOF coating. Different 
coating properties are placed into the temperature-velocity diagram. This process map can 
be used as a design tool to optimize coating process conditions in order to achieve desired 
coating property or coating property combinations. 

 

Process map methodology has been used for HVOF spraying of Ni-20%Cr coatings [10]. Design of 
experiments was used to prepare a first order process map. According to the map, different conditions 
were chosen to produce the coatings with a low feed rate, and to analyze them with an in-situ coating 
property sensor (ReliaCoat Technology ICP). It was noted that increase in the feed rate decreased both 
the particle temperature and velocity. In the same process optimization trials, an increment on airflow 
feeding was detected to result in lower particle temperature but higher velocity. When spraying 
distance was increased, the particle temperature was risen and the velocity was reduced. In order to 
enhance the thermal conductivity, high kinetic energy with high thermal energy of particles was 
required so as to deposit dense coatings with improved intersplat bonding (metallurgical, intimate 
mechanical contact), but oxide content must be kept relatively low. Electrical resistivity was enhanced 
with high thermal-kinetic energy as well. Stiffer coatings were formed with high particle velocity and 
sufficient melting state. 

An example of plasma spray process optimization for yttrium stabilized zirconium (YSZ) plasma 
sprayed coating showed possibility of controlling the particle state within a small process window  
(±10 °C average temperature and ±2 m/s average velocity) by using a first order process map while 
varying process parameters (e.g., gas flow, current). However, different melting states were observed 
in the temperature distribution diagrams for various sprayings, as well as differences for deposition 
efficiencies, and modulus between the coatings. These results indicate that temperature and velocity 
measurement solely do not describe the melting state of the particles [15]. 

2.6. Thermal Energy and Kinetics of Particles in Spray Stream 

In order to better understand the melting behavior of particles in the spray stream, another factor has 
been developed besides the use of temperature. Especially with ceramic materials, with low thermal 
conductivity, the particle surface temperature does not directly indicate the particle melting status due 
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to large temperature gradient within the particle [9,18]. The particle surface may even evaporate before 
the core melts. In the case of metallic materials, the oxidation of particles occurs in the spray stream. 
This phenomenon can have an effect on the measured temperature values and emissivity value. 
Melting index (MI) also takes into account the time particles stay under the influence of flame and 
particle size. It can be expressed as [12]: 

 (1) 

where T = measured particle surface temperature [K], D = particle size [m], and Δtfly particle  
in-flight time assuming constant acceleration of particles [s]. In the MI formula the Δtfly = 2L/v, where 
L = spray distance [m], and v = particle velocity [m/s]. MI can be defined as the ratio of particle 
residence time in the flame to the total time needed for particle to melt: MI = Δtfly/Δtmelt [9]. There is 
also more thorough description of melting index, which attaches thermal resistance and energy balance 
analysis to the formula [9]: 

 
(2) 

where k is the thermal conductivity [W/mK], ρ is the density of the material in liquid state [kg/m3],  
is the enthalpy of fusion [J/kg], and  is the flame temperature near the in-flight particle [K],  is the 
melting point of the material [K],  is the particle size [m], and Bi is the Biot number [9]. 

With this approach MI is non-dimensional, which allows cross-comparison of melting state among 
a range of materials. From Equation 2, it can be detected that if the flame temperature is higher than 
the melting point of the material, a positive MI value will be obtained, which corresponds to fully 
molten particles. Otherwise, the material will be unmolten (MI < 0) or partially molten (0 ≤ MI < 1). 
Since it is difficult to monitor the real time flame temperature in the vicinity of the flying particles, for 
simplifications particle surface temperature, T, has been often used instead of . Metallic particles 
oxidize during the spraying process, which has effect on the measured temperature by diagnostic 
sensors. Oxidation reactions are exothermic, which raises the particle temperature in-flight. Extent of 
oxidation taking place with the metallic particles is described by Oxidation index (OI) [9]. 

Like temperature, the velocity values alone do not give sufficient information of the particles 
impinging on the substrate material and hence the deposit build-up process. Therefore either kinetic 
energy (KE) or Reynolds number (Re) can be used for describing the kinetic behavior of the particles. 
Kinetic energy is related to particle mass (m) and velocity (v) [9]: 

 (3)  

Reynolds number can be described with factors such as particle size, material density and  
viscosity [17]: 

 
(4)  
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where D = particle diameter [m], ρ = density of the material in liquid state [kg/m3] and µ = dynamic 
viscosity [kg/ms]. Both the kinetic energy and Re are important factors describing the impact, extent of 
spreading and flattening, and hence the nature of splat-substrate and splat-splat contact [9]. Melting 
state, kinetic energy and local deposition temperature are likely the most important factors controlling 
the microstructure and properties of the coatings [10]. 

Other factors besides particle state correlations that strongly effect deposit formation dynamics 
(wetting, spreading-splashing, flattening, solidification, and interlocking/bonding dynamics) and hence 
deposit characteristics, are substrate temperature and roughness, deposit conditions (rate, spray angle), 
and deposit rate [12]. Another factor affecting particle behavior and temperature is exothermic reaction 
of oxide formation (e.g., Cr2O3), which generates additional heat during flight [10]. 

2.7. Monitoring Deposit Formation In-Situ 

Analysis of coating characteristics is mainly performed after the actual coating process. However, 
the actual deposit formation process is difficult to monitor. An in-situ coating property sensor (ICP) 
has been developed to monitor coating curvature evolution and substrate temperature during the 
spraying process [12]. Measuring curvature is possible by monitoring the substrate displacement with 
non-contact lasers. Temperature measurement is performed with multiple thermocouples attached to 
the back of the substrate material during both deposition and cooling. With this information, it is 
possible to calculate residual stresses, CTE, and elastic modulus of the coatings. The technique and the 
measurement method are described in detail by Matejicek et al. [19]. 

The particle state influences stress build-up during spraying process and coating residual stresses 
have an effect on the coating properties. The residual stresses depend strongly on the particle velocity 
and on the particle temperature [12]. Compressive stresses are formed due to peening at high particle 
velocities. As an example, in curvature measurements of NiCr it has been noticed that in the first pass, 
the quenching stresses prevail due to limited plastic deformation of the substrate [10]. Following 
passes induce compressive stresses due to the peening effect. The higher the velocity, the higher is the 
buildup of the compressive stresses. Peening intensity of the impacting particles can be monitored 
during spraying through an in-situ curvature technique. Correlation of it can be made to the 
microstructure, splats, residual stress and hardness of deposits [10]. Difference in CTE’s (coefficient of 
thermal expansion) between the coating and substrate material also causes stress in the coating. 
Evolving stress and substrate temperature are main factors when considering strain hardening of the 
coating, compaction, and residual stress development [10]. 

2.8. Effect of Feedstock Properties on Coating Formation 

Powder properties and characteristics (e.g., particle shape, structure and size, powder density and 
flow ability, purity, phase content, agglomeration) depend on the detailed powder manufacturing 
method, i.e., crushing and milling, water and gas atomization, spray drying, agglomeration and 
sintering [13]. Studies have shown implication of different feedstock for the formed coating, as the 
particle characteristics are very different in the spray process (e.g., temperature and velocity). When 
powders from the same material, but with different morphologies or different size distribution, have 
been sprayed with similar temperature and velocity range, the formed coatings have shown substantial 



Coatings 2011, 1                            
 

 

31 

differences in several properties e.g., elastic modulus [12]. Examples of different spray powder 
morphologies are presented in Figure 9. The feedstock characteristics (particle form, size distribution, 
density and chemistry) have an effect on deposit evolution and process efficiency by change in 
thickness per pass, and to other properties, such as thermal conductivity. 

Figure 9. SEM images of thermal spray powders representing different morphologies. 
a) Ball mill mixed, agglomerated and sintered Al2O3/SiC; b) spray dried Cr2O3; c) gas 
atomized Ni20Cr; and d) fused and crushed Al2O3 powder by Praxair. 

 

3. Characterization of HVOF Coatings and their Properties 

The optimization of the coating microstructures and properties is a challenging task, not to mention 
the performance of the coating in a particular environment or application as presented in Figure 10. 
There are a number of influencing factors and interdependencies that influence the intrinsic coating 
properties as discussed above. These interdependencies are complicated and sometimes even 
impossible to handle although the systematic process optimization approach described in the previous 
chapter shows promise as an effective tool for such a task. 
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Figure 10. A typical optimization route of coating performance by controlling the intrinsic 
coating properties via optimization of coating microstructure and coating/substrate  
system interactions. 

 

As described in previous chapters, the typical route for the optimization of coatings performance is 
via its intrinsic properties that in turn are controlled by the microstructure and coating/substrate—
system interactions. For example, in wear applications such coating properties as hardness, elastic 
modulus and fracture toughness, along with porosity of the coating, are under focus. If the application 
requires environmental resistance, whether against corrosive media or oxidation, it is important to 
control the phase structure of the coating as well as its porosity. In both cases, also the system 
properties, i.e., adhesion of the coating to the substrate and internal stresses must be under control to 
obtain a coating that has an optimal performance at the particular applications. 

Before discussing the typical properties and the range of their variance in HVOF coatings we will 
introduce the most usual methods for characterizing the properties of HVOF coatings. It is important to 
acknowledge that although most of them are quite generally applied in materials characterization, 
thermal spray coatings bear many special features that must be taken into account when their 
properties are evaluated. 

3.1. Characterization of Intrinsic Coating Properties: Special Features and Limitations 

Characterization of coating microstructures and properties are usually carried out by methods 
developed for microstructural characterization in general. While most of these are directly applicable 
for HVOF coatings as well, there are certain precautions, which should be considered and taken into 
account. This concerns especially the preparation of samples for characterization of microstructural 
features of coatings. 

3.1.1. Coating Hardness 

Hardness of the coating is usually measured either from the cross section or the surface of the 
coating. Two types of methods are commonly used, i.e., traditional hardness measurement preferably 
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carried out by Vickers’ method or instrumented indentation techniques, where the hardness is 
evaluated from the load-displacement data.  

When Vickers hardness is measured from the cross-section of thermal sprayed coating the applied 
loads should not lead to the formation of cracks. According to standard EN ISO 14923 the thickness of 
the coating should be at least three times the indentation diagonal d. This is observed to be the absolute 
minimum thickness required to make reliable measurements and, to be on the safe side, the upper 
corner of the indentation should be located at least at a distance of one diagonal from the surface of the 
coating, and the lower corner a similar distance away from the substrate. When Vickers hardness is 
measured from the top surface of the coating, the thickness is recommended to be ten times the plastic 
depth of the indentation to avoid any effect from the substrate on the measurement. Therefore, 
nanoindentation is currently used for a more detailed mechanical property characterization, such as for 
measuring hardness and elastic modulus of individual phases like carbides or matrix material of the 
coating or even from single splats [20-22]. 

3.1.2. Elastic Modulus 

There are several methods to deduce the elastic modulus or Young´s modulus of the coating (E). 
Among them impulse excitation technique (IET), ICP sensor, and instrumented indentation test are 
most common. IET-standard procedures are described in ASTM E 1876-99 [23] and ENV 843-2 [24]. 
Elastic modulus can conveniently be determined by instrumented indentation. Values of E are 
calculated from the load-displacement data usually following the procedure proposed by Oliver and 
Pharr [25]. Because of the elastic field of the indentation is always larger than the plastic field, the 
boundary conditions of hardness measurement described above should be considered to be minimum 
requirements for elastic modulus measurements. Since elastic modulus is very sensitive to coating 
microstructure and especially to coating porosity and other faults, its value can also be used when 
estimating the uniformity and quality of the coating in comparison to other thermally sprayed coatings. 

3.1.3. Coating Toughness 

The toughness of a material describes its ability to absorb energy before and during fracture [26]. 
Because of the brittle nature of many thermal sprayed coatings, fracture mechanics play an important 
role in evaluation of the usability and performance of the coatings. Fracture mechanical theories, 
equations and measuring techniques of bulk ceramics, also possessing brittle nature, have been the 
starting point for studying the fracture behavior in the thermal sprayed coatings. Because of the 
required sample size in the methods developed for bulk materials, the indentation fracture toughness 
(IF) technique seems to be the only reasonable and suitable test for thermal sprayed coatings. The basic 
idea is to apply a large enough load with Vickers diamond pyramid tip to initiate cracks from the 
diagonal corners of the indentation mark. From the measured average crack length and applied 
indentation load, the fracture toughness (KIC) can be calculated. It describes the critical stress intensity 
factor of mode I crack. Indentation fracture toughness KIC can be measured from the cross-section or 
the surface of thermal sprayed coating. From the surface, one usually gets four corner cracks with the 
same length, and the boundary conditions described e.g., in JIS R 1668-2005 [27] can be used. 
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Because the applied loads needed for the initiation of cracks in the fracture toughness measurement 
are higher than those used in the hardness measurements, one must check that the maximum plastic 
depth of the indentation is less than one tenth of the coating thickness. When measuring fracture 
toughness from the cross-section of the coating, the obtained result describes the lamellar cohesion. 
Cracks in the coatings grow more easily in the direction parallel to the substrate—vertical cracks are 
usually produced only in the brittle ceramic coatings. The cracks parallel to the substrate will usually 
initiate and propagate in the lamella boundary. Because of this preferred crack growth direction, the 
equations and boundary conditions developed for homogenous bulk ceramics do not apply and some 
modifications are needed. If the cracks grow only in the parallel direction, the average crack length (l) 
should be calculated by dividing the total crack length (= sum of the cracks) by two, not by four as 
when measured from the surface. One requirement is that the cracks should initiate near the diagonal 
corners. If other major cracks than the corner cracks are developed, the measurement is not anymore 
valid. This prerequisite may lead to difficulties of finding valid measurements, especially if the coating 
possesses large residual stresses [22]. 

3.1.4. Coating Porosity 

There are a number of different methods that can be used for determination of the coating porosity. 
Nondestructive methods such as water adsorption, mercury intrusion porosimetry, helium pycnometry, 
Archimedean method, and other more sophisticated and tedious methods such as small angle neutron 
scattering (SANS) or x-ray computed microtomography (CMT) [28] have all been employed for 
quantitative measurement of porosity. Accurate counts of porosity and its distribution can be obtained 
by the latter two methods, but they both require special instrumentation, which is not generally 
available for industrial use. 

The most common practice to analyze the porosity of a coating is to prepare a metallographic  
cross-section sample of the coating and to determine its porosity from the micrographs taken with light 
microscope or a scanning electron microscope (SEM) e.g., by image analysis. Porosity within a 
microstructure can in principle be easily detected by image analysis because of the contrast  
difference between the dark pores (voids) and the more highly reflective coating material with 
sufficient resolution. Some reports claim that image analysis can reproducibly detect and measure 
microstructural features (pores, cracks, etc.) to a 95% confidence level within thermal spray  
coatings [29]. 

There is a lot of criticism presented on this procedure since the preparation of the samples has a 
large influence on the values obtained, i.e., the preparation may result in formation of pores (in brittle 
coatings such as ceramics) or closure of pores (in ductile metallic coatings) resulting in erroneous 
values of porosity. In ISO/TC107/WG1, porosity measurement of thermal sprayed ceramic coatings by 
SEM cross-sectional photography and image analysis has been evaluated by a number of participating 
members. In a round robin test organized by the working group, five samples having a different 
ceramic coating were tested by each participant to obtain the respective porosity values. Further 
examinations have also been conducted by NIMS in Japan about the role of image analysis software, 
SEM and surface polishing procedures to rationalize the reasons for the observed differences. A 
preliminary and partial analysis of these results is given in ref. [30], and the final report is published as 
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an ISO Technical Report TR 26946. The findings can be summarized as follows. The differences in 
grinding/polishing conditions of the cross-sectional sample have a major influence on the porosity 
value obtained. Especially the pressure during polishing has an important role. It could be 
hypothesized that if the grinding pressure in the beginning of the polishing procedure is too low, the 
defects formed during the specimen cutting and preparation are not removed completely and too high 
value of porosity is obtained. If the pressure applied in the polishing is too high the sample preparation 
itself results in pull offs and too high porosity value. Furthermore, it is important to recognize that the 
imaging mode in SEM has an influence such that secondary electron image (SEI) typically yields 
lower values of porosity than the backscattered electron image (BEI) because the distinction of the 
coating matrix and the pores is more difficult in the SEI image, and the fraction of image judged to be 
a pore as a result has decreased. Based on this hypothesis an optimum pressure can be found, which 
results in a minimum value of porosity. Whether this is the actual porosity of the coating or higher than 
the real value depends on the mechanical properties of the particular coating. 

An additional challenge is that the total percentage of porosity does not always give enough 
information on the quality of the coating even if determined correctly. A more detailed account of 
pores and cracks is actually needed if the coating properties and performance are to be judged or 
predicted in more detail. Therefore it would be advantageous to divide the net porosity into classes, 
such as coarse and fine globular pores and crack networks according to their process of formation [31]. 
Coarse pores refer to the size range of 3–10 µm pores, which are formed due to incomplete filling of 
interstices between impacting particles and previously deposited particles and typically formed, when 
the impacting particles are not completely molten. Fine pores are approximately 0.1–3 µm in size 
resulting from incomplete contact between lamellae during coating formation, and are therefore more 
or less oriented parallel to the substrate surface. The fine cracks approximately 0.01–0.5 µm in 
thickness result from relaxation of stresses generated within the splats during cooling and are thus 
oriented typically perpendicular to the lamellar plane. 

3.2. Characterization of Coating Substrate System Properties: Challenges and Special Features 

3.2.1. Coating Adhesion 

Adhesion is one of the most important parameters, which influences the performance of thermal 
spray coatings—substrate system in practical applications of coatings. For many applications the 
adhesion of the coating is crucial to the performance of the coated part (e.g., [32]]. Since no 
metallurgical bonds are formed between the rapidly cooling deposit and the substrate, the surface 
finish and the deposition conditions during the first spray pass are of uttermost importance in obtaining  
good adhesion. 

A standard method for the measurement of adhesion of thermal spray coatings is by tensile adhesive 
test [33]. This test is widely used although according to [34] more than 80 other methods are reported 
for the measurement of coating adhesion. However, in case of porous ceramic coatings tensile 
adhesion testing has an inherent problem of being prone to penetration of the adhesive used for gluing 
the tensile test holder through the coating. This may result in too high a value of adhesion in the test. 
Therefore, other types of tests have been proposed for the measurement of adhesion of thermal spray 
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ceramic coatings. Two of these are currently used or studied as an alternative for the tensile test, i.e., 
shear test and scratch test. 

Shear test developed in the frame of the EU-CRAFT-project “Shear Test for Thermally Sprayed 
Coatings” presents the main advantage of being possibly used in real time, i.e., during the production 
process [34]. The small size of the substrate specimens allows them to be prepared in advance in large 
quantities, and no limitation of porosity or adhesive strength of the adhesive occurs. Therefore the 
shear test is more relevant to represent the real stress state acting on the mechanical parts during 
service. The main disadvantages are the samples characteristics (coating should be thicker than 
150 µm) and the need of special equipment to perform the test. 

Scratch test, which is widely used for testing adhesion of thin films to substrate, is with 
modifications currently considered also for determining the thermal spray coating adhesion. ISO TC 
107 WG 1 is carrying out an international round robin test to study the feasibility of this test for the 
determination of the coating adhesion of ceramic thermal spray coatings. Preliminary results of this 
round robin test will be available by the end of 2011. 

3.2.2. Evaluation of Internal Stresses 

An important coating-substrate system property is the residual stress state of the coating after 
spraying. There are only few methods that can be used to measure the residual stresses of thermally 
sprayed coatings. The generally applied method for measuring the residual stresses in metallic 
materials is by XRD using standard d vs. sin2 Ψ XRD techniques (see e.g., [35]]. In order to apply this 
method for the determination of residual stresses of thermally sprayed coating one needs to know the 
so-called X-ray elastic constants (XEC). XEC can be calculated using techniques based on the 
mechanical loading of the samples. However, the experimental behavior of the thermally sprayed 
coatings shows that the calculation of XEC is unreliable. Considering the characteristics of dense 
material to which the X-ray diffraction is sensitive, the use of XEC values calculated for the same 
phase of the bulk material can, according to [36], be used for the determination of stresses in the 
coatings with an engineering accuracy. 

When internal stresses are measured during spraying using the so called In-situ Coating Property 
(ICP) sensor, it is possible to adjust the residual stresses to a large extent during spray by controlling 
the deposition parameters. In this way, the various stages of stress build-up can be monitored and the 
various stress contributions can be evaluated separately. The ICP sensor can also be used to extract  
in-plane elastic modulus of the coatings deposited. It is based on laser sensing of deflections in a strip 
during thermal spraying which is converted to sample curvature. A simultaneous measurement of 
temperature is achieved via multiple thermocouples. Elastic modulus and CTE of the coating can be 
calculated from the coating-substrate composite curvature change due to thermal mismatch [37]. 

3.2.3. Evaluation of Wear Resistance 

Wear resistance of thermally sprayed coatings is of high interest for many applications. In general, 
wear resistance of a coating in a particular environment is a system property influenced by the coating 
and substrate material and in particular the type of wear environment. Therefore, it is impossible to 
quantify the wear resistance of the coating accurately without knowing these factors. However, for 
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particular types of wear environments there are tests, which give relative performance of different 
coatings quite accurately. One of the most used wear tests for thermally sprayed coating is the rubber 
wheel abrasion test (e.g., ASTM G-65), which is meant for testing material’s resistance against 
abrasive type of wear. These tests are also extensively used for a wider screening of coatings, since the 
possible problems in coating microstructure (not so easily observed e.g., by metallographic means) are 
often manifested in the results of the abrasion test. Other tests exist for other types of wear situations, 
such as tests for adhesive wear (e.g., pin-on-disc types of test) and tests for erosive conditions (various 
modifications exists, e.g., slurry test depicted in standard ASTM G75-95 [38]). 

3.2.4. Evaluation of Wet Corrosion Resistance 

Corrosion resistance of thermally sprayed coating is always a system property. This is influenced 
first of all by the corrosive environment in question, but also by the coating properties  
(composition, phase structure and microstructure including the cracks and the pores) and the  
coating-substrate-environment interactions. It is very rarely possible to produce fully liquid or gas 
impenetrable coatings even by sealing the coatings afterwards. Therefore, it is not only the corrosion 
resistance of the coating, but of the substrate-coating system, which should be considered in each 
particular application where corrosion is a factor. 

Measurement of the corrosion resistance of a coating-substrate system is typically carried out by 
immersion tests in actual conditions or by accelerated immersion tests in the laboratory. These tests in 
combination with metallographic and analytical studies help to identify the corroding parts of the 
system, whether this is corrosion of coating in general, selective corrosion of some specific phase of 
the coating, or corrosion of substrate via cracks or open porosity of the coating finally leading to 
coating detachment. 

Electrochemical measurements may also be used to evaluate the response of coating⎯substrate 
system to corrosive environments. Typical measurement may include the determination of the free 
corrosion potential and the polarization behavior of the system. If the environment is selected such that 
the electrolyte causes corrosion only in the substrate, the corrosion current may yield information on 
the through porosity of the coating as well as on the possible passivation system while the pores of the 
coating are filled with corrosion products from the substrate. 

4. Typical Properties of HVOF Coatings 

Coatings prepared by various HVOF techniques have properties typically different from those 
produced by other thermal spray methods. As discussed in the previous chapter this results mainly 
from the characteristics of the HVOF process and in particular the combination of particle velocities 
and temperatures. Therefore, it is important to recognize that nominally similar coating compositions 
may have a wide variance in properties depending on the details of the processing. On the other hand, 
this also implies that properties of the coatings can be adjusted according to demands of the application 
at least to some extent.  
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4.1. Wear Resistant HVOF Coatings 

Wear control is of uttermost importance for many applications of thermally sprayed coatings. These 
applications include various moving parts such as rotating rolls and axels e.g., for printing equipment, 
paper and pulp machinery, etc. Among different thermal spray methods high velocity oxy fuel (HVOF) 
spraying has proven to be especially suitable for deposition of carbide and metallic coatings because of 
relatively low flame temperature and supersonic particle velocities [16]. Under certain restrictions it 
can also be used to produce high quality ceramic coatings for wear protection. 

4.1.1. Wear Resistant Cermets 

Typical wear resistant coatings are based on cermet, i.e., metal-ceramic composites, predominantly 
combining various mixtures of metal matrix including cobalt (Co), chromium (Cr) and nickel (Ni), and 
tungsten carbide (WC) or chromium carbide (Cr3C2). The most common combinations—WC-12 wt.% 
Co or WC-17 wt.% Co—are widely used in applications where high wear resistance is required. 
Theoretically the compositions correspond to 20% and 27% of cobalt in volume, but may slightly vary 
depending on spraying conditions and decomposition of WC during spraying. 

For WC-Co-based material it is well known that during flight sprayed particles melt to different 
extents depending on their size, density and dwell times. Molten Co dissolves the WC grains whereas 
carbon loss occurs by diffusion through the liquid followed by reaction with the oxygen from the 
surroundings. There can be large amounts of carbon and tungsten dissolved in the matrix metal, 
especially in the outer regions of sprayed particles. During cooling, Co-rich liquid becomes 
supersaturated resulting from the formation of W2C and other mixed carbides. High cooling rates can 
even be responsible for the formation of amorphous/nanocrystalline matrix phase. During cooling, 
precipitation of mixed carbides like eta-carbide [(Co6W6)C] phase may occur in the Co-rich material. 
All of these effects are most visible on the outer core of the particles. In the small size particles, the 
whole particle can be influenced by decarburization [39]. If cooling is fast enough, the matrix will stay 
amorphous and supersaturated of W and C. When the coating is heat-treated afterwards, precipitation 
of eta-carbide starts at temperatures above 600 °C resulting in marked increase of hardness and 
reduction of residual stresses in the coating [22,40]. 

In oxidizing atmospheres or at temperatures above approximately 450°C the resistance of Co-WC is 
not adequate, and alloying of cobalt binder e.g., with chromium or use of other type of cermet coatings 
such as Cr3C2-25 wt.% NiCr are frequently employed to protect against wear at such elevated 
temperatures [41]. However, in comparison to WC-Co coatings Cr3C2-NiCr coatings are less wear 
resistant in many cases. Likewise to WC powders Cr3C2 containing powders are susceptible to a range 
of decomposition reactions during thermal spraying and require careful optimization of the spraying 
process in order to obtain desired coating properties. This has prompted efforts to look for other type 
of cermet for high temperature applications. TiC and TiB2 are potentially attractive alternatives to 
Cr3C2 for use in high temperature wear resistant cermet applications since it exhibits a high hardness, 
low density and good oxidation resistance. Wear properties of TiB2-containing cermet coatings have 
been addressed e.g., in refs. [42,43]. HVOF spraying of Ni(Cr)-65 wt.% TiB2 and Fe(Cr)-70 wt.% TiB2 
powders resulted in TiB2-containing coatings that were found to perform better in abrasive wear with 
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alumina than conventional Cr3C2-NiCr deposits. Coatings having composition of Ni(Cr)-65 wt.% TiB2, 
Ni(Cr)-40 wt.% TiB2, and Ni(Cr)-40 wt.% TiB2 with 5 at.% excess boron in order to promote matrix 
amorphization have also been studied [42]. The size of the TiB2 particles within the cermet was found 
to depend critically on the initial composition; large particles were favored by low binder fractions and 
the presence of the excess boron. The presence of the larger boride particles was concluded to impart 
the wear resistance of these coatings in abrasion by alumina or silica abrades [43]. 

Other cermets studied for high temperature erosion include e.g., WC-CoCr, TiC-CoCr,  
NbC-CoCr [7]. In a study of the erosion-corrosion resistance of these coatings, Wang [44] noticed that 
peak wastage occurred at intermediate carbide contents at both shallow and steep impact angles for all 
of the HVOF carbide-cermet coatings tested. At shallow impact angles, this peak occurred on the side 
of lower carbide contents, while at steep impact angles the peak occurred on the side of higher carbide 
contents. At both shallow and steep impact angles, wastage in erosion-corrosion test decreased with 
decreasing carbide size of homogeneous distribution in the HVOF carbide-metal cermet coatings. It 
was concluded that the erosion-corrosion behavior of carbide/metal cermet coatings and the 
dependence of mass loss on carbide content are related to the morphology of the coatings and 
characteristics of erodent particles. Also Hawthorne et al. [45] noted that coating composition and 
microstructural integrity are the main factors determining the relative erosion resistance of the cermet 
coatings. They also noted that the WC-10Co-4Cr matrix coating was more resistant to  
erosion–corrosion damage in aqueous slurry testing than was the WC-12Co cermet coating. Similarly 
WC-10Co-5Cr coating has been found in simulative laboratory test to be a potential candidate for 
coating of hydro turbine components by Mann and Arya [46]. At low erosive conditions the  
erosion-corrosion resistance has been found to increase when increasing Cr-content from 5 to  
8.5 wt.% [47]. 

An interesting development in the corrosion resistant HVOF coatings is being made with the 
amorphous coatings. Amorphous coatings with a composition of Fe48Cr15Mo14C15B6Y2 have been 
prepared by means of high velocity oxygen fuel (HVOF) thermal spraying under different conditions 
by Zhou et al. [48]. These coatings present dense layered structure and low porosity with some fraction 
of nanocrystals. The coatings are spontaneously passivated with wide passive region and low passive 
current density in chloride containing acidic solutions exhibiting excellent ability to resist  
localized corrosion. 

4.1.2. Wear Resistant Ceramic Coatings by HVOF 

HVOF spraying is applied mainly to cermet and metallic coatings because of the limited melting 
power of most of the HVOF spraying guns and systems. However, due to the higher kinetic energy, 
shorter dwell time of particles in the flame, and lower flame temperature compared to the plasma 
spray, HVOF offers an interesting combination to produce dense coatings with controlled phase 
transformations [49]. For high quality coatings particle melting state and possible phase 
transformations during particle flight in the thermal spray flame as well as coating build up  
mechanism including splat interface and stress stages must be controlled. Despite some limitations 
there are several reports on successful depositions of ceramic coatings by HVOF spraying  
techniques (e.g., [7,15,49-51]). 
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In order to produce high quality ceramic coatings by HVOF, the spraying system should have a 
high enough melting power to melt the powder particles during the short flight. It has been shown that 
the particle temperature and the melting state control the deposit efficiency and the build-up rate while 
the flattening behavior is dominated by particle kinetic energy [15]. The powders used for spraying 
must have a narrow size distribution and their average size should be somewhat smaller than for 
powders generally used for HVOF spraying. Selection of fuel gas is of high importance and the 
necessity of finding correct temperature-velocity combination is a must for successful deposition of 
high quality ceramic coatings. The coating density and mechanical properties are strongly affected by 
particle velocity when complete melting is achieved. The particle state in the case of HVOF is very 
sensitive to the standoff distance and is found to be an influential parameter controlling microstructure 
and properties. It has been noted that in HVOF the interpass interfaces play a dominant role in thermal, 
electrical and tribological properties [16]. 

4.1.3. Comparison of APS and HVOF Wear Resistant Coatings 

It has been quite generally recognized that the wear resistance properties of HVOF coatings are 
superior to their APS counterparts. Li et al. [41] have compared the impact wear resistance of  
Cr3C2-25%NiCr coatings prepared by APS- and HVOF- spraying. They found that the wear resistance 
of Cr3C2-25%NiCr coatings under different impact conditions increases in the order of APS-Ar/H2, 
APS-Ar/He and HVOF spraying. The HVOF sprayed Cr3C2-25%NiCr coatings showed the best 
impact wear resistance due to the denser structure and fewer defects since the wear mechanisms of  
Cr3C2-25%NiCr coatings under impact are influenced by the cohesive defects such as stratification, 
porosity and microcracks in the lamella, and therefore control of these factors has a large impact on the 
wear resistance of the coatings. 

Similar findings have been made by the present authors on HVOF sprayed ceramic coatings. 
Although only a few HVOF spraying guns exist on the market that are suitable for depositing ceramic 
coatings, the coating properties obtained by the HVOF techniques have shown quite amazing 
improvements in comparison to coatings deposited by APS [52]. HVOF sprayed coatings show clearly 
improved density and less pores and cracks than the APS sprayed as depicted in Figure 11. The 
abrasion wear resistance of the coatings as measured in a standardized rubber wheel abrasion test is 
improved more than tenfold when the coating is made by HVOF spraying. The difference is more than 
15 times with the alumina and chromia coatings where the spray parameters have been optimized. The 
HVOF zirconia coatings perform more than 20 times better than the corresponding APS coatings. It 
must be noted though that the reference value for comparison is for Thermal Barrier Coating (TBC), 
where maximum density is not aimed. However, the obtained results show that HVOF spraying of 
ceramics can be an effective method to produce dense, well-adhered ceramic coatings with good 
environmental protection capability. This can be attributed mainly to the lower porosity and improved 
cohesion of the ceramic coating structure when produced by HVOF techniques.  
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Figure 11. Comparison of abrasive wear resistance of plasma sprayed and HVOF sprayed 
oxide ceramic coating coatings: yttria-stabilized zirconia (YSZ), aluminia (Al2O3), and 
chromia (Cr2O3). Compiled based on [52]. 

 

These findings were later confirmed by Bolelli et al. [53], who compared Al2O3 and Cr2O3 coatings 
deposited onto steel substrates by high velocity oxygen-fuel (HVOF) flame spraying using H2 as fuel 
gas, and by conventional atmospheric plasma spraying (APS). In this study it was recognized that 
HVOF-sprayed coatings exhibited lower porosity and smaller average pore area than the APS ones. 
The HVOF-sprayed coatings possessed higher Vickers micro hardness, higher indentation fracture 
toughness and higher elastic modulus than the APS ones. During ball-on-disk tests against SiC, various 
wear mechanisms were observed. At room temperature and at low normal load, all of the coatings 
developed stable tribofilms under mild wear regime (<10-6 mm3/Nm) while at higher temperature 
and/or normal load, brittle fracture wear prevailed. Under these latter conditions, HVOF coatings 
become superior to APS ones, thanks to their higher toughness. Analogously, in dry particle abrasion, 
where brittle fracture prevails, the tougher HVOF coatings outperform APS ones. 

Also in this study the HVOF ceramics were found to display lower overall porosity, and smaller and 
more rounded pores than the APS ones. Excellent interlamellar cohesion was noticed by FEG-SEM 
observations of fractured cross-sections. A large degree of melting of HVOF-sprayed nanostructured 
Al2O3 powder was found. While some glassy or poorly crystallized splats existed in Al2O3 coatings, 
the Cr2O3 ones were fully crystalline. In all cases, smaller and more equiaxed grains appeared in 
HVOF coatings, while grains were larger and mostly columnar in APS ones. In general, HVOF 
sprayed ceramics are harder and tougher than corresponding APS ones, and HVOF Al2O3 and n-Al2O3 



Coatings 2011, 1                            
 

 

42 

are even tougher than APS Cr2O3 indicating the great influence of microstructure on coating 
mechanical properties [53]. 

As discussed in Chapter 3.1.4, the pore structure has a major impact on the mechanical properties of 
the coatings. Coarse pores in the size range of 3–10 µm are formed when the impacting particles are 
not completely molten because of incomplete filling of interstices between impacting particles and 
previously deposited particles. Fine pores approximately 0.1–3 µm in size result from incomplete 
contact between lamellae during coating formation being more or less oriented parallel to the substrate 
surface. The fine cracks approximately 0.01–0.5 µm in thickness result from relaxation of stresses 
generated within the splats during cooling and thus oriented typically perpendicular to the lamellar 
plane. It is the difference in the distribution of the latter two types of pores (fine pores and cracks), 
which probably can explain the huge difference in the wear properties of the plasma sprayed and 
HVOF sprayed ceramic coatings. 

4.2. Corrosion and Oxidation Resistant HVOF Coatings 

HVOF-spraying is a versatile technique that can yield high-density coatings with porosities less 
than 1% by optimization of the process variables. Because of these microstructural improvements of 
deposits produced by HVOF as compared with traditional spraying methods (including APS) the 
HVOF coatings have widely been studied for their corrosion resistance and consequently, there are a 
plethora of publications on the corrosion properties and performance of HVOF coatings. These can be 
divided into two categories, i.e., those reporting oxidation resistance of HVOF coatings and the others 
regarding wet corrosion properties. 

Resistance of MCrAlY coatings to oxidation in different oxidizing atmospheres has been studied 
and compared with that of VPS coatings by Brandl et al. [54]. Under the chosen oxidation conditions, 
which assured a high oxygen partial pressure, the oxidation kinetics of the HVOF and VPS coatings 
were very different, i.e., the oxidation rate of the HVOF sprayed coating is considerably lower than 
that of the VPS coating. This observation was proposed to result from the formation of finely divided  
α-Al203 during spraying hindering the grain boundary diffusion of the elements. As a consequence the 
oxide scale growth was very low. 

Corrosion behavior of an HVOF Ni based self-fluxing alloy NiWCrBSi coatings in a chloride 
solution has been studied by Gil & Staia [55]. Since anticorrosion coatings must be impermeable to 
protect steel structures in corrosive environments optimization of deposition conditions must be 
determined. The optimization process indicated that especially the spraying distance, the fuel to 
oxygen ratio, and the powder feed rate have a significant effect on the porosity and consequently to the 
corrosion resistance of these coatings. Zhao et al. [56] noted that the corrosion of the NiCrBSi coating 
first occurs around the particles that have not melted during spraying and defects such as pores, 
inclusions and microcracks. Corrosion then proceeds along the paths formed by pores, microcracks and 
lamellar structure resulting in exfoliation or laminar peeling off the coating. Adjustment of the thermal 
spray parameters to reduce the electrochemical unevenness or sealing the pores can improve the 
corrosion resistance of the coating. 

Hastelloy C coatings can offer corrosion protection in many aggressive environments. Similar to 
many other coatings aimed for corrosion resistance, the key question is whether the through porosity of 
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the coating in spraying can be controlled. Kawakita et al. [57] used quantitative analyses of dissolved 
substances derived from coated steel during immersion in HCl solution to evaluate the quality of 
Hastelloy C high-velocity oxyfuel (HVOF) sprayed coatings. This technique enables the detection of 
even small amounts of through-pores and separately calculates both coating through porosity and 
corrosion resistance. For Hastelloy C coatings, the number of pores extending through the coating was 
found to depend on the coating thickness and on the coating’s stacking structure. 

Electrochemical behavior of various HVOF-sprayed corrosion resistant coatings in acidic medium 
has been made by [58]. A total of eight different chromium-containing coatings with varying 
proportions of alloying elements (Ni, Mo, Si, Fe, Co, W, B and C) aiming for a corrosion behavior 
comparable to that of stainless steel AISI 316 were studied and compared with that of bulk AISI 316. 
The results indicate that HVOF-sprayed AISI 316 coating offers a lower corrosion resistance compared 
to bulk AISI 316 while high nickel- and chromium-containing coatings appear to offer a corrosion 
resistance comparable to bulk AISI 316. In addition, other alloying elements like molybdenum were 
proposed to be essential for obtaining higher corrosion protection. In extension of this study 
Chidambarama et al. [59] confirmed that HVOF sprayed nickel-chromium alloy coatings containing 
molybdenum were confirmed to exhibit corrosion resistance comparable to bulk AISI 316. 

Hard chromium displacement by HVOF coatings has been a long-standing goal for spray industry 
and, consequently, there are several studies made on the corrosion resistance of HVOF coatings in 
comparison with hard chromium e.g., [60-65]. According to the studies, several HVOF coatings offer 
potential for replacing hard chrome at least from the corrosion point of view. For example according to 
Guilemany et al. [66] polarization curves of Cr3C2-NiCr recorded after immersion tests showed a 
lower current and higher corrosion potential for Cr3C2-NiCr coating than several other samples studied 
including hard chromium coatings. 

High temperature corrosion resistance of HVOF coatings has also been studied intensively. For 
example Cr3C2-NiCr, NiCrBSi, Stellite-6 and Ni-20Cr are coatings of particular interest [e.g., 67]. The 
high temperature corrosion resistance of the coatings may generally be attributed to the formation of 
oxides and spinels of nickel, chromium or cobalt on the surface of the coating. The high temperature 
corrosion resistance of all the coatings was found superior to bare nickel-based superalloy. In the 
presence of Na2SO4-V2O5 salt deposits NiCr coating was found to be most protective followed by 
Cr2C3-NiCr coating. WC-Co coating was least effective to protect the substrate steel [68]. It was 
concluded that the formation of Cr2O3, NiO, NiCr2O4, and CoO may contribute to the development of 
high temperature corrosion resistance in the coatings. In cyclic oxidation [68] NiCrBSi coating was 
also found to be very effective in decreasing the corrosion rate in the Na2SO4-60% V2O5 molten salt 
environment at 900˚C. The high temperature corrosion resistance imparted by NiCrBSi coatings was 
attributed to the formation of oxides of silicon, chromium, nickel and spinels of nickel and chromium. 

4.3. Nanocrystalline Powders and Coatings 

During the last ten years considerable efforts have been made to develop thermally sprayed coatings 
having structural elements in the submicron or nanometer scale. Although the rapid cooling of melted 
particles during the coating deposition produces very fine structures—typical grain sizes being in 
submicron scale or even amorphous—the unmolten particle, e.g., carbides in cermets can controllably 
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be reduced in size only in powder processing. Because of the large influence of carbide size to the 
properties of cermets, this has prompted large efforts in producing powders having carbides in 
submicron and nanometer dimensions. Also, toughening of ceramic coating by nanosized metallic 
particles has aroused considerable interest and resulted in development of powders with nanosized 
metal particles. Finally, nanostructural powders produced by spray-drying and sintering offer several 
advantages via their melting behavior. It goes without saying that in order to take advantage of these 
powder technologies, optimization of the spraying process is a must. 

The dissolution phenomenon of the carbides is more emphasized for WC-Co materials having  
sub-micron or nanosized carbides. Increasing the surface area of the carbides by reducing their size, 
the control of the spray conditions becomes more critical in order to avoid the overheating of the 
particles and fully benefit the positive effects from nanosized carbides for properties. For example, 
McCartney et al. [69] found that the nanocomposite had a poorer wear resistance than the conventional 
coating under the conditions examined. Wear was dominated by the loss of ductility in the Co-rich 
binder phase due to its amorphization. The differences in the wear behavior of the coatings could, thus, 
be explained in terms of differences in powder characteristics, the extent of reaction and 
decarburization during spraying, and the subsequent development of the microstructure in the coating 
during splat solidification at high cooling rates. In order to overcome this problem a shift towards the 
colder HVOF processes has taken place. For example in CJS HVOF process the process conditions can 
be adjusted more suitable for the deposition of nano or sub-micron sized carbides. In Figure 2 the 
relative difference in the particle temperature for the DJ Hybrid and CJS processes is demonstrated 
with some measurement points and from that the process window is estimated. The particle velocity 
and temperature measurements have been carried out for the same powder for both processes in order 
to demonstrate the difference. The process conditions effect on the carbide dissolution so that there is 
no W2C formation in the coating sprayed with CJS. Powder size used for the CJS process was 5–25 
micron and that for the DJ Hybrid process 15–36 micron. 

Turunen et al. [7] studied the spraying of nanostructured Al2O3 and Al2O3-Ni HVOF powders and 
properties of coatings deposited thereof. It was found that by optimizing spray parameters high quality 
coatings with improved properties are obtained. Introduction of nanopowders to the coating process 
improved the hardness and wear resistance of the pure Al2O3-coating. Introduction of nickel alloying 
decreased the hardness and wear resistance of the coatings, but increased the toughness of the coatings 
via introduction of small nickel particles into alumina matrix and between the alumina splats. Addition 
of a small amount of nickel into alumina can thus be used to markedly modify the properties of  
the coating. 

5. Applications of HVOF Coatings 

Due to the excellent characteristics of HVOF coatings as mentioned in the previous chapter, there is 
a large variety of suitable materials, different HVOF sub-processes, such as CJS, and hence the 
possibility to tailor coatings for a large variety of applications; therefore, the use of HVOF is broad 
among several industries, and is increasing all the time. Examples of application areas include process 
industry, where the coatings are applied to ball and gate valves; pulp and paper industry with coatings 
to rolls and blades; aerospace industry, where coatings are used for turbine vanes as bond coats for 
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thermal barrier coatings, turbine sections, landing gears; and automotive industry, which applications 
include piston rings and cylinder bores [16]. Even some ceramic coatings, which have been previously 
sprayed by plasma process, are sometimes applied by HVOF spray method. Also raw materials with 
small-scale component, e.g., nanosized carbides, have enhanced the HVOF coating properties and 
potential applications as well. In the following, examples of HVOF coating applications and materials 
are briefly presented. 

Typical HVOF coating materials are metals and cermets. Variety of materials is almost endless, and 
therefore the application areas are wide among different industries. At a very low porosity, below 1 %, 
HVOF coatings are suitable for protecting the substrate material against corrosion. Because of high 
hardness combined with high bond strength to the substrate and good inter-lamellar bonding, the use of 
HVOF coatings is extensive for wear protection applications, such as paper and pulp processing rolls 
and other wear-resistant parts in paper machines. Increased use of ceramics, and their dielectrical and 
thermal properties, has opened the door for HVOF coating use in electrical applications and as 
environmental barrier coatings (EBCs) in power and aerospace industry. 

Applications, where coatings are used for protection from wear and friction, are very broad with 
HVOF technique. HVOF hardmetal coatings containing carbides and/or nitrides, such as WC-CoCr, 
WC-(W,Cr)2C-Ni, and (Ti,Mo)(C,N)-Ni/Co, have very good hardness and tribological properties and 
hence are suitable for wear protection of machine parts [70]. HVOF sprayed WC-Co/NiCrFeSiB 
coating with high hardness values and low porosity has been studied for use in coal-fired power plant 
piping against erosion [71]. Due to brittle nature of the hard metal coating, the applications and 
conditions must be carefully chosen. 

In the energy industry, especially power plant boilers experience both high temperature corrosion 
and erosion, and HVOF coatings can be applied to protect the tubing in the boilers, especially in the 
superheater area. HVOF sprayed NiCr and Cr3C2-20NiCr coatings have proven very good high 
temperature corrosion resistance in biomass fired boiler exposures [72]. NiCrBSi and Stellite-6 
coatings tested in coal-fired boilers have shown good hot corrosion resistance [73]. HVOF coatings, 
such as NiCrSiB and Ni-Cr-Fe-Nb-Mo alloys, for high temperature erosion and corrosion protection 
have been widely used in waste-to-energy plants in order to [74]. Thermal barrier coatings (TBCs) are 
used for enhancing the service life of gas turbines and diesel engine components. The ceramic coatings 
are mainly manufactured with atmospheric plasma spraying (APS) due to high melting temperature of 
the materials, but the applied bond coats under the APS ceramic coatings to improve adhesion are 
increasingly made by HVOF technique, bond coat materials being e.g., CoNiCrAlY, NiCoCrAlTaY, 
NiCrAlY, or NiCr [75]. 

Different material forming techniques require use of coatings, as the components deteriorate easily 
in the processes. Deep-drawing is a widely used sheet metal forming process in the aircraft and 
automotive industries. High tribological demands of the forming tools can be fulfilled with HVOF 
cermet coatings, such as superfine structured WC-Co, which has high hardness enhancing sliding and 
abrasive wear [2]. HVOF coatings have been studied for the protection and upgrade of aluminum 
injection mould tooling, particularly for the low-cost and flexible manufacture of automotive 
components. Smooth, hard and very well bonded coatings with low porosity and homogeneous 
microstructure have been manufactured from WC-CoCr, and Cr2C3-NiCr through careful optimization 
of deposition [76]. Steel sheet continuous hot-dip galvanizing bath with molten metal is a very 
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detrimental process for the galvanizing components. Three different high temperature corrosion 
resistant HVOF coating types have been applied to galvanizing bath components. These include  
WC-Co, oxide-based, and quite recently developed MoB/CoCr coatings [77]. Optimization of the 
coating composition and microstructure is of utmost importance in order to extend the operating 
lifetime of the galvanizing hardware. Also bond coats may be used because of the mismatch between 
coating and substrate material. HVOF WC-CoCr cermet coatings on aluminum substrate could be used 
for plastic injection moulds due to high hardness, low sliding wear, low porosity, and good endurance 
against impacts [78]. MoCoB-Co/Cr cermet coating could be used for protection of glass sheet forming 
moulds because it has excellent high temperature properties, such as low friction coefficient to glass, 
oxidation resistance, and low mechanical abrasion [79]. 

Hard chromium plating has been an excellent and very widely used technique, but due to 
carcinogenic effect of hexavalent chrome ion (Cr6+) in the manufacturing process, finding substituting 
solutions for the technique has been extensively studied during the last decade and possibilities of 
thermal spray coatings have been explored as replacer. HVOF Co-base alloy Tribaloy-800 coating has 
shown good friction and wear properties also in high temperature (500 °C) [1]. Due to good durability 
of the coating, it could be used for the protection of machine components vulnerable to frictional heat 
and wear, e.g., sliding surfaces such as high-speed spindle. To replace hard chromium coatings in 
applications under erosion-corrosion exposure, both HVOF sprayed WC-Ni and Cr3C2-NiCr have been 
tested to be promising alternatives for those conditions [80]. Cr3C2-NiCr HVOF coatings manufactured 
from fine-scale and nano-fractioned powders have proved to have very good mechanical, wear and 
corrosion properties, and could therefore be used as substitute to hard chromium coating in 
applications such as cylinders in earth moving machines and piston rings and valve stems applications 
in automotive industry [81,82]. HVOF coatings can be applied to landing gears in aircrafts to replace 
the hard chromium coatings. The HVOF process provides high hardness, good wear strength and better 
resistance to fatigue with WC-CrC-Ni coating compared to hard chromium coating [83]. 

Other versatile applications for HVOF coating include magnetic and biomedical use. HVOF 
sprayed ferromagnetic Fe-Si based deposits, which have been produced from nanostructured powder, 
can be used in several magnetic applications even at high temperatures [84]. HVOF hydroxyapatite 
(HAp) coatings are applied in various biomedical applications due to excellent biocompatibility of 
HAp [85]. Use of nanostructured Hap has been studied for biomedical use and the results are 
promising, as the coating exhibits high density and crystallinity, and good microstructural  
uniformity [86]. In the biomedical field, HVOF-sprayed nanostructured titania coatings could be used 
for prosthetic devices and other applications, where superior mechanical behavior is required [87]. 

6. Summary and Conclusions 

In this work, HVOF thermal spray techniques have been reviewed. HVOF techniques have 
significantly developed over the last two decades and new modifications and improvements of the 
technology have been introduced on the market. The latest developments in spray technology also take 
advantage of the developments that have occurred in powder production, especially in nanostructured 
powders. However, in order to fully exploit the excellent properties of HVOF coatings, it is 
emphasized that optimization of the spraying process is a must. As compared to APS coatings, HVOF 
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coatings offer a number of advantages in terms of coating microstructure and properties resulting in 
improved performance in many applications. This holds especially true for metal and cermet coatings. 
For the deposition of ceramic coating, HVOF process offers improvements of coating quality in 
spraying of ceramics such as alumina. However, deposition efficiency of HVOF spray is typically 
lower than that of APS, and may hinder the wider use of the HVOF in many applications despite the 
clear improvement of properties. 

HVOF coatings are nowadays applied in a variety of industries. Major application areas are within 
industries where coatings are used for protection from wear, friction and corrosion. Other applications 
for HVOF coatings include, e.g., magnetic and biomedical use. 

Acknowledgments 

The authors wish to express their gratitude to Sanjay Sampath and Stony Brook University for 
fruitful co-operation. 

References 

1. Cho, J.Y.; Zhang, S.H.; Cho, T.Y.; Yoon, J.H.; Joo, Y.K.; Hur, S.K. The processing optimization 
and property evaluations of HVOF Co-base alloy T800 coating. J. Mater. Sci. 2009, 44,  
6348-6355. 

2. Tillmann, W.; Vogli, E.; Baumann, I.; Kopp, G.; Weihs, C. Desirability-Based Multi-Criteria 
Optimization of HVOF Spray Experiments to Manufacture Fine Structured Wear-Resistant 
75Cr3C2-25(NiCr20) Coatings. J. Therm. Spray Technol. 2010, 19, 392-408. 

3. Mostaghimi, J.; Chandra, S.; Ghafouri-Azar, R.; Dolatabadi, A. Modeling thermal spray coating 
processes: A powerful tool in design and optimization. Surf. Coat. Technol. 2003 163-164, 1-11. 

4. Dongmo, E.; Wenzelburger, M.; Gadow, M. Analysis and optimization of the HVOF process by 
combined experimental and numerical approaches. Surf. Coat. Technol. 2008, 202, 4470-4478. 

5. Bansal, P.; Shipway, P.H.; Leen, S.B. Residual stresses in high-velocity oxy-fuel thermally 
sprayed coatings—Modelling the effect of particle velocity and temperature during the spraying 
process. Acta Mater. 2007, 55, 5089-5101. 

6. Sampath, S.; Jiang, X.; Kulakarni, A.; Matejicek, J.; Gilmore, D.L.; Neiser, R.A. Development of 
process maps for plasma spray: Case study for molybdenum. Mater. Sci. Eng. A 2003, 348, 54-66.  

7. Turunen, E.; Varis, T.; Gustafsson, T.E.; Keskinen, J.; Fält, T.; Hannula, S.-P. Parameters 
optimization of HVOF sprayed nanostructured alumina and alumina-nickel composite coatings. 
Surf. Coat. Technol. 2006, 200, 4987-4994. 

8. Vaidya, A.; Srinivasan, V.; Streibl, T.; Friis, M.; Chi, W.; Sampath, S. Process maps for plasma 
spraying of yttria-stabilized zirconia: An integrated approach to design, optimization and 
reliability. Mater. Sci. Eng. A 2008, 497, 239-253. 

9. Zhang, W.; Sampath, S.A. Universal method for representation of in-flight particle characteristics 
in thermal spray processes. J. Therm. Spray Technol. 2009, 18, 23-34. 

10. Valarezo, A.; Choi, W.B.; Chi, W.; Gouldstone, A.; Sampath, S. Process control and 
characterization of NiCr coatings by HVOF-DJ2700 system: A process map approach. J. Therm. 
Spray Technol. 2010, 19, 852-865. 



Coatings 2011, 1                            
 

 

48 

11. Fauchais, P.; Vardelle, M. Sensors in spray processes. J. Therm. Spray Technol. 2010, 19,  
668-694. 

12. Sampath, S.; Srinivasan, V.; Valarezo, A.; Vaidya, A.; Streibl, T. Sensing, control, and in situ 
measurement of coating properties: An integrated approach toward establishing process-property 
correlations. J. Therm. Spray Technol. 2009, 18, 243-255. 

13. Handbook of Thermal Spray Technology; Davis, J.R., Ed.; ASM International: Materials Park, 
OH, USA, 2004; pp. 338. 

14. Vaidya, A.; Streibl, T.; Li, L.; Sampath, S.; Kovarik, O.; Greenlaw, R. An integrated study of 
thermal spray process-structure-property correlations: A case study for plasma sprayed 
molybdenum coatings. Mater. Sci. Eng. A 2005, 403, 191-204. 

15. Turunen, E.; Varis, T.; Hannula, S.-P.; Vaidya, A.; Kulkarni, A.; Gutleber, J.; Sampath, S.; 
Herman, H. On the role of particle state and deposition procedure on mechanical, tribological and 
dielectric response of high velocity oxy-fuel sprayed alumina coatings. Mater. Sci. Eng. A 2006, 
415, 1-11. 

16. Dwivedi, G.; Wentz, T.; Sampath, S.; Nakamura, T. Assessing process and coating reliability 
through monitoring of process and design relevant coating properties. J. Therm. Spray Technol. 
2010, 19, 695-712. 

17. Hannula, S.-P.; Suhonen, T.; Varis, T.; Turunen, E. Challenges in processing and characterization 
of thermal sprayed coatings. In Proceedings of "Product Property Prediction—P3" Conference, 
Dortmund, Germany, 12–13 April 2010; p. 12. 

18. Vaidya, A.; Bancke, G.; Sampath, S.; Herman, H. Influence of process variables on the plasma 
sprayed coatings—An integrated study. In Proceedings of International Thermal Spray 
Conference, Singapore, Singapore, 28–30 May 2001; pp. 1345-1349. 

19. Matejicek, J.; Sampath, S. In-situ measurements of residual stresses and elastic moduli in thermal 
sprayed coatings: Part 1: Apparatus and analysis. Acta Mater. 2003, 51, 863-872. 

20. Fisher-Cripps, A.C. Nanoindentation, 2nd edition, Mechanical Engineering Series; Springer: New 
York , NY, USA, 2004, p.263. 

21. EN ISO 4516:2002. Metallic and other inorganic coatings. In Vickers and Knoop Microhardness 
Tests?; European Committee for Standardization: City, Country 2002. 

22. Suhonen, T.; Varis, T.; Turunen, E.; Liu, X.; Yanling, G.; Söderberg, O.; Hannula, S.-P. 
Modelling the effect of microstructure on mechanical properties of HVOF sprayed WC-CoCr 
coatings. In Proceedings of WMRIF Workshop for Young Scientists, Tsukuba, Japan, 22–25 July 
2008. 

23. ASTM E 1876-09. Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and 
Poisson's Ratio by Impulse Excitation of Vibration. American Society for Testing and Materials: 
West Conshohocken, PA, USA, 2009. 

24. ENV 843-2:1997. Advanced Technical Ceramics—Monolithic Ceramics, Mechanical Properties at 
Room Temperature—Part 2: Determination of Elastic Moduli. European Committee for 
Standardization: City, Country1997. 

25. Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus 
using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564-1583. 



Coatings 2011, 1                            
 

 

49 

26. Griffith, A.A. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London A 
1920, 221, 163-198 (This article has been republished with additional commentary in Trans. ASM 
61, 871, 1968). 

27. JIS R 1688:2005. Testing Method for Fracture Toughness of Porous Fine Ceramics; Japanese 
Standards Association: Tokyo, Japan, 2005. 

28. Deshpande, S.; Kulkarni, A.; Sampath, S.; Herman, H. Application of image analysis for 
characterization of porosity in thermal spray coatings and correlation with small angle neutron 
scattering. Surf. Coat. Technol. 2004, 187, 6-16. 

29. Fowler, D.B.; Riggs, W.; Russ, J.C. Inspecting thermal sprayed coatings. Adv. Mater. Proc. 1990, 
11, 41-52. 

30. Komatsu, M.; Kuroda, S.; Sodeoka, S.; Sakoda, N.; Lee, S.W. Porosity measurement of thermal 
sprayed ceramic coatings by SEM cross sectional photography and image analysis—Round Robin 
test for ISO standardization. In Proceedings of Asian Thermal Spray Conference, Xi’an, China, 
22–24 October 2009. 

31. Mailhot, K.; Gitzhofer, F.; Boulos, M.I. Absolute coating porosity measurement using image 
analysis. In Proceedings of the 15th ITSC, Nice, France, 1998; Volume 1, pp. 917-922. 

32. Final Report. Aircraft Accident Investigation of Copterline Oy, Sikorsky S-76C+ in Tallinn Bay, 
Estonia on 10th August 2005. Ministry of Economic Affairs and Communications, Estonia.  
6 August 2008. Retrieved 11 August 2008. 

33. EN 582:1993. Determination of Tensile Adhesive Strength; European Committee for 
Standardization: City, country1993. 

34. Marot, G.; Lesage, J.; Démarécaux, P.H.; Hadad, M.; Siegmann, St.; Staia, M.H. Interfacial 
indentation and shear tests to determine the adhesion of thermal spray coatings. Surf. Coat. 
Technol. 2006, 201, 2080-2085. 

35. Noyan, I.C.; Cohen, J.B. Residual Stress—Measurement by Diffraction and Interpretation; 
Springer-Verlag: New York, NY, USA, 1987; p. 626. 

36. Pina, J.; Dias, A.; Lebrun, J.L. Mechanical stiffness of thermally sprayed coatings and elastic 
constants for stress evaluation by X-ray diffraction. Mater. Sci. Eng. A 1999, 267, 130-144. 

37. Matejicek, J.; Sampath, S. In-situ measurements of residual stresses and elastic moduli in thermal 
sprayed coatings: Part 1: Apparatus and analysis, Acta Mater. 2003, 51, 863-872. 

38. ASTM G75-95. Standard Test Method for Determination of Slurry Abrasivity (Miller Number) 
and Slurry Abrasion Response of Materials (SAR Number); American Society for Testing and 
Materials: West Conshohocken, PA, USA, 1995. 

39. Verdon, C.; Karimi, A.; Martin, J.-L. A study of high velocity oxy-fuel thermally sprayed 
tungsten carbide based coatings. Part 1: Microstructures. Mater. Sci. Eng. A 1998, 246, 11-24. 

40. Stewart, D.A.; Shipway, P.H.; McCartney, D.G. Influence of heat treatment on the abrasive wear 
behavior of HVOF sprayed WC-Co coatings. Surf. Coat. Technol.  1998, 105, 13-24. 

41. Li, X.M.; Yang, Y.Y.; Shao, T.M.; Jin, Y.S.; Barbezat, G. Impact wear performances of Cr3C2—
NiCr coatings by plasma and HVOF spraying. Wear 1997, 202, 208-214. 

42. Jones, M.; Horlock, A.J.; Shipway, P.H.; McCartney D.G.; Wood, J.V. A comparison of the 
abrasive wear behaviour of HVOF sprayed titanium carbide and titanium boride-based cermet 
coatings, Wear 2001, 251, 1009-1016. 



Coatings 2011, 1                            
 

 

50 

43. Horlock, A.J.; McCartney, D.G.; Shipway, P.H.; Wood, J.V. Thermally sprayed Ni(Cr)-TiB2 
coatings using powder produced by self-propagation high temperature synthesis: Microstructure 
and abrasive wear behaviour, Mater. Sci. Eng. A 2002, 336, 88-98. 

44. Wang, B.-Q. The dependence of erosion—Corrosion wastage on carbide/metal binder proportion 
for HVOF carbide-metal cermet coatings, Wear 1996, 196,141-146. 

45. Hawthorne, H.M.; Arsenault, B.; Immarigeon, J.P.; Legoux, J.G.; Parameswaran, V.R. 
Comparison of slurry and dry erosion behaviour of some HVOF thermal sprayed coatings, Wear 
1999, 225-229, 825-834. 

46. Mann, B.S.; Arya, V. Abrasive and erosive wear characteristics of plasma nitriding and HVOF 
coatings: Their application in hydro turbines. Wear 2001, 249, 354-360. 

47. Berget, J.; Rogne, T.; Bardal, E. Erosion-corrosion properties of different WC-Co-Cr coatings 
deposited by the HVOF process—Influence of metallic matrix composition and spray powder size 
distribution. Surf. Coat. Technol. 2007, 201, 7619-7625. 

48. Zhou, Z.; Wang, L.; Wang, F.C.; Zhang, H.F.; Liu, Y.B.; Xu, S.H. Formation and corrosion 
behavior of Fe-based amorphous metallic coatings by HVOF thermal spraying, Surf. Coat. 
Technol. 2009, 204, 563-570. 

49. Lima, R.S.; Marple, B.R. From APS to HVOF spraying of conventional and nanostructured titania 
feedstock powders: A study on the enhancement of the mechanical properties, Surf. Coat. 
Technol. 2006, 200, 3428-3437. 

50. Turunen, E.; Varis, T.; Gustafsson, T.; Keskinen, J.; Lintunen, P.; Fält, T.; Nowak, R.;  
Hannula, S.-P. Process optimization for nanostructured HVOF-sprayed Al2O3-based ceramic 
coatings, Key. Eng. Mater. 2006, 317-318, 545-554. 

51. Turunen, E.; Varis, T.; Keskinen, J.; Fält, T.; Hannula, S.-P. Improved mechanical properties by 
nanoreinforced ceramic composite HVOF coatings, Adv. Sci. Technol. 2006, 45, 1240-1245. 

52. Turunen, E.; Hirvonen, A.; Varis, T.; Fält, T.; Hannula, S.-P.; Sekino, T.; Niihara K. Application 
of HVOF techniques for spraying of ceramic coatings. Adv. Technol. Mater. 2007, 9, 63-68. 

53. Bolelli, G.; Lusvarghi, L.; Manfredini, T.; Mantini, P.F.; Polini, R.; Turunen, E.; Varis, T.; 
Hannula, S.-P. Comparison between plasma- and HVOF-sprayed ceramic coatings. Part I: 
Microstructure and mechanical properties. Int. J. Surf. Sci. Eng. 2007, 1, 38-61. 

54. Brandl, W.; Toma, D.; Krüger, J.; Grabke, H.J.; Matthäus, G. The oxidation behaviour of HVOF 
thermal-sprayed MCrAlY coatings. Surf. Coat. Technol. 1997, 93-95, 21-26. 

55. Gil, L.; Staia, M.H. Influence of HVOF parameters on the corrosion resistance of NiWCrBSi 
coatings. Thin Solid Films 2002, 420-421, 446-454. 

56. Zhao, W.-M.; Wang, Y.; Dong, L.-X.; Wu, K.-Y.; Xue, J. Corrosion mechanism of NiCrBSi 
coatings deposited by HVOF. Surf. Coat. Technol. 2005, 190, 293-298. 

57. Kawakita, J.; Kuroda, S.; Kodama, T. Evaluation of through-porosity of HVOF sprayed coating. 
Surf. Coat. Technol. 2003, 166, 17-23. 

58. Chidambarama, D.; Clayton, C.; Dorfman, M. Evaluation of the electrochemical behavior of 
HVOF-sprayed alloy coatings. Surf. Coat. Technol. 2004, 176, 307-317. 

59. Chidambarama, D.; Claytona, C.R.; Dorfman, M.R. Evaluation of the electrochemical behavior of 
HVOF-sprayed alloy coatings—II. Surf. Coat. Technol. 2005, 192, 278-283. 



Coatings 2011, 1                            
 

 

51 

60. Rastegar, F.; Richardson, D.E. Alternative to chrome: HVOF cermet coatings for high horse 
power diesel engines. Surf. Coat. Technol. 1997, 90, 156-163. 

61. Nascimento, M.P.; Souza, R.C.; Miguel, I.M.; Pigatin, W.L.; Voorwald, H.J.C. Effects of tungsten 
carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high 
strength steel. Surf. Coat. Technol. 2001, 138, 113-124. 

62. Sahraoui, T.; Fenineche, N.-E.; Montavon, G.; Coddet, C. Alternative to chromium: 
Characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty), J. 
Mater. Processing Technol. 2004, 152, 43-55. 

63. Guilemany, J.M.; Espallargas, N.; Suegama, P.H.; Benedetti, A.V. Comparative study of  
Cr3C2-NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 2006, 48, 
2998-3001?. 

64. Bolelli, G.; Cannillo, V.; Lusvarghi, L.; Ricco, S. Mechanical and tribological properties of 
electrolytic hard chrome and HVOF-sprayed coatings. Surf. Coat. Technol. 2006, 200, 2995-3009. 

65. Bolelli, G.; Lusvarghi, L.; Manfredini, T.; Mantini, P.F.; Turunen, E.; Varis, T.; Hannula, S.-P. 
Comparison between plasma- and HVOF-sprayed ceramic coatings. Part II: Tribological 
behaviour. Int. J. Surf. Sci. Engin. 2007, 1, 62-79. 

66. Guilemany, J.M.; Espallargas, N.; Suegama, P.H.; Benedetti, A.V. Comparative study of Cr3C2-
NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 2006, 48, 2998-3013. 

67. Sidhu, T.S.; Prakash, S.; Agrawal, R.D. Evaluation of hot corrosion resistance of HVOF coatings 
on a Ni-based superalloy in molten salt environment, Mater. Sci. Eng. A 2006, 430, 64-78. 

68. Sidhu, H.S.; Sidhu, B.S.; Prakash, S. The role of HVOF coatings in improving hot corrosion 
resistance of ASTM-SA210 GrA1 steel in the presence of Na2SO4-V2O5 salt deposits. Surf. Coat. 
Technol. 2006, 200, 5386-5394. 

69. Stewart, D.A.; Shipway, P.H.; McCartney, D.G. Abrasive wear behaviour of conventional and 
nanocomposite HVOF-sprayed WC–Co coatings. Wear 1999, 225-229, 789-798. 

70. Berger, L.M.; Woydt, M.; Saaro, S. Comparison of self-mated hardmetal coatings under dry 
sliding conditions up to 600 °C. Wear 2009, 266, 406-416. 

71. Ramesh, M.R.; Prakash, S.; Nath, S.K.; Sapra, P.K.; Venkataraman, B. Solid particle erosion of 
HVOF sprayed WC-Co/NiCrFeSiB coatings. Wear 2010, 269, 197-205. 

72. Oksa, M.; Kärki, J.; Varis, T.; Turunen, E. Corrosion resistance of HVOF coatings in a biofuel 
boiler plant. In Proceedings of EUROCORR 2005 The European Corrosion Congress, Lissabon, 
Country,4–8 September 2005; p. 9. 

73. Sidhu, T.S.; Prakash, S.; Agrawal, R.D. Studies of the metallurgical and mechanical properties of 
high velocity oxy-fuel sprayed stellite—6 coatings on Ni- and Fe-based superalloys. Surf. Coat. 
Technol. 2006, 201, 273-281. 

74. Kawahara, Y. Application of high temperature corrosion-resistant materials and coatings under 
severe corrosive environment in waste-to-energy boilers. J. Therm. Spray Technol. 2007, 16,  
202-213. 

75. Lima, C.R.C.; Guilemany, J.M. Adhesion improvements of thermal barrier coatings with HVOF 
thermally sprayed bond coats. Surf. Coat. Technol. 2007, 201, 4694-4701. 

76. Gibbons, G.J.; Hansell, R.G. Thermal-sprayed coatings on aluminium for mould tool protection 
and upgrade. J. Mater. Process. Technol. 2008, 204, 184-191. 



Coatings 2011, 1                            
 

 

52 

77. Matthews, S.; James, B. Review of thermal spray coating applications in the steel industry: Part 
2—Zinc pot hardware in the continuous galvanizing line. J. Therm. Spray Technol. 2010, 19, 
1277-1286. 

78. Bolelli, G.; Lusvarghi, L.; Barletta, M. HVOF-sprayed WC-CoCr coatings on Al alloy: Effect of 
the coating thickness on the tribological properties. Wear 2009, 267, 944-953. 

79. Hamashima, K. Application of new boride cermet coating to forming of glass sheets. J. Therm. 
Spray Technol. 2007, 16, 32-33. 

80. Espallargas, N.; Berget, J.; Guilemany, J.M.; Benedetti, A.V.; Suegama, P.H. Cr3C2-NiCr and 
WC-Ni thermal spray coatings as alternatives to hard chromium for erosion-corrosion resistance. 
Surf. Coat. Technol. 2008, 202, 1405-1417. 

81. Fedrizzi, L.; Rossi, S.; Cristel, R.; Bonora, P.L. Corrosion and wear behaviour of HVOF cermet 
coatings used to replace hard chromium. Electrochim. Acta 2004, 49, 2803-2814. 

82. Picas, J.A.; Fornand, A.; Matthäus, G. HVOF coatings as an alternative to hard chrome for pistons 
and valves. Wear 2006, 261, 477-484. 

83. Bonora, R.G.; Voorwald, H.J.C.; Cioffi, M.O.H.; Junior, G.S.; Santos, L.F.V. Fatigue in AISI 
4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Engin. 2010, 2, 
1617-1623. 

84. Cherigui, M.; Fenineche, N.E.; Ji, G.; Grosdidier, T.; Coddet C. Microstructure and magnetic 
properties of Fe-Si-based coatings produced by HVOF thermal spraying process. J. Alloys 
Compd. 2007, 427, 281-290. 

85. Gadow, R.; Killinger, A.; Stiegler, N. Hydroxyapatite coatings for biomedical applications 
deposited by different thermal spray techniques. Surf. Coat. Technol. 2010, 205, 1157-1164. 

86. Lima, R.S.; Khor, K.A.; Li, H.; Cheang, P.; Marple, B.R. HVOF spraying of nanostructured 
hydroxyapatite for biomedical applications. Mater. Sci. Eng. A 2005, 396, 181-187. 

87. Gaona, M.; Lima, R.S.; Marple, B.R. Influence of particle temperature and velocity on the 
microstructure and mechanical behaviour of high velocity oxy-fuel (HVOF)-sprayed 
nanostructured titania coatings. J. Mater. Process. Technol. 2008, 198, 426-435. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


