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Abstract: Paper-based abrasive products are multilayer structures in which the first layer on the
paper substrate is usually a latex barrier coating to prevent the migration of adhesive glue into the
substrate. The high coat weight (10 g/m2) of latex barrier layers is a cause of environmental concerns.
Hence, alternative materials that can provide the barrier function at lower coat weights are desired.
In this work, microfibrillated cellulose (MFC) combined with poly(vinyl) alcohol (PVA) were explored
as suitable alternatives to the current latex coatings. Barrier coating formulations containing PVA,
MFC, and silica (SiO2) were developed and applied to a paper substrate using a rod coating method
on a pilot scale. Coating quality and barrier performance were characterized using scanning electron
microscope images, air permeance, surface roughness, water contact angle, KIT test, and oil Cobb
measurements. The barrier coatings were also studied for adhesion to the subsequent coating layer.
An optimal barrier function was achieved with the developed coatings at a low coat weight of ca.
3 g/m2. The adhesion of pure PVA and PVA-MFC barrier coatings to the subsequent coating layer
was inadequate; however, silica addition was found to improve the adhesion.
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1. Introduction

Abrasives such as sandpapers are usually multilayer structures, where synthetic polymer resins
are binding and stabilizing abrasive particles on a backing sheet. Abrasive particles are inorganic
materials, e.g., Al2O3 and SiC, of diverse sizes varying from 1 to 2000 µm according to the use. Several
backing sheet materials such as papers, nonwovens, and plastics are used. The backing sheet material
is often treated before use to improve its flexibility, durability, water resistance, and adhesion and
barrier properties. Latex or other similar compounds are known to be particularly suitable for such
treatments [1,2]. A combination of adhesive resin and an abrasive grit is applied to the treated backing
followed by curing to yield an abrasive sheet material.

For paper-based abrasive structures, a barrier layer is applied on the substrate before the abrasive
material coatings to prevent the migration of adhesive glue (synthetic polymer resins) used in the
subsequent coating layers [3]. The barrier layer should also ensure proper adhesion of the subsequent
coating layer [4]. These barrier coatings are currently made of oil-based latex with coat weights reaching
almost 10 g/m2. Recent environmental concerns related to oil-based products and rising demand for
environmentally friendly products is driving the industry to search for sustainable alternatives to these
barrier coatings, which can provide the desired barrier function at lower coat weights.

The development of barrier coatings for abrasive products has received surprisingly little attention
from the research community. This is partly due to the existing commercial solutions of the abrasive
products that have been used for a long time successfully without a need for further development.
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However, there has been a lot of focus on developing sustainable biobased barrier coating solutions
for paper packaging applications, as evident from several reviews on the topic [5–7]. Some of these
developments from the packaging field can prove useful for the case here. For example, nanocellulose
films and coatings with their known barrier performance against grease and oils [8–10] have the
potential to replace the latex in the barrier layer for abrasive products. However, the high viscosity and
yield stress of nanocellulose suspensions [11,12], even at low solid contents, create coating process
challenges [13,14] and limit their use as the only material in the barrier layers for paper-based substrates.
The high water content of the nanocellulose suspensions results in challenges related to shrinkage of
the substrate, poor runnability, and high drying costs. However, other materials such as biodegradable
polymer poly(vinyl) alcohol (PVA) with known barrier properties for oils [15], acceptable mechanical
properties, and low cost can potentially be used in combination with nanocellulose to develop the
barrier layer solutions. This could help in increasing the solids content of the coating formulation
and minimize the challenges related to pure nanocellulose coating formulations. Furthermore, the
resulting dry coating layer can be more flexible for further processing than nanocellulose coating alone.

PVA and nanocellulose combinations in films and composites have been explored by several
researchers over the years [16–25]. PVA and nanocellulose coatings, on the other hand, are far
less explored in general, and that too mainly for packaging [26,27] and printing applications [28].
Guezennec (2012) [27] proposed to use a PVA/cellulose nanofibrils (CNFs) layer as a barrier coating
for developing a packaging board. A 10 g/m2 coating layer comprising a 20:1 PVA/CNF ratio was
deposited onto a 182 g/m2 baseboard. The PVOH/CNF mixture was found to be better coatable than
pure PVOH, which was due to the CNF helping during the drying by limiting blister defects and thus
improving the runnability. According to the authors’ knowledge, there have been no other studies
exploring the use of PVA/microfibrillated cellulose (MFC) combinations in barrier coatings, especially
for abrasive paper products.

The abrasive products use latex in the barrier coating, which not only provides a reasonable
barrier but also ensures adequate adhesion to the subsequent coating layer. The adhesion is achieved
both through mechanical and chemical interactions. The mechanical anchoring effect is obtained by
a well-controlled migration of the glue into the substrate surface while the chemical binding of the
latex to the glue improves the adhesion further. Therefore, the new barrier material replacing the latex
should be multifunctional ensuring both suitable barrier and adhesion performance.

The objective of this work was to develop PVA and MFC based barrier coating layers for abrasive
paper products. Three PVA based barrier coatings were produced, namely, pure PVA, PVA with the
addition of MFC, and PVA with the addition of MFC and silicon dioxide where the latter was utilized
as a filler to improve compatibility with the resin in the subsequent coating layer. The specific goal
was to achieve the same barrier performance as the currently used latex barrier coating but with a
lower coat weight while not compromising the adhesion to the subsequent coating layer. This would
enable lean products and make abrasive material production more resource-efficient and sustainable
in the future.

2. Materials and Methods

2.1. Materials

Mirka Ltd. (Finland) provided the paper-based substrate with a basis weight of 120 g/m2.
Borregaard AS (Sarpsborg, Norway) provided MFC, EXILVA F01-V, as 10 wt % water-based
suspension/paste. PVA, POVAL® 6-98, was procured from Kuraray Europe Nordic Ab Oy (Vantaa,
Finland) in the form of granules. Silicon dioxide (SiO2), AERODISP® W1226, was procured as a
26 wt % water-based dispersion of AEROSIL® fumed silica from Evonik Resource Efficiency GmbH
(Bitterfeld-Wolfen, Germany). Mirka also provided a latex coated barrier paper, which was used as an
industry reference sample for comparing the performance of the new barrier coatings developed in
this work.
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2.2. Coating Formulations

Three coating formulations prepared in this work are listed in Table 1. The first formulation
containing only PVA was prepared by cooking the PVA granules in the water at 85–90 ◦C for 2 h.
For preparing the second formulation, the high viscosity MFC could not be dispersed efficiently in
the cooked PVA solution. Therefore, a special protocol was developed to ensure proper dispersion
of MFC in PVA. MFC was first dispersed in the total needed amount of water for the formulation,
and PVA was cooked subsequently in the MFC dispersion at 85–90 ◦C for 2 h. This ensured an efficient
mixing of MFC and PVA. For the third formulation, silica was added to a cold PVA-MFC mixture in
a 70:30 weight ratio and mixed for 30 min. It is noted that the addition amounts of MFC and silica
were first optimized on the laboratory scale. The MFC addition amount could not be higher because of
the increasing viscosity of the formulation. The selected filler (silica) content was the maximum that
provided good adhesion without compromising the barrier performance.

Table 1. Coating formulations.

Formulation PVA PVA-MFC PVA-MFC-Silica

Weight ratio 100 90:10 (90:10)70:30
Solids content (%) 10 10 10

2.3. Rheology Measurements

Formulation rheology measurements with cone-plate geometry (plate diameter: 50 mm) were
carried out using a Paar Physica Modular Compact Rheometer (MCR) 301 (Anton Paar GmbH, Graz,
Austria). Shear flow tests were conducted in a shear rate range of 0.1–1000 s−1.

2.4. Coating Application

The coating formulations were tested on a laboratory scale with an Erichsen laboratory coater
before moving to the pilot-scale coating. Rod coating technology was utilized on VTT’s surface
treatment concept line (see Figure 1), and a 20 µm rod was used as a coating applicator. Coating speed
was 10 m/min, and the coating was dried using infrared (IR) and air-drying. The coating width was
500 mm.
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2.5. Coating Characterization

2.5.1. Coat Weight, Air Permeance, and Surface Roughness Measurements

Grammage of the substrate and coated samples was determined following the TAPPI standard T
410 om-08 [29]. A precise determination of the low coat weights was difficult due to variation in the
grammage of the substrate. Air permeance of the substrate and the coated samples was determined
using an air permeability tester SE-166 (Lorentzen and Wettre, Kista, Sweden) with a measurement
range of 0.003–100 µm/(Pa·s) following the TAPPI standard T 547 om-18 [30]. The surface roughness of
the substrate and coated samples was measured with an L&W PPS tester (Lorentzen and Wettre, Kista,
Sweden) following the TAPPI standard T 555 om-15 [31]. For each property, five parallel determinations
were made on different areas of each sample at 50% RH and 23 ◦C.

2.5.2. Water Contact Angle Measurements

The contact angle of water on the substrate and coated samples was determined by the sessile drop
method employing a fully computer-controlled contact angle meter (KSV Instruments Ltd., Helsinki,
Finland) equipped with a CAM 200 video camera. For each measurement, a water drop of volume
4.5 µL was placed on the surface of the sample, and images were recorded every second for 1 min.
Up to five different positions on the sample surface were measured and the average contact angle
determination is reported.

2.5.3. Oil Cobb Test with Special Monomer

Oil Cobb test was performed analogously to the water Cobb method (TAPPI T-441 standard
method), where the testing liquid (water) was replaced by a monomer that was used as a component
in the resin formulation of the subsequent coating layer.

2.5.4. KIT Test

The KIT test method, a standard method in the paper industry (TAPPI T559), was used to
characterize the oil repellence of barrier-coated samples. KIT test was originally developed for testing
the degree of oil and grease resistance of paper or board treated with fluorochemical sizing agents.
The test method involves putting drops of a series of numbered reagents (KIT No. 1-12) on the sample
surface. The highest numbered reagent (the most aggressive) that remains on the surface of the sample
for 15 s without causing failure is reported as the “KIT number”. Testing of the barrier coated samples
was done with the mixtures of castor oil and two solvents (n-heptane and toluene), where the higher
solvent proportion provides a higher degree of aggressiveness. The average of five determinations for
each barrier-coated sample is reported.

2.5.5. Oil Drop Test

An in-house developed oil drop test was used at VTT to determine the oil barrier of the coatings.
The test was based on a visual estimation of a drop of red oil (rapeseed oil + red oil) coming through to
the other side of the sample in 15 h.

2.5.6. Scanning Electron Microscopy (SEM)

Surface images of the samples were acquired with a Hitachi TM4000Plus scanning electron
microscope (Hitachi, Japan) using a 100 times magnification.

2.5.7. Adhesion Tests

The barrier coating layers were tested for their adhesion to the subsequent coating layer. The test
was performed by applying the next coating layer on the top of the barrier coating and then testing the
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peel strength of the top coating. The peel strength was tested by rubbing the coated paper between the
thumbs by rolling it back and forth. Thus, the adhesion test was of a qualitative nature.

3. Results and Discussion

3.1. Rheology and Coat Weights

The coating formulations were found to have different rheological behavior. The PVA formulation
had the lowest viscosity, especially at low shear rates. The addition of MFC increased the viscosity,
but the viscosity dropped again upon the addition of silica. The addition of MFC introduced a more
pronounced shear thinning behavior to the formulation, as seen in Figure 2. The addition of MFC was
also found to improve the coatability of the formulation probably by providing favorable rheological
properties. The addition of silica to the PVA-MFC coating reduced the overall viscosity, but it did not
affect the shear-thinning nature or coatability.

The coat weights obtained with the different formulations are listed in Table 2. Even though
the formulations were at the same solids content, the higher coat weight for PVA formulation can
potentially be explained by the difference in the rheological behavior of the formulations. The shear
rates under the 20-µm rod at a coating speed of 10 m/min should be ca. 8000 s−1. Based on the
calculated power-law indices of the three formulations, the estimated viscosity at 8000 s−1 was lower
for the PVA-MFC and PVA-MFC-silica formulations compared to the PVA formulation. The coat
weight seems to follow the same trend as the shear-thinning index. The lower viscosity at high shear
rates should also improve their coatability. It is noteworthy that the high viscosity of PVA formulation
at high shear rates limits the minimum coat weight achievable with a 20-µm rod. However, the MFC
helps achieve a lower coat weight with the same rod by bringing in its shear-thinning effect providing
a lower viscosity at high shear rates. This is a clear advantage of using MFC in these formulations.
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Table 2. Coat weights and barrier properties obtained with different formulations.

Sample Reference Substrate PVA PVA-MFC PVA-MFC-Silica

Coat weight (g/m2) 8–10 - 4 2.5 3

Air permeance (µm/Pa·s) 0.003 * 1.69 ± 0.09 0.003 * 0.003 * 0.006 ± 0.002

Surface roughness (µm) 5.5 ± 0.3 5 ± 0.3 6.7 ± 0.2 6.4 ± 0.4 7.1 ± 0.3

Oil Cobb (g/m2) 3.8 ± 2 40.6 ± 1.4 2.1 ± 0.5 6.6 ± 1.3 8.5 ± 3.9

KIT number 9 0 11 9 6

* Detection limit of the instrument.

3.2. Barrier Performance

The air permeance of the substrate and coated samples are shown in Figure 3. Air permeance
dropped significantly after coating implying a surface closure. The air permeance values for PVA and
PVA-MFC coatings were below the detection limit (0.003 µm/Pa.s) of the instrument. The addition of
silica somewhat reopened the coating structure, as indicated by the slightly increased air permeance.

All the coatings improved the oil barrier significantly compared to the substrate, as seen from
Figure 4. The polar nature of the barrier coating components helps repel the non-polar oils. PVA coating
demonstrated the best barrier performance, and the barrier deteriorated slightly upon the addition
of MFC and silica. The water contact angles (see Table 3) of the barrier coatings show that similar
hydrophilicity was achieved with all of them. Therefore, the barrier performance change seems to
be happening due to the physical opening of the coating structure upon the additions of MFC and
silica. Nevertheless, the oil Cobb values for all the coatings were found to satisfy the performance
requirement. Furthermore, an oil drop test performed using a combination of rapeseed oil and red
oil demonstrated good barrier performance for both PVA and PVA-MFC coatings because the oil did
not come through to the other side of the coated samples in a testing time of 15 h. However, the
PVA-MFC-silica coating did show some oil coming through to the other side probably caused by some
pinholes. Nevertheless, all coatings showed excellent barrier at less than half the coat weight in the
current latex-based solution, as seen from Table 2.
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As apparent from the SEM images and barrier performance, PVA coating clearly achieved a better
surface closure. A slightly less closed surface coating was obtained with PVA-MFC. The addition of
silica further opened the coating structure. A slightly open coating structure that meets the needed
barrier requirements can be more beneficial when it comes to adhesion to the subsequent coating layer.
The open coating structure can provide mechanical anchoring by allowing a controlled penetration of
the monomer used in the subsequent coating layer.

3.3. Adhesion Performance

Table 3 lists the water contact angle of the substrate and coating layers. The coatings transformed
the originally hydrophobic base paper into a hydrophilic surface. This was expected from the
hydrophilic nature of the coating components involved. However, the water contact angle did not
have a direct correlation with the adhesion to the subsequent coating layer. For example, all the
coating layers had similar water contact angles but different adhesion performance. Therefore, the
physical interaction of the coating components with the resin of the subsequent coating layer plays
a more critical role. Furthermore, a relatively open coating surface in PVA-MFC compared to PVA
coating seemed to improve adhesion through mechanical anchoring. Adhesion improved further in
PVA-MFC-silica coating. This could be attributed to the opened coating structure and a potential
chemical interaction of silica itself with the monomer. Therefore, silica seemed to act as an adhesion
promoter, as also seen from Figure 6. There was a clear failure of the next coating structure applied
to PVA and PVA-MFC barrier coatings. Only the PVA-MFC-silica coating provided significantly
improved adhesion.

Table 3. Water contact angles of the coatings and adhesion performance.

Sample Water Contact Angle at 0.5 s Adhesion to the Next Layer
(◦) (Qualitative Estimate)

Substrate 112 -
PVA 58 Poor/No adhesion

PVA-MFC 46 Poor
PVA-MFC-Silica 55 Good
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Surface roughness is also an important aspect of mechanical anchoring of the next layer.
Surface roughness, shown in Figure 7, also seemed to correlate with the coating coverage and
adhesion performance.
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The increase in surface roughness was the highest for silica-containing coating, which can prove
helpful in mechanical anchoring of the subsequent coating layer. The swelling induced during coating
probably caused increased surface roughness with all coatings compared to the base paper. However,
some curling of paper due to barrier shrinkage was observed, and this needs to be compensated in
future coating trials. A common solution is to add some water to the other side of the paper to prevent
the curling.

4. Conclusions

New barrier coatings containing PVA, MFC, and silica for abrasive products were developed and
demonstrated at the pilot scale. MFC addition was found to improve the coatability and reduce the
final coat weight of the formulations by providing favorable rheology. Excellent barrier performance
was achieved at a much lower coat weight than the currently existing latex-based solutions. The polar
nature of the coating components played a key role in achieving the barrier performance against
oil-based synthetic resins. However, a fully closed coating structure with PVA prevented essential
adhesion of the subsequent coating layer. A slightly open coating structure, achieved with the addition
of both MFC and silica, reduced the barrier performance but increased the adhesion to the subsequent
coating layer by providing a mechanical anchoring effect. These new barrier solutions could pave
the way for the development of abrasive products with lower environmental impacts than with
oil-based solutions.
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