

Supplementary Materials: Corrosion Resistance of Mild Steel Coated with Phthalimide-Functionalized Polybenzoxazines

1. Characterization

Infrared spectra of all the samples were recorded in the solid state over the spectral range from 4000 to 400 cm⁻¹ using the KBr method in a Shimadzu 2110 PC Scanning Spectrophotometer. NMR spectra were recorded using a BRUKER400 MHz instrument, with CDCl₃ and DMSO-*d*₆ as the solvents and tetramethylsilane (TMS) as the external standard. DSC was performed under a N₂ atmosphere using a DSC Q20 V24.11 Build 124 calorimeter from 30 to 300 °C at a heating rate of 20 °C min⁻¹. TGA was performed under an atmosphere of N₂ using a DTG-60H instrument operated at a heating rate of 20 °C min⁻¹. The WCAs of uncoated and coated MS were estimated using a Theta light instrument (TL 100 and TL 101, Biolin Scientific Company, Espoo, Finland) operated at ambient temperature; a deionized water droplet (2 µL) was injected on the sample surface. Each measurement was repeated three times; the mean and standard deviation (SD) were determined under the same conditions. The surface morphology of the uncoated and coated MS samples was investigated using scanning electron microscopy (SEM; JEOL JSM-7610 F, Tokyo, Japan).

Figure S1. ¹H NMR spectrum of *p*-PP.

Figure S2. ¹H-NMR spectrum of *o*-PP.

Samples	Curing Temperature (°C)	Water Contact Angle Mean ± SD
MS	-	$70.7 \pm 1.11^{\circ}$
	150	$92.8 \pm 0.30^{\circ}$
pPP-BZ	180	$102.1 \pm 0.81^{\circ}$
	210	$95.6 \pm 0.44^{\circ}$
MS	-	$70.7 \pm 1.11^{\circ}$
	150	$91.5 \pm 0.34^{\circ}$
oPP-BZ	180	$99.2 \pm 0.78^{\circ}$
	210	$93.4 \pm 0.25^{\circ}$

Table 1. Water contact angles (WCAs) results (mean ± SD) of uncoated MS and MS coated with *p*PP-BZ and *o*PP-BZ at various curing temperatures and recorded prior to corrosion tests.

Figure S3. photographs of the scalpel-cut of MS coated with (a) poly(*p*PP-BZ)₁₅₀, (b) poly (*p*PP-BZ)₁₈₀ and (c) poly(*p*PP-BZ)₂₁₀, (d) poly (*o*PP-BZ)₁₅₀, (e) poly (*o*PP-BZ)₁₈₀ and (f) poly (*o*PP-BZ)₂₁₀.

Figure S4. Equivalent circuit models with (**a**) one time constant (uncoated MS) and (**b**) two-time constants (coated MS) used to fit the impedance data.

Figure S5. SEM surface images of (**a**) polished MS, (**b**) uncoated MS after immersing in a 3.5 wt.% aqueous solution of NaCl, and (**c**) coated MS with poly (*p*PP-BZ)₁₈₀.