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Abstract: The development of novel oxygen reduction electrodes with superior electrocatalytic activity
and CO2 durability is a major challenge for solid oxide fuel cells (SOFCs). Here, novel cobalt-free
perovskite oxides, BaFe1−xYxO3−δ (x = 0.05, 0.10, and 0.15) denoted as BFY05, BFY10, and BFY15,
are intensively evaluated as oxygen reduction electrode candidate for solid oxide fuel cells.
These materials have been synthesized and the electrocatalytic activity for oxygen reduction reaction
(ORR) has been investigated systematically. The BFY10 cathode exhibits the best electrocatalytic
performance with a lowest polarization resistance of 0.057 Ω cm2 at 700 ◦C. Meanwhile, the single
cells with the BFY05, BFY10 and BFY15 cathodes deliver the peak power densities of 0.73, 1.1,
and 0.89 W cm−2 at 700 ◦C, respectively. Furthermore, electrochemical impedance spectra (EIS) are
analyzed by means of distribution of relaxation time (DRT). The results indicate that the oxygen
adsorption-dissociation process is determined to be the rate-limiting step at the electrode interface.
In addition, the single cell with the BFY10 cathode exhibits a good long-term stability at 700 ◦C under
an output voltage of 0.5 V for 120 h.
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1. Introduction

Perovskite-type materials are the promising cathodes for solid oxide fuel cells (SOFCs) [1–3].
Among the perovskite oxides, the Co-containing perovskite materials with mixed ionic-electronic
conducting feature have been widely investigated due to their remarkable electrochemical performance
for ORR [4–6]. However, Co-containing oxides show some other drawbacks, such as poor chemical
stability, higher thermal expansion coefficient, and strong volatility, which inhibit their wide applications
in SOFCs [7,8]. To address these issues, developing new cathodes with improved electrochemical
performance and good chemical stability is an important trend. Recently, Fe-based perovskite materials
exhibit attractive chemical compatibility and excellent electrocatalytic activity, such as SrFe1−xTixO3−δ,
SrFe0.8Nb0.2−xTaxO3−δ, La1−xSrxFeO3−δ, and Ba1−xLaxFeO3−δ [9–12].

Among the Fe-based oxides, BaFeO3−δ presents attractive oxygen permeation flux and fast oxygen
surface exchange kinetics [13,14]. This is mainly due to variable valence and excellent chemical stability
of Fe ions, as well as lower valence and larger ionic radius of Ba2+, which facilitates the electrochemical
performance and oxygen transport of the materials [15]. Cation-doping is commonly adopted to
stabilize the cubic lattice of BaFeO3−δ with disordered oxygen vacancies, such as La3+, Sm3+, and Ca2+

in the A site and Nb5+, Sn4+, In3+, and Ni2+ in the B site [12,16–18]. Lu et al. found that In3+ doping
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in the B site of BaFeO3−δ can enhance oxygen permeation flux, in which BaFe0.9In0.1O3−δ presented
the higher oxygen permeation flux of 1.11 mL cm−2 min−1 at 950 ◦C [19]. Song et al. reported an
attractive cathode candidate of BaFe1−xBixO3−δ for SOFCs. The BaFe0.9Bi0.1O3−δ cathode exhibited a
lower polarization resistance of 0.133 Ω cm2 at 750 ◦C and a high oxygen vacancy concentration of
0.408. However, the thermal expansion coefficient of BaFe0.9Bi0.1O3−δ is very large (26.697 × 10−6 K−1).
Additionally, the oxygen permeability and oxygen non-stoichiometry of BaFe1−xYxO3−δ have been
investigated by Liu et al. They found that Y-doping promotes the oxygen vacancy concentration and
oxygen ion migration, which is believed to be favorable for transport of the oxygen ion in the bulk
electrode, thereby resulting in the enhanced electrocatalytic performance [20].

In this work, Fe-based perovskite BaFe1−xYxO3−δ oxides have been investigated as the prominent
cathodes for SOFCs. The crystalline structure, CO2 tolerance, and electrocatalytic activity for ORR of
the BaFe1−xYxO3−δ cathodes are systematically investigated. The results provide an effective strategy
for designing novel cathode electrocatalysts for SOFCs.

2. Experimental

2.1. Material Preparation

The BaFe1−xYxO3−δ (x = 0.05–0.15) samples were synthesized by the solid-state reaction.
Stoichiometric amounts of BaCO3 (99.99%, Tianjin Guangfu Co. Ltd., Tianjin, China), Fe2O3 (99.99%,
Tianjin Guangfu Co. Ltd.), and Y2O3 (99.99%, Tianjin Guangfu Co. Ltd.) were mixed and ground via
the ball milling using ethanol as the dispersant. Afterwards, the mixture was pre-fired at 1000 ◦C for
10 h with a heating rate of 5 ◦C min−1 in air and then re-milled for 1 h, followed by calcining at 1300 ◦C
for 12 h to obtain the final products.

2.2. Characterization

The crystal structure of BFYx cathodes were identified using X-ray diffraction (Bruker D8 advance)
with filtered Cu-Kα radiation (λ= 1.5148 Å) source in a 2θ range of 10◦–80◦. The XRD data was analyzed
to obtain the structural parameters by using Rietveld refinement method using the Rietica software
(Version 1.7.7.8) program. The oxygen desorption property of the cathode catalysts was carried out by
O2 temperature-programmed desorption (O2-TPD) with the TP-5076 instrument (Tianjin Xianquan,
Co. Ltd., Tianjin, China). The electrical conductivity was measured between 100 and 800 ◦C in air by
standard four-probe DC method with a Keithley 2400 SourceMeter Keithley Instruments Inc., Cleveland,
OH, USA). The oxygen non-stoichiometry of the samples at room temperature was determined with
the iodometric titration method, as described elsewhere [21,22]. The oxygen non-stoichiometry at high
temperature was measured by thermogravimetric analysis (TGA, SETARAM, Caluire et Cuire, France).

2.3. Electrochemical Test

The dense Ce0.9Gd0.1O1.95 (CGO) electrolyte was fabricated by pressing CGO powders (SOFCMAN
Co. Ltd., Ningbo, China) uniaxially at 220 MPa, and sintered at 1450 ◦C for 24 h. For the fabrication of
symmetrical cells (BFYx|CGO|BFYx), the BFYx electrode powders were mixed with terpineol and ethyl
cellulose to prepare the cathode slurry. The slurry was symmetrically coated on the Ce0.9Gd0.1O2−δ

(CGO) electrolyte and sintered at 900 ◦C for 4 h. The electrochemical impedance spectroscopy (EIS)
of symmetric cell was acquired by an Autolab PGSTAT302N workstation in the frequency range of
10−2–106 Hz under open voltage conditions at 500–700 ◦C. To explore the electrochemical process for
ORR of the electrode, the EIS spectra were collected under different oxygen partial pressure (PO2).

The anode-supported half cell (NiO-YSZ|YSZ|CGO) was bought from Ningbo SuoFuRen Energy
Co. Ltd. (Ningbo, China). The BFYx cathode slurry was printed onto the CGO barrier layer,
and subsequently co-fired at 900 ◦C for 4 h. The electrochemical performance of anode-supported fuel
cells was tested using electrochemical workstation (ZAHNER, IM6e, Kronach, Germany. The single cell
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was mounted on the alumina tube, while the humidified H2 (3% H2O) with a flow rate of 80 mL min−1

and ambient air were used as the fuel and oxidant, respectively.

3. Results and Discussion

Figure 1a displays the XRD patterns of BFYx samples. The diffraction profiles reveal that the
BFYx oxides crystallize in a cubic perovskite structure with Pm-3m space group. The magnified XRD
patterns between 29 and 33◦ are presented in Figure 1a. The diffraction peaks gradually shift to a lower
angle direction with increasing the doping fraction, indicating the expansion of the lattice constants.
To further obtain the lattice constants of the materials, Rietveld refined XRD data of BFY10 samples
are given in Figure 1b. The refined lattice constants of BFYx samples are summarized in Table 1.
The increase in cell volume from 67.220 Å3 (x = 0.05) to 69.148 Å3 (x = 0.15) is identified, which is
attributed to the larger ionic radius of Y3+ (0.90 Å) relative to that of Fe3+ (0.55 Å). This phenomenon
indicates that the Fe sites in BaFeO3 are partially replaced by the Y ions. Furthermore, to examine
the chemical compatibility between electrode and electrolyte, the mixtures of BFYx and CGO were
co-fired at 1000 ◦C for 12 h. Figure 1c presents the XRD patterns of the calcined BFYx-CGO mixtures.
No obvious impurities can be detected, revealing the favorable chemical compatibility of the BFYx
cathodes with CGO electrolyte at 1000 ◦C.
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Figure 1. (a) Room temperature XRD patterns of BFYx samples and the magnified view of the XRD
patterns, 2θ = 29 to 33◦; (b) Rietveld refinement plot of BFY10 XRD data; (c) XRD patterns of BFYx-CGO
composites fired at 1000 ◦C for 12 h.

Table 1. Lattice parameters of BFYx samples.

Space Group
x = 0.05 x = 0.1 x = 0.15

Pm-3m Pm-3m Pm-3m

a (Å) 4.066 4.091 4.104
b (Å) 4.066 4.091 4.104
c (Å) 4.066 4.091 4.104

V (Å3) 67.220 68.468 69.148
χ2 2.171 1.906 4.190

Rwp (%) 7.762 7.664 9.811
RP (%) 5.975 6.023 7.878

The oxygen mobility and reducibility of Fe ions for the BFYx samples were studied by O2-TPD.
Figure 2a presents the representative O2-TPD profiles of the BFYx samples. The curves show two
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desorption peaks at around 200 and 650 ◦C in all samples. The first broad peak located at ~200–300 ◦C is
associated with the desorption process of the chemisorbed oxygen on the material surface. The second
oxygen desorption peak may be ascribed to the reduction of Fe4+ to Fe3+ at 300–650 ◦C [23]. It is
noteworthy that the BFY10 material shows the largest area of second desorption peak among the BFYx
samples, indicating the highest oxygen vacancy concentration and favorable oxygen mobility of the
BFY10. The oxygen non-stoichiometry (δ) of the BFYx samples at elevated temperatures was explored
by TGA in air, as presented in Figure 2b. The δ values were determined by TGA results and the initial
oxygen non-stoichiometry (δ0) values at room temperature were obtained by the iodometric titration.
The initial weight loss from room temperature to 300 ◦C is associated with the evaporation of adsorbed
water. When the temperature is above 300 ◦C, the obvious weight loss is due to the reduction of Fe4+

to Fe3+. It can be seen that the δ values of the samples decreases with the doping content from room
temperature to 600 ◦C. However, when increasing the temperature to 600 ◦C, the BFY10 possesses
the largest oxygen vacancy concentration, meaning its excellent oxygen ions mobility and promoted
catalytic activity for ORR.
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The temperature dependence of electrical conductivity for the BFYx samples within the temperature
range of 100–800 ◦C in air is presented in Figure 3a. The electrical conductivity of all samples shows a
similar trend as a function of temperature. When increasing the temperature, the electrical conductivity
of BFYx initially increases and reaches a maximum value at about 400 ◦C, and subsequently decreases
between 400 and 800 ◦C. This indicates a transition from semi-conducting behavior to metal-like
conduction. In addition, it is observed that the electrical conductivity gradually decreases with
increasing Y-doping fraction. This phenomenon may be due to the higher Y content leads to the
reduction of Fe4+ to Fe3+ or Fe2+ for the charge compensation, resulting in a decrease in the electrical
conductivity. The maximum values of electrical conductivity are 9.81, 5.03, and 1.67 S cm−1 for BFY05,
BFY10 and BFY15, respectively. These values are comparable to those of other reported BaFeO3−δ-based
cathodes, such as BaFe0.95Nb0.05O3−δ (9.5 S cm−1) [16], BaFe0.95Zr0.05O3−δ (7.5 S cm−1) [14] and
BaFe0.8In0.2O3−δ (2.3 S cm−1) [19]. Furthermore, the Arrhenius plots of electrical conductivity are
presented in Figure 3b. The calculated activation energies (Ea) of BFYx are 0.29, 0.38, and 0.43 eV for
BFY05, BFY10 and BFY15, respectively.

The EIS spectra were used to demonstrate electrocatalytic performance of the symmetric cells
of BFYx|CGO|BFYx. Figure 4a displays the Nyquist plots of the BFYx cathodes at 700 ◦C in air.
In general, the polarization resistance (Rp) value of the electrode is a crucial descriptor for the cathode
performance, and the lower Rp value means a superior electrochemical activity for ORR. The Rp of
BFY05, BFY10 and BFY15 cathodes are 0.136, 0.057, and 0.107 Ω cm2 at 700 ◦C, respectively, suggesting
highly electrocatalytic performance of the BFYx cathodes. The Rp value (700 ◦C) of BFY10 cathode is
smaller than that of the Fe-based perovskite electrodes (Figure 4b) [24–27]. Furthermore, the Arrhenius
plots of the polarization resistance are presented in Figure 4c. The calculated Ea values are 1.40, 1.33 and
1.45 eV for BFY05, BFY10, and BFY15, respectively. Moreover, the BFY10 cathode presents the lowest
Ea value, implying the highest electrocatalytic performance.
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with temperature.
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To further clarify the electrochemical processes of the cathode, EIS spectra of the BFY10 electrode
are systematically studied under varied Po2 at 700 ◦C, as shown in Figure 5a. Clearly, the impedance
spectra are consisted of three separable high-frequency, intermediate-frequency and low-frequency arcs,
respectively, suggesting that the three different electrode processes occur on the cathode. The EIS data are
further fitted with an equivalent circuit using the model of [Rohm-(RH-CPEH)-(RM-CPEM)-(RL-CPEL)]
(inset in Figure 5a) and analyzed by the distribution of relaxation time (DRT) method. Figure 5b displays
the DRT results of BFY10 cathode under different Po2 at 700 ◦C. It can be seen that the typical DRT plots
presents three distinct peaks, the high-frequency peak P1 (HF), and intermediate-frequency peak P2 (MF)
and low-frequency peak P3 (LF), corresponding to charge transport process, adsorption-dissociation
process of oxygen molecule, and gaseous diffusion, respectively [28,29]. Additionally, the relationship
between Rp and PO2 can be expressed by the following formula: Rp = k(PO2)−m (1) [30,31].
The dependence of the RHF, RMF and RLF for the BFY10 cathode on the PO2 at 700 ◦C is presented
in Figure 5c. One should note that the m values are 0.26, 0.48, and 1.03 in high-frequency,
intermediate-frequency and low-frequency region, respectively, which are ascribed to the charge
transfer process (Oads.+ 2e/+V..

O ⇔ Ox
O , m = 1/4), the adsorption-dissociation of the oxygen molecule

process (O2,ads. ⇔ 2Oads. , m = 1/2) and the adsorption and diffusion of gaseous oxygen on the electrode
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surface (O2(g)⇔ O2ads. , m = 1) [32]. Furthermore, it can be found that the RMF is higher than RHF

and RLF, implying that the rate-determining step for ORR is dominated by intermediate-frequency arc
assigned to the oxygen adsorption-dissociation.
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Some Ba-based cathodes for SOFCs show chemical instability under CO2-containing atmospheres
because of the formation of BaCO3 on the cathode surface, diminishing oxygen reduction kinetics [33,34].
To evaluate the CO2 tolerance of the electrode, EIS spectra of the BFY10 cathode were acquired in
CO2-containing air (3%, 5%, 10%) at 700 ◦C, as presented Figure 6a,b. It can be seen that the Rp value
significantly increases with increasing the concentration of CO2. However, the Rp recovers to the
initial value after removing CO2 atmosphere, which demonstrates the outstanding CO2 tolerance of
the BFY10 cathode. Generally, the average metal oxide binding energy (ABE) is normally used to
assess the CO2 durability of the cathode materials [35]. More negative ABE value indicates that oxide
has excellent CO2 tolerance. The ABE is calculated based on the following equation [36]:

ABE = ABE(A-O) + ABE(B-O) (2)
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where xA and xB are the molar fraction of A and B metals; ∆Ho
A and ∆Ho
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heat of A and B metals; ∆ f Ho

AmOn
and ∆ f Ho

BmOn
are the formation heat of AmOn and BmOn oxides,

and DO2 is the dissociation energy of O2. The ABE values of BFYx oxides are −287.18 kJ mol−1,
−291.35 kJ mol−1, and −295.51 kJ mol−1, respectively, which are higher than cobalt-free perovskite
cathodes, such as Ba0.5Sr0.5Co0.8Fe0.2O3−δ (−274 kJ mol−1) [37], Bi0.5Sr0.5FeO3−δ (−276.67 kJ mol−1) and
Bi0.5Sr0.5Fe0.9Ta0.1O3−δ (−296.97 kJ mol−1) [26]. These results confirm that the BFYx cathodes have
satisfactory CO2 tolerance.

To further demonstrate the practical application of the BFYx cathodes, the single cells were
fabricated and tested. Figure 7a–c displays the I–V and I–P curves of the single cells with the BFYx
cathodes 600–700 ◦C using humidified hydrogen and air as the fuel and oxidant, respectively. At 700 ◦C,
the peak powder densities of 0.73, 1.1, and 0.89 W cm−2 are achieved in the BFY05, BFY10 and BFY15
cathodes, respectively. It should be noted that the single cell with the BFY10 cathode shows the highest
peak powder density among the BFYx electrodes, which is associated with superior electrochemical
performance for ORR. In addition, the peak powder density of single cell with the BFY10 cathode is
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higher than those of other cobalt-free perovskite cathodes [38–44]. Furthermore, Figure 7d displays the
operating stability of the fuel cell with the BFY10 cathode during a period of 120 h. The single cell
presents a stable current density and peak power density under an output voltage of 0.5 V without
noticeable attenuation, suggesting that the BFY10 electrode has outstanding durability during the
operating process. The remarkable electrocatalytic properties indicate that the BFY10 oxide is a highly
attractive cathode candidate for SOFCs.Coatings 2020, 10, x FOR PEER REVIEW 7 of 10 
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4. Conclusions

In summary, Fe-based perovskite BaFe1−xYxO3−δ oxides with excellent ORR performance and CO2

durability are evaluated as the cathode materials for SOFCs. Benefiting from cubic perovskite structure
and large oxygen vacancy concentration, the BFY10 cathode presents outstanding electrochemical
activity for ORR with a lower RP value of 0.057 Ω cm2 at 700 ◦C. In addition, the single fuel with
the BFY10 cathode delivers a peak powder density of 1.1 W cm−2 at 700 ◦C, along with negligible
attenuation over a period of 120 h. Furthermore, DRT study verifies that the adsorption-dissociation of
the oxygen molecule process is the rate-limiting step on the cathode.
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