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Abstract: Two fluoroalkylated vinyltrimethoxysilane oligomer (RF-(CH2CHSi(OMe)3)n-RF; n = 2,
3; RF = CF(CF3)OC3F7:RF-VMSi) in methanol reacted with aqueous sodium carbonate solution
containing 2-hydroxy-4,6-dichloro-1,3,5-triazine sodium salt (TAZ) to provide two fluoroalkylated
oligomeric silica/TAZ nanocomposites (RF-VMSiO2/TAZ). The original cotton fabric gives an
oleophilic/hydrophilic property on its surface; however, modified cotton fabric surface with
RF-VMSiO2/TAZ composites was demonstrated to provide highly oleophobic/superhydrophobic
property on the surface. We can observe a remarkable time-dependent decrease of the contact
angle of dodecane (oil) on the modified surfaces, and the contact angles of dodecane were
found to decrease effectively from 55◦–83◦ to 0◦ over 5–30 s to supply superoleophilicity with
keeping the superhydrophobic property on the surfaces. The modified cotton fabric having
superoleophilic/superhydrophobic property was applicable to the separation membrane to separate
oil and water. Interestingly, modified cotton fabric was found to adsorb efficiently only droplets of oil
spread on the water interface due to its unique surface wettability.

Keywords: fluorinated oligomeric nanocomposite; triazine derivative; superoleophilic/superhydrophobic
property; separation of oil/water; adsorption of oil droplet

1. Introduction

In the textile industry, cotton fabric as a typical textile is of particular importance as it provides a
variety of preferable characteristics, such as low cost, wearing comfortability, breathability, absorptivity
toward water, flexibility, and environmental friendliness [1]. Most textile fabrics including cotton are in
general likely to absorb significant amounts of water and numerous oils [1–7]. From this point of view,
the modified textile fabrics with surface treated water- and oil-repellent properties have been among
the most intensively studied subjects in order to create additional functionalities, such as fire retardancy,
antibacterial activity, and UV protection [8–11]. There has heretofore been a considerable interest in the
fabrication of superhydrophobic textile fabrics from the developmental point of view of novel practical
applications such as self-cleaning, anti-corrosion, friction reduction, and anti-icing characteristics [2–7].
We can find a variety of reports on the exploration of superhydrophobic textiles based on the creation
of the roughness surface by the grafting polymerization [12,13], layer-by-layer assembly [14,15],
dip-coating [16–20], chemical vapor depositing [21–23], and spray coating [24–28]. During our
comprehensive studies on the exploration of superhydrophilic/superoleophobic, superamphiphobic,
and superhydrophobic/superoleophilic surfaces by using two fluoroalkylated oligomer [26–30],
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two fluoroalkylated vinyltrimethoxysilane oligomer (RF-(CH2CHSi(OMe)3)n-RF:RF-VMSi) was shown
to be a useful tool for the surface modification of glass, giving not only good oleophobicity but also
a perfectly superhydrophobic characteristic with non-wetting properties against water droplets [31].
RF-VMSi oligomer was also developed to create two fluoroalkylated oligomeric talc/Pst composites
through the reaction of the fluorinated oligomer in the presence of micrometer sized polystyrene
particles (Pst) and the talc under alkaline conditions, applying to the packing material possessing
superoleophilic/superhydrophobic properties to separate oil/water [32]. Now, we would like to
report herein that two fluoroalkylated vinyltrimethoxysilane oligomeric silica/triazine derivative (TAZ)
nanocomposites, which were prepared by reaction of the fluoroalkylated oligomer with TAZ in the
presence of sodium carbonate, were applicable to surface modification of cotton fabric, suppling
superoleophilic/superhydrophobic properties toward the surface. The modified cotton fabric was also
applicable to the separation membrane for the separation of oil/water. Additionally, it was clarified
that the obtained modified cotton fabric could adsorb only oil droplets spread on the water interface.

2. Experimental

2.1. Measurements

Particle size of the composites was determined by the use of dynamic light scattering (DLS)
analyses (Otsuka Electronics ELSZ-2000ZS: Tokyo, Japan). Contact angles of water and dodecane were
recorded using Kyowa Interface Science Drop Master 300: Saitama, Japan. Field emission scanning
electron micrography (FE-SEM) was determined by the use of a JEOL JSM-7000F (Tokyo, Japan). Energy
dispersive X-ray (EDX) spectra were detected by a JEOL JSM-7000F (Tokyo, Japan). Stress–strain curve
testing was examined using an A & D STB-1225S (Tokyo, Japan).

2.2. Materials

Vinyltrimethoxysilane and 10% aqueous 2-hydroxy-4,6-dichloro-1,3,5-triazine sodium salt were
purchased from Dow Corning Toray Co., Ltd. (Tokyo, Japan) and Fujifilm Holdings Corp. (Tokyo, Japan),
respectively. Two fluoroalkylated vinyltrimethoxysilane oligomer (RF-(CH2-CHSi(OMe)3)n-RF:the
mixture of dimer and trimer; RF = CF(CF3)OC3F7 (RF-VMSi)) was prepared based on our previously
reported method [33]. Cotton fabric (JIS L0803) was obtained from Japanese Standard Association
(Tokyo, Japan). Acid Yellow 3 and Red G were received from Chugaikasei Co., Ltd. (Fukushima, Japan).

2.2.1. Preparation of Two Fluoroalkylated Vinyltrimethoxysilane Oligomeric Silica/Triazine Derivative
Nanocomposites (RF-VMSiO2/TAZ)

A 0.05 mol/dm3 aqueous sodium carbonate solution (2 mL) was added into a methanol solution
(5 mL) containing fluorinated oligomer (RF-VMSi) (30 mg), 10% TAZ aqueous solution (100 mg) and
water (3 mL). The mixture was stirred for 5 h at room temperature. The solvent was evaporated off

under reduced pressure, and then methanol was added to the obtained crude products. The obtained
methanol solution was stirred at room temperature for one day, and successively was centrifuged
for 30 min. The expected fluorinated oligomeric silica/TAZ nanocomposites thus obtained were
easily separated from the methanol solution and successively washed with methanol several times.
The obtained product was dried in vacuum at 50 ◦C for one day to give the purified fluorinated
nanocomposites (17 mg). Other nanocomposites that were prepared under similar conditions are
shown in Table 1.
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Table 1. Synthesis of RF-VMSiO2/TAZ nanocomposites.

Run RF-VMSi (mg) TAZ (mg) (a) Yield (b) (%) Size of Composites (c) (nm)

1 30 100 43 59.5 ± 6.5
2 30 400 67 58.6 ± 7.3
3 30 700 87 64.7 ± 3.9
4 30 1000 85 61.6 ± 5.9

(a) 10% aqueous TAZ solution was used. (b) Yield was based on RF-VMSi and TAZ. (c) Determined by dynamic light
scattering (DLS) measurement in methanol at 25 ◦C.

2.2.2. Fabrication of Modified Cotton Fabric with RF-VMSiO2/TAZ Nanocomposites by Casting Method

The aqueous methanol solution (8 mL: MeOH/water (5/3 (vol/vol)) containing the RF-VMSi
oligomer (30 mg), 10% TAZ aqueous solution (100 mg), and cotton fabric swatch (a square of 20 mm ×
20 mm) was stirred for 1 h at room temperature. A 0.05 mol/dm3 aqueous sodium carbonate solution
(2 mL) was added to this solution. The obtained mixture was stirred at room temperature for 5 h.
Modified cotton fabric was lifted from the solutions at a constant rate (0.5 mm/min) and subjected to the
treatment for 5 min at 150 ◦C. This fabric swatch was washed with water and was dried under vacuum
for one day at room temperature. We have measured the dodecane and water contact angle values
by the deposit of each droplet (2 µL) on the modified cotton fabric surface. To verify adhesion ability
of the modified cotton swatch, this fabric was soaked into the petri dish containing water (30 mL)
and was stirred for 10 min at room temperature. We measured the dodecane and water contact angle
values on this surface under similar conditions after this swatch was dried under vacuum. Similarly,
repeated measurements of the contact angle values of dodecane and water on this modified swatch
surface were conducted after washing this swatch with water and then acetone a few times, and finally
after drying under vacuum in each cycle.

3. Results and Discussion

It is well-known that cyanuric chloride can react with hydroxy groups in cotton fiber under
alkaline conditions to produce the cyanuric chloride-immobilized cotton fibers [34–36]. Thus, we tried
to react RF-VMSi oligomer with 2-hydroxy-4,6-dichloro-1,3,5-triazine sodium salt (TAZ) under alkaline
conditions. The trimethoxysilyl groups –Si(OMe)3 in RF-VMSi oligomer are suggested to cause the
sol–gel reactions in the presence of sodium carbonate to give the hydroxy groups, reacting with TAZ to
afford fluoroalkylated silica/TAZ composites. As shown in Scheme 1 and Table 1, the reaction of RF-VMSi
oligomer with TAZ in the presence of sodium carbonate proceeded to supply the RF-VMSiO2/TAZ
composites in 43%–87% yields. The composites thus obtained were shown to give good dispersibility
for water and methanol. Thus, the particle size of the composites was determined at 25 ◦C by using the
dynamic light scattering measurements. The results are illustrated in Table 1.
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Scheme 1. Synthesis of RF-VMSiO2/TAZ nanocomposites.

As illustrated in Table 1, the size of the obtained composites was nanometer sized fine particles
from 59 to 65 nm levels. In this way, RF-VMSi oligomer was found to react effectively with TAZ at room
temperature in the presence of sodium carbonate to give the fluoroalkylated oligomeric silica/TAZ
nanocomposites (RF-VMSiO2/TAZ). Thus, the surface modification of the cotton fabric swatch was
conducted by dipping technique with the aqueous methanol sol solutions containing RF-VMSi oligomer
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and TAZ in the presence of sodium carbonate. The surface appearance of the modified cotton swatch
is illustrated in Figure 1.
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Figure 1. Photograph of original cotton fabric (A) and modified cotton swatch with RF-VMSiO2/TAZ
nanocomposites (B); used oligomer: 30 mg; 10% aq. TAZ solution: 100 mg (Run 1 in Table 1).

We have the similar surface appearance of the modified cotton fabric to that of the original one
as depicted in Figure 1. Thus, the contact angle value of dodecane was measured on the modified
cotton swatch surface with that of the pristine cotton fabric surface, for comparison. The results are
illustrated in Table 2.

Table 2. Dodecane contact angles on the modified cotton fabric with the RF-VMSiO2/TAZ nanocomposites.

Run Feed Ratio of RF-VMSi/TAZ (mg/mg)
Dodecane Contact Angle (◦)

0 (a) 5 10

1 30/10 58 0 (10 s) – (b)

2 30/40 83 0 (10 s) – (b)

3 30/70 55 0 (5 s) – (b)

4 30/100 82 0 (30 s) – (b)

Parent cotton – 0 – (b) –
(a) “0 min” approximately corresponds to “a few seconds”. (b) No change.

The contact angle values of dodecane after dropping dodecane (oil) droplets were 55◦–83◦ as
depicted in Table 2, affording a higher oleophobic property toward the modified cotton fabric surface.
In contrast, the pristine cotton fiber gave a superoleophilic property (dodecane contact angle value:
0◦). However, we could observe a remarkable time-dependent decrease of dodecane contact angle
values on the cotton fabric. It was demonstrated that contact angles for dodecane decreased effectively
from 55◦–83◦ to 0◦ within 5–30 s, giving superoleophilicity on the modified surface as illustrated in
Figure 2A (Figure 2A exhibits the decrease of the contact angle value of dodecane on the surface
(Run 1 in Table 2)). This result indicates that we can observe the smooth replacement of hydrophobic
fluoroalkyl segments in the composites at the interface with dodecane by the oleophilic TAZ within
5–50 s to provide the superoleophilic characteristic.

On the other hand, the original cotton fabric surface afforded a superhydrophilic property; however,
we observed the superhydrophobic property on each modified cotton swatch surface illustrated in
Runs 1–4 in Table 2. The 2 µL water droplet was not placed on the modified surface as shown in
Figure 2(B–b) and (B–c). In fact, it is impossible to deposit water droplet on the surface owing to the
superhydrophobic characteristic even after the pull-up of the needlepoint from the surface depicted in
Figure 2(B–a) and (B–c) (we call such wettability the superhydrophobic characteristic for convenience
in this case). The creation of the superhydrophobic surface at the interface with water is related to
the smooth replacement from the oleophilic TAZ moieties in the nanocomposites to the hydrophobic
fluoroalkyl groups. Such flip-flop motion between the oleophilic TAZ and the fluoroalkyl groups would
be effectively observed in the composite matrices under the environmental change from oil to water on
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the surface. We can observe the similar flip-flop motion between the longer fluoroalkyl groups and
hydrophilic segments to provide the hydrophilic property with an oleophobicity on the surfaces [37].
In contrast, the RF-VMSi oligomer had already been applied to the surface modification of PET
(poly(ethylene terephthalate)) to supply the oleophobic/hydrophobic surface [38]. Thus, the present
unique wettability was related to the presence of the TAZ moieties in the composites. Especially owing
to the lower surface tension of oil droplets such as dodecane compared to water, the oil droplet could
smoothly penetrate the small orifice between the cotton fibers to show a superoleophilic property on
the modified surface as shown in Figure 3C. In contrast, the fluoroalkyl groups in the composites
should be arranged on the modified cotton surfaces, providing the superhydrophobic property due to
the architecture of the roughness surface (see SEM pictures illustrated in Figure 3B). Heretofore, it is
well-known that the superhydrophobic surface is realized by enhancing the surface roughness [39].
Therefore, the modified cotton surface coated with RF-VMSiO2/TAZ nanocomposites illustrated in
Figure 3B should provide a superhydrophobic property by the fluoroalkyl groups in the composites on
the roughness surface.
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Figure 2. Photograph of the droplet of dodecane (A) and the droplet of water (B) on the modified
cotton fabric surface with RF-VMSiO2/TAZ composites (Run 1 in Table 2): (*) “0 s” approximately
corresponds to “a few seconds.” (a) Water drop on the needlepoint, (b) water drop on the fabric surface,
(c) pull-up of needlepoint from the modified cotton fabric surface.
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To verify the adhesion ability of the modified cotton swatch, we studied the relationship between
the contact angle values of dodecane on the modified cotton swatch and cycle to wash the modified
fabric with water. The results are depicted in Figure 4.
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Figure 4 shows that the contact angle values of dodecane could keep quite similar values to
the superhydrophobic property illustrated in Figure 2B even after three cycles, indicating that the
RF-VMSiO2/TAZ nanocomposites possess a strong adhesion ability toward the cotton fabric to give
a superoleophilic/superhydrophobic property on the surface (contact angle value of dodecane in
each cycle decreased to 0◦ after 6–15 s). Moreover, the similar contact angle values of dodecane
(32◦–53◦; these values in each cycle changed to 0◦ within 6–12 s) were observed with keeping the
superhydrophobic characteristic from 4 to 10 cycles. In fact, EDX analyses indicate that the similar
atomic values of not only fluorine and silicon related to the fluorinated oligomer but also nitrogen and
chlorine related to TAZ in composites on the cotton swatch were observed in each cycle (see Table 3).

Table 3. The atomic contents of fluorine, silicon, nitrogen, and chlorine on the modified cotton fabric in
each washing cycle.

Element
Atomic Content (atm, %)

1st Cycle 2nd Cycle 3rd Cycle

Fluorine 7.70 ± 0.22 6.44 ± 0.23 11.86 ± 0.20
Silicon 0.74 ± 0.04 0.65 ± 0.04 1.26 ± 0.04

Nitrogen 16.63 ± 0.30 18.39 ± 0.31 16.68 ± 0.29
Chlorine 0.46 ± 0.04 0.31 ± 0.04 0.33 ± 0.04

Furthermore, we could observe the uniformly dispersed fluorine atoms in the nanocomposites
corresponding to the blue-colored area on the modified cotton fabric even after three cycles (Figure 5C),
compared to that of the parent cotton swatch (Figure 5A) or the modified cotton swatch treated with
the fluoroalkylated composites (Figure 5B).

The adhesion ability of the present modified cotton fabric with RF-VMSiO2/TAZ nanocomposites
(Run 1 in Table 2) was also studied with the strong acid solution (0.1 mol/dm3 HCl (pH: 1)) and alkaline
solution (1.0 mol/dm3 NaOH (pH: 14)) through the measurements of contact angle values of dodecane
on the cotton swatch surface. The results are depicted in Table 4.
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Figure 5. FE-SEM pictures of the parent cotton swatch (A) and modified cotton swatch with
RF-VMSiO2/TAZ nanocomposites (B), and EDX mapping micrograph of the fluorine atoms on the
cotton surface with RF-VMSiO2/TAZ nanocomposites after three cycles of washing with water (C).

Table 4. Relationship between dodecane contact angle values on the modified cotton fabric and
immersion time (min) into the strong acid and alkaline solutions.

Immersion Time (min)

Acid Solution (pH 1.0) Alkaline Solution (pH 14)

Contact Angle (◦)

Time (min) Time (min)

0 (a) 5 0 5

0 (b) 58 0 (10 s) 58 0 (10 s)
60 36 0 (2 s) 35 0 (4 s)

120 50 0 (12 s) 29 0 (2 s)
(a) “0 min” approximately corresponds to “a few seconds”. (b) See Run 1 in Table 2.

As indicated in Table 4, the adhesion ability of present modified cotton swatch is strong enough
even after immersion into the strong acidic solution (pH: 1.0) for 120 min, because we can keep the
same contact angle values of dodecane with superhydrophobic property shown in Figure 2B in each
case. In contrast, the contact angle values of dodecane decreased from 58◦ to 29◦ after immersion in the
strong alkaline solution for 120 m. Similarly, the surface wettability change from superhydrophobic to
hydrophobic (water contact angle value: 141◦) was observed under such conditions, indicating that
the siloxane bond units in the nanocomposites are likely to suffer the nucleophilic attach of hydroxy
anion under the strong alkaline conditions.

We have studied the mechanical property of the modified cotton swatch (square of
10 mm × 20 mm × 244 µm (fabric thickness): Run 1 in Table 2). The original cotton fabric (square of
10 mm × 20 mm × 225 µm (fabric thickness)) was examined for comparison. Typical stress–strain
curves for the modified cotton fabric with the original one at the crosshead speed of 200 mm/min at
room temperature are shown in Figure 6.

Figure 6 shows that the modified cotton swatch gave a similar Young’s modulus (613 MPa) to that
(617 MPa) of the parent cotton fabric. In addition, we could observe a similar maximum stress value
(40 MPa) and elongation at break (56%) to those (51 MPa and 52%) of the original one, indicating that
the RF-VMSiO2/TAZ composites are useful for uniform surface modification of cotton fabric.

It is generally well-known that superoleophilic surfaces can give strong affinity for organic oils.
Thus, surfaces bearing superoleophilic/superhydrophobic characteristic simultaneously repel water
and efficiently absorb oils. Such a unique finding was applied to oil/water separation membranes
and self-cleaning [40–42]. Thus, the present RF-VMSiO2/TAZ nanocomposites were applied to the
separation membrane to separate the blue-colored water (CuSO4·5H2O was used for the preparation of
blue-colored water) and 1,2-dichlororethane. The results are illustrated in Figure 7 and Supplementary
Materials Movie S1.
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Figure 6. Stress–strain plots of the parent cotton swatch and the modified cotton swatch treated with
RF-VMSiO2/TAZ nanocomposites (Run 1 in Table 2).

As illustrated in Figure 7A and Supplementary Materials Movie S (1A), we could not separate
the oil/water mixture using the original cotton fabric. However, we could have the smooth
separation of the mixture of oil and water using the modified cotton fabric with the RF-VMSiO2/TAZ
composites (Run 1 in Table 2) to isolate the transparent colorless oil (1,2-dichloroethane) due to
its superoleophilic/superhydrophobic characteristic (see Figure 7B and Supplementary Materials
Movie S (1B)).
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Figure 7. Separation of blue-colored water that was colored with CuSO4·5H2O and 1,2-dichloroethane
using pristine cotton fabric (A) and the modified cotton fabric with RF-VMSiO2/TAZ composites (Run 1
in Table 2) (B).

As indicated above, most textile fabrics including cotton can absorb both water and numerous
oils effectively. Thus, our present cotton fabric bearing a superoleophilic/superhydrophobic property is
quite interesting from the developmental point of textile fabrics having a unique surface wettability.
In fact, the adsorption ability of the oil drop spread on water interface was studied by the use of the
present modified cotton swatch. The results are depicted in Figure 8 and Supplementary Materials
Movie S2.

Figure 8A and Supplementary Materials Movie S (2A) show that the original cotton swatch
adsorbed not only red-colored oil (oil:dodecane; dodecane was colored with organic dye (Red G)) but
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also yellow-colored water (water was colored with organic dye (Acid Yellow 3)); however, we could
find the residual red-colored oil droplets spread on yellow-colored water interface. On the other hand,
interestingly, the present modified cotton swatch could adsorb only red-colored oil droplets spread on
the yellow-colored water interface under similar conditions. Thus, we could not detect the adsorbed
yellow-colored water into the modified cotton fabric at all, due to its superoleophilic/superhydrophobic
property (see Figure 8B and Supplementary Materials Movie S (2B)).
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4. Conclusions

We found that the RF-VMSiO2/TAZ nanocomposites were obtained by the reaction of the
fluoroalkylated oligomer in the presence of TAZ and sodium carbonate. The RF-VMSiO2/TAZ
composites thus obtained were applied to the surface modification of cotton swatch, affording
superoleophilic/superhydrophobic properties on the modified surface. Adhesion ability toward
modified cotton swatch was strong enough even after washing the corresponding fabric with water
ten cycles, giving the similar superoleophilic/superhydrophobic characteristic on the surface. Modified
cotton fabric was applied to the separation membrane for the separation of oil/water, isolating to
transparent colorless oil. Modified cotton fabric was also applied to the perfect adsorption of oil
droplets spread on water interface due to its superoleophilic/superhydrophobic characteristic, although
the original cotton fabric can adsorb not only oil droplets but also water. Therefore, we believe that the
present modified cotton fabric swatch has high potential for application into numerous fields including
the cosmetic materials such as oil-absorbing facial paper.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/2/174/s1,
Movie S1: Separation of blue-colored water and 1,2-dichloroethane using the pristine cotton swatch (A) and
the modified cotton swatch with RF-VMSiO2/TAZ composites (Run 1 in Table 2) (B); Movie S2: Adsorption of
red-colored oil (dodecane) droplets spread on yellow-colored water interface using pristine cotton swatch (A) and
modified cotton swatch with RF-VMSiO2/TAZ composites (Run 1 in Table 2) (B).
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