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Abstract: Coating materials can effectively protect stone-built cultural heritage and, as such, research into
coating materials has gained comprehensive attention from researchers. The aim of this work is to
prepare a TiO2-modified sol coating material (TSCM) and study its protective effects on stone-built
cultural heritage. TSCM and pure TiO2 sol (p-sol, unmodified; for comparison) were applied evenly over
the entire surface of stone samples. The prepared stone samples included untreated stone, stone treated
with pure sol, and stone treated with TSCM. The protective effects of TSCM were evaluated by water
absorption, water vapor permeability, acid resistance, and weather resistance experiments. The results
show that stone treated with TSCM has excellent water absorption and water vapor permeability,
strong acid resistance, and good weather resistance, compared with untreated stone or stone treated
with p-sol. The acid resistance of stone treated by TSCM was 1.75 times higher than that treated with
traditional coating materials. The weather resistance cycle number of stone treated by TSCM was four
times higher than that treated with organic protective materials. These findings are expected to provide
useful suggestions for the protection of stone-built cultural heritage.

Keywords: stone-built cultural heritage protection; TiO2-modified sol; coating material; weather resistance;
acid corrosion resistance

1. Introduction

The information recorded by stone-built cultural heritage is very valuable in the study of a country’s
history. Thus, the protection of stone-built cultural heritage has attracted the attention of researchers
in various fields. Stone-built cultural heritage exposed to weather conditions can be damaged by acid
rain corrosion [1–4], industrial pollution [5,6], microbial erosion [7,8], and soluble salt crystallization [9].
Coating stone is an effective way to protect stone-built cultural relics from damage [10]. The coating
materials can be divided into two categories: organic and inorganic [11]. Organic coating materials
have demonstrated excellent hydrophobicity, weather resistance, acid resistance, and salt corrosion
resistance [12–14]; however, they can easily turn yellow, age, and show other negative effects on cultural
heritage, thus reducing the protection timespan [15]. Inorganic coating materials have good compatibility
with stone, improving its permeability, aging resistance, and service life [16], but may form a hard shell
on the surface of the stone, which can easily damage or destroy its surface [17].

Research into new coating materials has become an urgent task in protecting stone-built cultural
heritage. Nano-TiO2 has shown potential applicability, owing to its good stability, non-toxicity, and low
price [18–20]. In 1992, Skoulikidis proposed the possibility of using TiO2 as a protective stone coating
by establishing a model [21]. Many studies have used TiO2 nanoparticles dispersed in aqueous phase
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or added to acrylic polymers [22–24], but they could be easily removed from the coating surface owing
to weak bonding [25–27]. In order to avoid the loss of TiO2 nanoparticles, some researchers have
proposed to composite TiO2 nanoparticles into a SiO2-sol [28], which can enhance its photocatalytic
activity when applied to a building. To the best of our knowledge, there have been no scientific studies
about compositing TiO2 nanoparticles into a TiO2-sol for the protection of stone-built cultural heritage.
More importantly, the method presented in the work of [28] provides us with valuable suggestions
about the protection of stone-built cultural heritage. Hence, it is necessary to investigate a modified
TiO2-sol with significant protective effect on stone-built cultural heritage.

The aim of this paper is to prepare a TiO2-modified sol coating material (TSCM) that is capable of
protecting stone-built cultural heritage. Analyses of the composition and microscopic morphology
of TSCM were conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Some experiments were conducted to evaluate the protective effects of TSCM, in terms of wettability,
weather resistance, and acid resistance. The results suggest that TSCM has excellent water absorption,
water vapor permeability, acid resistance, and weather resistance. The study, therefore, provides a new
method for the protection of stone-built cultural heritage.

2. Materials and Methods

2.1. Materials

All chemicals used in this study were analytical reagents (purity greater than 99.7%), including
tetrabutyl titanate (TBT; Aladdin, Waukesha, WI, USA), ethanol (ethanol; Aladdin), acetic acid
(CH3COOH; Aladdin), acetylacetone (HACAC; Aladdin), and anatase TiO2 nanoparticles (75 nm;
Ze Chang Titanium Industry, Kunming, China).

Sandstone and marble (purchased from Guizhou province, China) were used in this study to
evaluate the protective effects of TSCM, as the composition in sandstone minerals is relatively loose
and its weather resistance is poor. Sandstone was selected to characterize the weather resistance and
wettability before and after coating treatment. As the main component of marble is CaCO3, it is easily
corroded by acids, whereas the acid resistance of sandstone is strong and cannot be observed obviously.
Marble was thus selected to characterize the acid resistance before and after the coating treatment.
Sandstone is mainly composed of silica (98.5%), and marble is mainly composed of calcium carbonate
(99.5%). All the stone samples were cut into dimensions of 5 cm × 5 cm × 3 cm.

2.2. Preparation of TSCM

The preparation process of TSCM is as follows: 5 mL of TBT was added slowly to ethanol solution,
stirring for 10 min (solution A). Then, 4 mL of acetic acid and 10 mL of hydrolysis inhibitor were
added to the ethanol solution, stirring for 10 min (solution B). After that, solution A was transferred to
solution B at a fixed flow rate of 3 mL/min, followed by stirring for 30 min, and the mixture was placed
in a water bath at 40 ◦C with stirring for 2 h. Next, the mixture was aged at room temperature for two
days. The result was transparent pure TiO2-sol (p-sol). Finally, TSCM was prepared by evenly mixing
an appropriate amount of TiO2 nanoparticles and p-sol.

2.3. Coating Method

The stone samples were washed and then placed into a drying oven (105 ◦C) for 24 h. Then, p-sol
and TSCM were applied by brushing onto the surfaces of the samples. The stones treated by p-sol and
TSCM were placed at room temperature for 48 h.

The number of stone samples is shown in Table 1. The coating materials covered the entire surface
of the treated samples.
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Table 1. Numbers of stone samples. TSCM, TiO2-modified sol coating material.

Sample Number Stone Type Coatings

1#

Sandstone
Untreated

2# Treated with p-sol
3# Treated with TSCM

4#

Marble
Untreated

5# Treated with p-sol
6# Treated with TSCM

2.4. Characterization of Stone Samples

X-ray diffraction (XRD) (Rigaku, D/Max-3B, Tokyo, Japan) was used to analyze the p-sol and
TSCM. Scanning electron microscopy (SEM) (FEI, Nova Nano SEM 450, Hillsboro, OR, USA) was
conducted to analyze the micro-morphology of the stone samples.

2.5. Protective Performance of TSCM

The experiments of water absorption, water vapor permeability, acid resistance, and weather
resistance were operated according to the Chinese National Industry Standard JC/T 973-2005 [21,29,30].

2.5.1. Test of Stone Appearance

The change of sandstone appearance was evaluated by the color difference. The color difference
was measured by a fluorescent whiteness meter (XINRUI, Shanghai, China). The CIE La*b* color space
was used and color changes were evaluated by total color difference (∆E*) [31,32]. The total color
difference (∆E*) between the untreated sample and treated sample was calculated using the following:

∆E∗ =

√(
L∗ − L∗0

)2
+

(
a∗ − a∗0

)2
+

(
b∗ − b∗0

)2
(1)

where L∗0, a∗0, and b∗0 are the CIE La*b* co-ordinates of the untreated sample; and L∗, a∗, and b∗ are the
co-ordinates of the treated sample.

2.5.2. Test of Water Absorption

The water absorption of sandstone samples was defined as the change in weight after immersion
in distilled water for 48 h. In detail, the stone samples were washed and placed into a drying oven at
105 ◦C for 24 h, and then cooled at room temperature. The weight was recorded as M0 (g). The samples
were then immersed in distilled water for 48 h. After that, the samples were taken out and their weight
was recorded as M1 (g). The water absorption ∆M (%) was calculated as follows [33]:

∆M =
M1 −M0

M0
× 100% (2)

Each time the above calculation was performed, it was counted as one cycle. The experiment was
repeated many times.

2.5.3. Test of Water Vapor Permeability

A small amount of water was put into a triangular glass. Sandstone samples were put on top of
the glass and the seam was sealed with glass glue. Then, the initial weight M0 (g) was recorded and
the system was kept at room temperature for 24 h. The final weight was recorded as M1 (g). The water
vapor permeability of a sample was then calculated by the following formula [29]:

∆M = M0 −M1 (3)
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Each time the above calculation was performed, it was counted as one cycle. The experiment was
repeated many times.

2.5.4. Test of Acid Resistance

The acid resistance of marble was preliminarily judged according to the occurrence of bubbles
rising when a small amount of H2SO4 solution was dripped onto its surface. Then, further experimental
evaluation was carried out: the initial weights of marble samples were recorded as M0 (g), following
which they were immersed in 1% (V/V) H2SO4 solution for 24 h and then dried at 60 ◦C for 6 h. The final
weight was recorded as M1 (g), and the acid resistance ∆M (%) was calculated by the Equation (2) [21].

Each time the above calculation was performed, it was counted as one cycle. The experiment was
repeated many times.

2.5.5. Test of Weather Resistance

The initial weights of sandstone samples were recorded as M0 (g). Then, the samples were immersed
in 0.5 M Na2SO4 solution for 12 h, dried for 6 h at 60 ◦C and frozen for 4 h at −30 ◦C, and finally dried at
60 ◦C for 4 h. The final weight was recorded as M1 (g). The weather resistance (that is, mass change rate)
of stone was calculated by the Equation (2) [33].

Each time the above calculation was performed, it was counted as one cycle. The experiment was
repeated many times.

3. Results and Discussion

3.1. Effect of Layer Numbers and Amount of TiO2 Nanoparticles on Appearance

Pinho reported that the additive amount of TiO2 nanoparticles has an important effect on the
transparency of TSCM; too much resulted in reduced transparency, while too little resulted in a poor
protective effect [28]. Quagliarini and Munafò have proven that a multilayer coating can improve
the protection effect [22,34,35], while Liu proved that a high number of layers could reduce the
adhesion between stone and coating [21]. In order to ensure the appearance of the stone remained
unchanged, the color difference should meet the condition that ∆E* < 5 [36]. As shown in Table 1,
the addition of TiO2 nanoparticles and the layer numbers had an important impact on color difference.
The color difference of stone samples increased obviously with the increase of layer numbers and TiO2

nanoparticles. On the basis of the experimental results shown in Table 2, we can draw the conclusion
that the optimal amount of TiO2 nanoparticles is 0.05 g/100 mL, with a layer number of 4.

Table 2. Effect of amount of TiO2 nanoparticles and the layer numbers on color difference.

TiO2 Nanoparticles
Addition/100 mL

Layer
Numbers ∆E* TiO2 Nanoparticles

Addition/100 mL
Layer

Numbers ∆E*
TiO2

Nanoparticles
Addition/100mL

Layer
Numbers ∆E*

1 g/100 mL

1 3.17

0.05 g/100 mL

1 1.12

0.005 g/100 mL

1 0.95
2 5.87 2 2.46 2 1.21
3 8.98 3 3.70 3 2.03
4 11.31 4 4.13 4 3.52
5 13.46 5 4.98 5 4.00

0.5 g/100 mL

1 3.01

0.03 g/100 mL

1 0.98
2 4.18 2 1.11
3 6.59 3 2.61
4 8.51 4 3.75
5 11.09 5 4.53

0.1 g/100 mL

1 1.32

0.01 g/100mL

1 1.00
2 3.00 2 1.71
3 4.89 3 2.87
4 6.43 4 3.55
5 8.12 5 4.01
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3.2. X-ray Diffractometer Analysis

As shown in Figure 1b, transparent p-sol had no characteristic peak, indicating that the p-sol was
amorphous. However, Figure 1a shows that TSCM had characteristic peaks at 25.305◦, 37.799◦, 48.038◦, and
53.892◦, which related to the diffraction surfaces of anatase: (1 0 1), (0 0 4), (2 0 0), and (1 0 5), respectively.
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Figure 1. X-ray diffraction (XRD) spectra of TiO2-modified sol coating material (TSCM) (a) and p-sol (b).

3.3. Scanning Electron Microscopic Analysis

The micro-morphology of sandstone before and after coating treatment is discussed in this
section. Figure 2 shows SEM images of samples 1#, 2#, and 3#. Sample 1# (without coating material)
had a rough surface (see Figure 2a,b), where the higher roughness is the result of the surface
pores [37,38]. Compared with sample 1#, samples 2# and 3# had a smoother surface and less porosity
(see Figure 2c,e) [28]. It can be seen from Figure 2f that TiO2 nanoparticles were embedded in the
TSCM. The nanoparticles increased the contact area between the stone and external environment,
as compared with Figure 2d. Furthermore, the many tiny cracks improved the “breathing” of the stone;
similar results have been reported in the literature [39]. Hence, TSCM has a potential advantage over
p-sol and organic protective agents [21].
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Figure 2. Scanning electron microscopy (SEM) images of sample 1# (a) 100 um, (b) 20 um; sample 2# (c)
100 um, (d) 10 um; and sample 3# (e) 100 um, (f) 10 um.

3.4. Water Absorption

Water absorption is an important parameter in evaluating protective performance. Figure 3
presents the relationship between water absorption and the number of cycles. With an increasing
number of cycles, water absorption increased sharply, and then decreased slowly. The water absorption
in the different samples was almost equal when the number of cycles was greater than 5. Because the
stone begins to absorb water quickly, the water absorption increases. When the water absorption is
close to saturation, the water absorption rate decreases. The water absorption of sample 1# was the
largest, while that of sample 3# was the smallest [40], indicating that the TSCM has made the sandstone
samples more compact and less permeable to water. Low water absorption can protect the samples
against the erosion of water and a soluble salt or base.
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Figure 2. Scanning electron microscopy (SEM) images of sample 1# (a) 100 um, (b) 20 um; sample 2# (c)
100 um, (d) 10 um; and sample 3# (e) 100 um, (f) 10 um.

3.4. Water Absorption

Water absorption is an important parameter in evaluating protective performance. Figure 3
presents the relationship between water absorption and the number of cycles. With an increasing
number of cycles, water absorption increased sharply, and then decreased slowly. The water absorption
in the different samples was almost equal when the number of cycles was greater than 5. Because the
stone begins to absorb water quickly, the water absorption increases. When the water absorption is
close to saturation, the water absorption rate decreases. The water absorption of sample 1# was the
largest, while that of sample 3# was the smallest [40], indicating that the TSCM has made the sandstone
samples more compact and less permeable to water. Low water absorption can protect the samples
against the erosion of water and a soluble salt or base.

Coatings 2020, 10, x FOR PEER REVIEW 6 of 11 

 

 
Figure 2. Scanning electron microscopy (SEM) images of sample 1# (a) 100 um, (b) 20 um; sample 2# 
(c) 100 um, (d) 10 um; and sample 3# (e) 100 um, (f) 10 um. 

3.4. Water Absorption 

Water absorption is an important parameter in evaluating protective performance. Figure 3 
presents the relationship between water absorption and the number of cycles. With an increasing 
number of cycles, water absorption increased sharply, and then decreased slowly. The water 
absorption in the different samples was almost equal when the number of cycles was greater than 5. 
Because the stone begins to absorb water quickly, the water absorption increases. When the water 
absorption is close to saturation, the water absorption rate decreases. The water absorption of sample 
1# was the largest, while that of sample 3# was the smallest [40], indicating that the TSCM has made 
the sandstone samples more compact and less permeable to water. Low water absorption can protect 
the samples against the erosion of water and a soluble salt or base. 

 
Figure 3. Water absorption curves. 

  

-2 0 2 4 6 8 10 12 14 16 18
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
 

 

W
at

er
 a

bs
or

pt
io

n 


M
 (%

)

Cycle Times

 Sample 1#     

 Sample 2#

 Sample 3#

Figure 3. Water absorption curves.

Figure 2. Scanning electron microscopy (SEM) images of sample 1# (a) 100 um, (b) 20 um; sample 2# (c)
100 um, (d) 10 um; and sample 3# (e) 100 um, (f) 10 um.

3.4. Water Absorption

Water absorption is an important parameter in evaluating protective performance. Figure 3
presents the relationship between water absorption and the number of cycles. With an increasing
number of cycles, water absorption increased sharply, and then decreased slowly. The water absorption
in the different samples was almost equal when the number of cycles was greater than 5. Because the
stone begins to absorb water quickly, the water absorption increases. When the water absorption is
close to saturation, the water absorption rate decreases. The water absorption of sample 1# was the
largest, while that of sample 3# was the smallest [40], indicating that the TSCM has made the sandstone
samples more compact and less permeable to water. Low water absorption can protect the samples
against the erosion of water and a soluble salt or base.
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Figure 3. Water absorption curves.

3.5. Water Vapor Permeability

It is important to consider the change of water vapor permeability before and after stone treatment.
A coating material does not completely seal a stone surface, as blocking the ability to pass water
vapor in and out of the stone may lead to the condensation of internal water, or even accelerate the
deterioration of the stone [39,41]. Figure 4 shows the water vapor permeabilities of the untreated
and treated sandstone samples. The permeability of the treated sandstone sample was close to that
of the untreated sample and the trends of the three curves were similar. This suggests that TSCM
is a suitable protective measure; it does not dramatically alter the water vapor permeability and the
“breathe function” of origin materials is retained.
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3.6. Acid Resistance

The acid resistance of the samples was preliminarily judged by observing the formation of CO2

bubbles when H2SO4 solutions with different pH values were dropped onto the sample surface.
For sample 4#, CO2 bubbles were formed at pH = 1.5 [21]; for sample 5#, they formed at pH = 0.5–0.8;
and for sample 6#, they formed at pH = −0.6, indicating that TSCM had stronger acid resistance.

A more detailed experiment of acid resistance was also carried out in this study; the results are
shown in Figure 5. The acid resistance of sample 6# was the largest, and that of sample 4# was the
smallest. Acid resistance represents the loss of sample weight due to acid corrosion and, so, smaller
acid resistance values represent samples with weak acid resistance. Hence, the results showed that
the coating materials prevented corrosion by acids; moreover, they showed that TSCM had better
acid resistance.
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3.7. Weather Resistance

The experimental results of weather resistance are presented in Figures 6–8. Figure 6 shows
photographs of samples 1#, 2#, and 3# after eight cycles; bubbles can be seen on the surface of sample
1#, while samples 2# and 3# did not change significantly. Figure 7 show photographs of samples 1#,
2#, and 3# after 14 cycles; it can be seen that sample 1# was seriously damaged on multiple sides.
Figure 7c shows that sample 2# was slightly damaged, but Figure 7d shows that sample 3# was almost
undamaged. The relationship of the mass change rate of samples with the number of cycles is presented
in Figure 8. The mass of the samples increased with cycles, owing to the immersion of samples in salt
solution. However, from the sixth cycle onward, the mass of samples decreased with cycles, as the
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samples were corroded. Furthermore, the mass of coated samples had a smaller change, especially for
stone treated by TSCM. It has to be emphasized that the human eye could not observe the obvious
change of samples on the macro scale, but the sample started to change at the micro scale when the
number of cycles was 6. The results indicate that TSCM had good weather resistance.

Coatings 2020, 10, x FOR PEER REVIEW 8 of 11 

 

3.7. Weather Resistance 

The experimental results of weather resistance are presented in Figures 6–8. Figure 6 shows 
photographs of samples 1#, 2#, and 3# after eight cycles; bubbles can be seen on the surface of sample 
1#, while samples 2# and 3# did not change significantly. Figure 7 show photographs of samples 1#, 2#, 
and 3# after 14 cycles; it can be seen that sample 1# was seriously damaged on multiple sides. Figure 
7c shows that sample 2# was slightly damaged, but Figure 7d shows that sample 3# was almost 
undamaged. The relationship of the mass change rate of samples with the number of cycles is 
presented in Figure 8. The mass of the samples increased with cycles, owing to the immersion of 
samples in salt solution. However, from the sixth cycle onward, the mass of samples decreased with 
cycles, as the samples were corroded. Furthermore, the mass of coated samples had a smaller change, 
especially for stone treated by TSCM. It has to be emphasized that the human eye could not observe 
the obvious change of samples on the macro scale, but the sample started to change at the micro scale 
when the number of cycles was 6. The results indicate that TSCM had good weather resistance. 

 
Figure 6. Three stone samples after eight cycles: (a) sample 1#, (b) sample 2#, and (c) sample 3#. 

 
Figure 7. Three stone samples after 14 cycles: (a,b) sample 1#, (c) sample 2#, and (d) sample 3#. 

-0.4

-0.2

0.0

0.2

0.4

0.6

Cycle Times

 

 

M
as

s c
ha

ng
e 

ra
te

 
M

 (%
)

 Sample 1#

 Sample 2#

 Sample 3#1

2 3
4

5

6 7 8 9 10 11 12 13 14 15 16

 
Figure 8. The relationship of mass change rate of samples with the number of cycles. 

  

Figure 6. Three stone samples after eight cycles: (a) sample 1#, (b) sample 2#, and (c) sample 3#.

Coatings 2020, 10, x FOR PEER REVIEW 8 of 11 

 

3.7. Weather Resistance 

The experimental results of weather resistance are presented in Figures 6–8. Figure 6 shows 
photographs of samples 1#, 2#, and 3# after eight cycles; bubbles can be seen on the surface of sample 
1#, while samples 2# and 3# did not change significantly. Figure 7 show photographs of samples 1#, 2#, 
and 3# after 14 cycles; it can be seen that sample 1# was seriously damaged on multiple sides. Figure 
7c shows that sample 2# was slightly damaged, but Figure 7d shows that sample 3# was almost 
undamaged. The relationship of the mass change rate of samples with the number of cycles is 
presented in Figure 8. The mass of the samples increased with cycles, owing to the immersion of 
samples in salt solution. However, from the sixth cycle onward, the mass of samples decreased with 
cycles, as the samples were corroded. Furthermore, the mass of coated samples had a smaller change, 
especially for stone treated by TSCM. It has to be emphasized that the human eye could not observe 
the obvious change of samples on the macro scale, but the sample started to change at the micro scale 
when the number of cycles was 6. The results indicate that TSCM had good weather resistance. 

 
Figure 6. Three stone samples after eight cycles: (a) sample 1#, (b) sample 2#, and (c) sample 3#. 

 
Figure 7. Three stone samples after 14 cycles: (a,b) sample 1#, (c) sample 2#, and (d) sample 3#. 

-0.4

-0.2

0.0

0.2

0.4

0.6

Cycle Times

 

 

M
as

s c
ha

ng
e 

ra
te

 
M

 (%
)

 Sample 1#

 Sample 2#

 Sample 3#1

2 3
4

5

6 7 8 9 10 11 12 13 14 15 16

 
Figure 8. The relationship of mass change rate of samples with the number of cycles. 

  

Figure 7. Three stone samples after 14 cycles: (a,b) sample 1#, (c) sample 2#, and (d) sample 3#.

Coatings 2020, 10, x FOR PEER REVIEW 8 of 11 

 

3.7. Weather Resistance 

The experimental results of weather resistance are presented in Figures 6–8. Figure 6 shows 
photographs of samples 1#, 2#, and 3# after eight cycles; bubbles can be seen on the surface of sample 
1#, while samples 2# and 3# did not change significantly. Figure 7 show photographs of samples 1#, 2#, 
and 3# after 14 cycles; it can be seen that sample 1# was seriously damaged on multiple sides. Figure 
7c shows that sample 2# was slightly damaged, but Figure 7d shows that sample 3# was almost 
undamaged. The relationship of the mass change rate of samples with the number of cycles is 
presented in Figure 8. The mass of the samples increased with cycles, owing to the immersion of 
samples in salt solution. However, from the sixth cycle onward, the mass of samples decreased with 
cycles, as the samples were corroded. Furthermore, the mass of coated samples had a smaller change, 
especially for stone treated by TSCM. It has to be emphasized that the human eye could not observe 
the obvious change of samples on the macro scale, but the sample started to change at the micro scale 
when the number of cycles was 6. The results indicate that TSCM had good weather resistance. 

 
Figure 6. Three stone samples after eight cycles: (a) sample 1#, (b) sample 2#, and (c) sample 3#. 

 
Figure 7. Three stone samples after 14 cycles: (a,b) sample 1#, (c) sample 2#, and (d) sample 3#. 

-0.4

-0.2

0.0

0.2

0.4

0.6

Cycle Times

 

 

M
as

s c
ha

ng
e 

ra
te

 
M

 (%
)

 Sample 1#

 Sample 2#

 Sample 3#1

2 3
4

5

6 7 8 9 10 11 12 13 14 15 16

 
Figure 8. The relationship of mass change rate of samples with the number of cycles. 

  

Figure 8. The relationship of mass change rate of samples with the number of cycles.

Table 3 presents a comparison of the protective effect results of coating materials between those
found in this paper and in other studies. The acid resistance of stone treated by TSCM was 1.75 times
higher than that treated with traditional coating materials. The cycle number in the weather resistance
experiment was four times larger than that found for a silicone material.

Table 3. Comparison of protection performance between this work and other literatures.

Stone Type of Product
Applied

Corrosion Cycle
(Weather Resistance)

Acid Resistance
pH References

Sandstone polymerized siloxane 4 – [38]
Marble TiO2 pure-sol – 0.5–0.8 [21]
Marble TSCM – –0.6 Present work

Sandstone TSCM 16 <–0.6 Present work
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4. Conclusions

TiO2-modified sol coating material (TSCM) was designed using an innovative and simple synthesis
route. It was shown to not affect the appearance of stone-built cultural heritage when the amount of
TiO2 nanoparticles was 0.05 g/100 mL and the number of layers of TSCM was 4. The protective effects
of TSCM were tested by water absorption, water vapor permeability, acid resistance, and weather
resistance experiments. The results confirmed that TSCM has a significant protective effect on
stone-built cultural heritage: the water absorption of stone treated by TSCM was excellent; the acid
resistance of stone treated with TSCM was 1.75 times higher than that treated with traditional coating
materials; and the weather resistance cycle number of stone treated by TSCM was four times higher
than that treated with organic protective materials. Therefore, TSCM has good potential application
value in the protection of stone-built cultural heritage.
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