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Abstract: Shot peening was used synchronously to improve Fe-based amorphous coating performance
by delivering ZrO2 ceramic particles into a low-temperature region of a flame during the high velocity
oxygen flame (HVOF) spray process. The coating became denser, and its hardness became higher via
the new process. Moreover, the compressive residual stress was induced by shot peening. The results
from the dry friction test indicated that the coating’s wear resistance was enhanced obviously.
The wear mechanism of coatings with and without shot peening is an abrasive wear combined with
an oxidation wear at wear test conditions of a low load and a low frequency. The coating with the best
wear resistance did not have the strongest microhardness but had the highest compressive residual
stress. The compressive residual stress had a significant positive influence on the wear resistance at a
low frequency, while its effect is weakened at a high frequency.
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1. Introduction

Fe-based amorphous alloys have been studied extensively due to high hardness, good wear
and corrosion resistance, and relatively low cost. Meanwhile, with the development of thermal
spray technology, Fe-based amorphous materials are quickly introduced into the field of surface
engineering [1,2]. For improvement on Fe-based amorphous coatings performance, different kinds of
methods were developed such as technology improvement [3], parameter optimization [4], hard phase
reinforcement [5], and pre/post-treatment [6,7]. Most methods pay attention to the microstructures of
Fe-based amorphous coatings such as density and hard phase composition. Takeshi et al. [8] studied
an Fe-based amorphous composite coating with the addition of WC-12Co. When the added WC-12Co
was 8%, the coating hardness increased from 660 to 870 HV0.1, while the wear rate decreased from
0.8 × 10−4 to 0.1 × 10−4 mm3

·N−1
·m−1, exhibiting significant enhancement in the hardness and wear

resistance. Yugeswaran et al. [9] added TiN ceramic powder to strengthen an Fe-based amorphous
coating and found that the strengthening phase decreased both the oxide content of the composite
coating and the friction coefficient. However, significant attention has to be paid to the added content of
the second phase, particle size, and mismatch between particles associated with Fe-based amorphous
coatings in order to avoid deterioration [10].
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The coating performance is related to the residual stress, which plays an important role in
factories [11–14]. During the spraying technology, high velocity oxygen flame (HVOF) spraying is
beneficial for preparing coatings with high density and low porosity due to the flame of supersonic
speed and low temperature. For powders with a high melting point, they cannot be melted thoroughly
during the HVOF spray process. Therefore, unmelted or semimelted powders impacting on the
substrate or a previous lay can lead to great shot stress to induce the compressive residual stress
in a coating [11,15]. Generally, the compressive residual stress is rewarding to service life, fatigue
resistance, and wear resistance [16,17]. However, shot stress created by Fe-based powders is limited
due to their relatively low melting points. Some literature focused on the effects of residual stress in
coatings [14,16,18,19], but it is difficult to find an effective way to improve it.

Hard particle peening technology (sandblasting, shot peening, etc.) has been applied on surface
engineering, where shot peening is used widely in pre- or post-treatment processes [20–23]. The purpose
of pre-treatment is to increase the roughness of a substrate, so that a coating adheres to a substrate
strongly [20]. Junior et al. [22] carried out shot peening on a WC-10Ni coating sprayed by HVOF and
found that the fatigue strength of the coating enhanced from 750 to 850 MPa owing to the compressive
residual stress caused by shot peening. Shot peening in the post-treatment is in favor of wear resistance
and compressive residual stress, but the sphere of influence is limited [22,24]. Therefore, some literature
turned to utilize shot peening during spraying. The earliest study on simultaneous peening during
spraying was implemented by Singer [25] in 1984. In the study, they introduced an extra independent
shot peening equipment into a spraying system. The result showed that the residual stress and hardness
were improved and low porosity was deserved. However, independent shot peening cannot make sure
all deposition areas were covered. Moreover, Oxidation was introduced by high-pressure air, and high
cost was caused by an inert gas. Another method for synchronization of spraying and peening is to mix
hard particles into sprayed particles, where hard particles have effects on shot peening. Liang et al. [5]
mixed Al2O3 particles into Fe-based amorphous powders and prepared an amorphous coating by
HVOF. In the research, Al2O3 particles were used as shot peening to induce compressive residual
stress. However, the velocity and temperature of Al2O3 particles cannot be adjusted independently,
and the excessive speed and temperature can damage the coating microstructure.

In this study, hard particles ZrO2 and sprayed powders were fed into a spraying system from
different positions. The hard particles were delivered into a flame flow out of a nozzle to reduce
acceleration and heating. The tribological behavior and properties of coatings were studied, and the
formation mechanism was also discussed. This study provides an effective method to improve the
wear resistances of Fe-based amorphous coatings.

2. Experimental Procedures

2.1. Preparation of Coatings

The sprayed powder was a self-made Fe69B22Si5Nb4 (at.%) Fe-based amorphous powder,
prepared by vacuum gas atomization. Then, powders with a diameter less than 45 µm were
sieved. The micromorphology is shown in Figure 1a. The typical satellite structure was found from
the enlarged picture in the upper left corner of Figure 1a, due to the fact that small melts adhered to
the surface of large droplets easily during the faster cooling process. The diameters of hard particles
ZrO2 were in a range of 150-180 µm, as shown in Figure 1b. Figure 2 shows the schematic diagram of
the HVOF process assisted with shot peening. The sprayed powder was delivered near a combustion
chamber, while ZrO2 particles were delivered out of a gun. The incident position of ZrO2 particles
can be adjusted to control shot peening levels. Lower thermal conductivity and larger size can keep
ZrO2 particles with a low temperature, high elastic energy, and large collision kinetic energy, which
is in favor of shot peening. The substrate was composed of 1045 steel and was pretreated through
oil removal, rust removal, and sandblasting. For comparative analysis, three kinds of coatings were
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sprayed, and the related parameters are listed in Table 1, where the coatings are C0, C1, and C2 for
short, respectively.

Figure 1. Micromorphologies of powders: (a) Fe-based amorphous powders; (b) ZrO2 powders.

Figure 2. Diagrammatic drawing of a particle-assisted high velocity oxygen flame (HVOF) spray process.

Table 1. Process parameters of an HVOF spray coating.

Parameters
Values

C0 C1 C2

Fuel(kerosene) flow (L·h−1) 23.7 23.7 23.7
Oxygen gas flow (N·m3

·h−1) 50 50 50
Oxygen/fuel (vol.%) 2.1 2.1 2.1

Combustion chamber pressure (MPa) 0.8 0.8 0.8
Powder feeding rate (g·min−1) 85 85 85

Spraying distance (mm) 300 300 300
Peening particles rate (g·min−1) 0 50 150

2.2. Measurement and Analysis Method

The phase structures of powders and the coating were analyzed using D8 XRD (karlsruhe,
Germany), equipped with a Kα ray with Cu target (λ = 0.154060 nm). The diffraction angle range,
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diffraction speed, and step length were 30–90◦, 2◦/min, and 0.02◦, respectively. The microstructures of
powders (Fe-based amorphous powders and ZrO2 powders) and coatings were observed using a Nova
Nano 650 SEM field emission scanning electron microscope (Nova Nano 650, Hillsboro, OR, USA),
equipped with an energy-dispersive spectrometer. The microhardness in coatings was measured by
a Vicker hardness tester (Micromet-6030, Buehler, Lake bluff, IL, USA). The applied load was 100 g
for 10 s. The tribological performance was measured using a wear tester (UMT-3, CETR, Campbell,
CA, USA), and the dry friction model was the reciprocating ball-to-surface contact. The friction ball
pair consisted of Si3N4 balls with the diameter Φ = 4.0 mm, and the coating surface was polished
with 1000-mesh sandpaper before the test. The test conditions were as follows: load, 5 and 10 N;
frequency, 5 and 10 Hz; time, 30 min; and slide distance, 4.0 mm. A three-dimensional interference
surface profiler (phase shift MicroXAM-3D, ADE Corporation, Westwood, MA, USA) was used to
measure worn volume and observe the morphology of the shot peening trace. The worn surface was
also respected by SEM mentioned above. The residual stress on the coating surface was monitored
by an XRD stress tester (X-350A, Handan, China). Usually, the tester cannot be used to obtain the
residual stress value of pure amorphous materials due to no crystal phase [19]. However, there was an
α-Fe phase in the coating by the result of XRD. The residual stress can be evaluated qualitatively by
characterizing the lattice constant of the α-Fe phase in the coating [26,27]. Therefore, the stress can be
measured by the Cr-based Kα radiation in a diffraction crystal plane of (211) at 2θ = 158◦, where the
scanning rate of the tester was 0.1◦/min, and three measurements were performed at 2Ψ of 0◦, 30◦, and
45◦, respectively. Here, the residual stress value was used for vertical comparison.

3. Results and Discussion

3.1. Phase Structure and Residual Stress

Figure 3 shows similar XRD patterns in powders and coatings, indicating the existence of the
dominant amorphous phase and a small amount of the α-Fe phase. There were no characteristic peaks
of ZrO2 in C1 and C2 compared with that in C0, showing that ZrO2 particles neither reacted with
spray-coated powders chemically nor were embedded into coatings during the spraying and coating
processes. The diffraction peak intensities of the α-Fe crystal phase of C1 and C2 grew higher, which
may result from impact-induced damage of peening particles on the rather brittle material [28].

Figure 3. XRD patterns of powder and coatings.



Coatings 2020, 10, 187 5 of 14

Figure 4 shows the residual stress values in C0, C1, and C2. It can be seen that the residual
stress changed from the residual tensile stress (4 MPa) to the compressive residual stress (−180 and
−100 MPa) after auxiliary of ZrO2 particles. The largest compressive residual stress was induced
when the peening particle rate was 50 g/min, showing that the exceeding ZrO2 rate was harmful to
the compressive residual stress. Heavier shot peening could lead to coating damage like microcracks,
which relaxed the compressive residual stress [29].

Figure 4. Residual stresses of coatings.

3.2. Shot Peening Traces

For a clear observation of shot peening, ZrO2-assisted spraying was operated only once at a very
high traveling velocity. The micromorphologies of traces are shown in Figure 5. Hard particles impact
and amorphous particles deposition are random during the spray process. Splats 1 and 4 were not
influenced by shot peening, as shown in Figure 5a,b, respectively, presenting a typical “fried-egg”
shape [30]. However, there was not a clear thin disk in the center of the splat, which illustrated that
amorphous powders were melted completely and flattened well. During the deposition process,
the droplet edge flattened along with the previous layer surface at a high speed in the tangential
direction [31,32]. Therefore, compared with the center of the splat, the adhesion of the edge to the other
layer was weak. It is obvious the edge of splat 2 (Figure 5a) adhered to the substrate firmly while there
was a gap between the edge of splat 5 and the substrate. It was due to the different sequences of shot
peening and deposition. For splat 2, deposition was first, and then shot peening made the splat edge
pressed into the substrate. Interestingly, close adhesion between splats 2 and 3 proved further that shot
peening can compact the coating structure. For splat 5, shot peening caused a crater firstly. When a
droplet impacted onto a crater, its edge escaped from the crater along with the crater surface. The edge
hanged in the air after the droplet solidification, and a big gap was formed, as shown in Figure 5b.
The effect of shot peening was negative in this kind of situation, but the following shot peening or
deposition still had the chance to counteract the adverse effect. Figure 5c shows another situation that
hard particles impacted on the flattening droplet. The droplet was still very soft even in the liquid
state. As a result, a deep and coarse crater remained after shot peening. In Figure 5d, there was an
evident crater on the splat 7 surface, where cracks were observed. This suggested that exceeding shot
peening can damage deposited splats.
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Figure 5. Three-dimensionally (3D) microprofiles of different shot peening tracks.

3.3. Micromorphologies and Mechanical Properties

As shown in Figure 6, all coatings were typical thermal-sprayed layered structures. An inter-splat
interface formed as the deposited splat’s boundary, where pores existed. After shot peening, obvious
saucer-shaped lines were seen in Figure 6b,c. Compared to the unpeened coating in Figure 6a, the shot
peening-assisted coating in Figure 6b was of lower porosity, and the inter-splat interface became
narrow. It suggested that shot peening was beneficial for the coating density. However, as shown
in Figure 6c, more pores and inclusions appeared due to serious impact-induced damage caused by
exceeding shot peening.

Figure 6. Micromorphologies of the cross-sections of C0 (a), C1 (b), and C2 (c).

In Figure 7, by increasing the mass rate of ZrO2 particles, the porosity decreased first from 2.3%
to 1.5% and then increased to 1.7%, while the microhardness went up progressively (C0: 669 HV0.1,
C1: 717HV0.1, and C2: 865HV0.1). Porosity and microhardness of both C1 and C2 were improved
compared with those of C0. More interestingly, C2 with a higher mass rate of ZrO2 particles possessed
higher microhardness but worse porosity than C1, which proved that exceeding shot peening damaged
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the microstructure of C2. The speed of ZrO2 particles depended on many factors such as injection
velocity, diameter, and mass rate [33]. Particles with higher speeds and smaller diameters probably led
to more serious plastic deformation, which broke deposited particles easily as shown in Figure 5d. It is
generally known that plastic deformation caused by peening is in favor of coatings performance, but it
cannot increase infinitely via the peening method [34]. Excessive shot peening caused splat damage,
inclusion generation, and more pores existence around the boundary, as shown in Figure 6c. These
defects can play a role in defect hardening, so that the microhardness was increased further [35].

Figure 7. Porosity and microhardness of coatings.

3.4. Wear Behavior

3.4.1. Friction Coefficient and Wear Rate

Figure 8a–c shows the coefficient of friction (COF) curves of C0, C1, and C2 at different test
conditions. The profiles of COF curves in Figure 8a,c looked similar. In Figure 8b, the bread peak existed
in the curves of C1 and C2 marked as arrows. It illustrated that the stable oxide layer formed in the
initial period of wear tests. Figure 8d shows the COF curves of C0, C1, and C2 under all test conditions.
It can be seen that the COF decreased slightly with the increasing mass rate of ZrO2 particles. It should
be attributed to the good deformation resistance for coatings with high microhardness. However, the
COF did not change significantly with a fluctuation between 0.62 and 0.68 at a frequency of 5 Hz. When
the frequency was increased, more energy was generated between the friction pair and the coating
surface. The amorphous areas in the coatings were softened easily due to their higher temperature
sensitivity. Strong adhesion between the asperity of these areas and the friction pair formed by “spot”
welding, which dramatically increased the COF.
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Figure 8. COF versus sliding time curves for C0 (a), C1 (b), and C2 (c). Test conditions: (a) a load of 5
N and a frequency of 5 Hz; (b) a load of 10 N and a frequency of 5 Hz; and (c) a load of 10 N and a
frequency of 10 Hz. (d) Frequency coefficients under different conditions.

Figure 9 shows the wear rates of coatings under different test conditions. The wear rate was
calculated by the equation [36]: W = Vm / (N × S), where W is the wear rate (mm3

·N−1
·m−1), Vm is the

wear volume (mm3), N is the load (N), and S is the sliding distance (m). The wear rates of both C1 and
C2 were lower than that of C0 at any test condition, showing that wear resistance was improved via the
process of simultaneous shot peening. The wear rate of C1 with a load of 10 N and a frequency of 5 Hz
(2.19 × 10−5 mm3

·N−1
·m−1) was almost a third of that of C0 (6.03 × 10−5 mm3

·N−1
·m−1). Generally,

high microhardness is in favor of improvement in wear resistance. Interestingly enough, C1 had
the best wear performance, although its microhardness was lower than that of C2, illustrating that
microhardness was not the only factor in improving wear resistance. It is well-known that wear rates
are directly influenced by residual stresses [37]. Compared with the wear rates obtained with a load
of 10 N and a frequency of 5 Hz, the wear rates for C0 and C2 decreased, while the wear rate for C1
actually increased slightly, when the test conditions were a load of 10 N and a frequency of 10 Hz.
The reason will be discussed in detail later.
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Figure 9. Wear rates of coatings.

3.4.2. Wear Mechanics

Figure 10 shows the worn surface profiles of coatings. More black chipping, spalling holes,
and shallow grooves were observed on the C0 surface, presenting the occurrence of abrasive wear.
The black chippings were identified as oxides through energy-dispersive spectroscopy (EDS) analysis
of area A, as shown in Table 2, illustrating that an oxide layer was formed. The layered structure of
the sprayed coating inevitably led to a rough and uneven convex–concave surface. When a friction
ball pair contacted with the convex–concave area, higher shear stress was generated at the edge of
the asperity, resulting in larger plastic deformation. When the plastic deformation increased to a
certain extent, cracks occurred and expanded along a sliding line. After a certain cycle, the pieces
were separated along the propagation trajectory of cracks, forming wear debris. Under the repeated
grinding and the frictional heat, the wear debris underwent the dynamic oxidation and microzone hot
pressing and then formed an oxide layer covering the worn surface [38]. However, the oxide layer
cannot exist on a surface with low microhardness, and it was broken into debris again and embedded
into the surface [39,40]. The oxide layer could exist steadily, only when its forming rate was higher
than the breaking rate. The oxide layer also existed on the C1 surface in Figure 10b, by the result of
EDS of area B, as shown in Table 2, which protected the coating from the wear. Therefore, the wear
mechanics for all coatings is an abrasive wear combined with an oxidation wear. Compared with
those on the C1 surface in Figure 10b, more chipping and holes existed on the C2 surface in Figure 10c.
It suggested delamination occurred easily on the C2 surface.

Table 2. Energy-dispersive spectroscopy (EDS) analysis for coatings.

Area
Element (wt %)

Nb O Si Fe B

A 2.99 47.91 8.97 37.94 2.19

B 6.71 33.88 3.01 53.33 3.07

As the load was increased to 10 N, more spalling holes appeared on the worn surface, as shown in
Figure 10d–f. The morphology of C0 obtained with a load of 10 N and a frequency of 5 Hz was similar
to that obtained with a load of 5 N and a frequency of 5 Hz, which suggested the same wear mechanics.
Evident plastic deformation is presented in Figure 10e. The plastic deformation denoted the adhesive
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wear appearance [41]. In this situation, the ball pair surface contacted with the friction surface steadily.
Therefore, its COF curve displayed the minimum fluctuation as shown in Figure 8b. In Figure 10f,
many spalling holes were observed, illustrating severe brittle fracture occurred [42]. The bottom of
the spalling holes was actually the fracture surface, where cracks were generated and propagated.
Stress concentrated on the inter-splat interface and defects like pores during the wear test. When the
stress exceeded the bonding strength, cracks were generated from the region of stress concentration
and propagated along the inter-splat interface. Defects such as pores found in the bottom of spalling
holes were usually the source of cracks as shown in Figure 10f.

Figure 10. Micromorphologies of a worn surface: C0 (a), C1 (b), and C2 (c) obtained with a load of 5 N
and a frequency of 5 Hz; C0 (d), C1 (e), and C2 (f) obtained with a load of 10 N and a frequency of 5 Hz;
C0 (g), C1 (h), and C2 (i) obtained with a load of 10 N and a frequency of 10 Hz.

As the load and frequency were up to 10 N and 10 Hz, respectively, the amount of chippings
decreased dramatically, and a lot of spalling holes existed on the C0 worn surface, as shown in
Figure 10g. No evident black chipping illustrated that the wear mechanics was just an abrasive wear.
Apparent grooves appeared in the center of the C1 worn surface as shown in Figure 10h, and only a
few spalling holes were seen. In Figure 10i, some traces of plastic deformation were observed besides
delamination on the C2 surface, showing the wear mechanics is an abrasive wear combined with an
adhesive wear. As shown in Figure 10f, the spalling holes became small. High heat inside the contact
surface softened the surface and then reduced the brittle fracture, which promoted the opportunity
of an adhesive wear and improved the wear resistance at some level. Therefore, the wear rate of C2
decreased, when the frequency increased from 5 to 10 Hz, as shown in Figure 9.
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3.4.3. Effect of the Compressive Residual Stress

Crystallization for amorphous materials during friction should be considered first. The flash
temperature during a wear test can be presented by Archard’s equation [43]:

TF = 0.125µV(πFPσs)
1/2/K (1)

where TF is the flash temperature (◦C); µ is the COF; V is the velocity (m·s); FN is the load force (N); σs

is yield strength of coating (Pa), and K is the thermal conductivity of coating (W·m−1
·C−1). σs can be

obtained from microhardness [44], and K values (5 W·m−1
·C−1) were assumed the same for all coatings

to compute the flash temperature. The highest calculated flash temperature was 375.81 ◦C, lower than
the coating’s glass transition temperature [45]. It illustrated that no crystallization occurred during the
wear test. C2 with the highest microhardness did not have the lowest wear rate, showing that hardness
was not the only factor in improving wear resistance in the present work. Compared with C2, C1 is of
the lowest porosity and highest compressive residual stress. Low porosity meant high density and few
defects, which restricted cracks generation and propagation. Meanwhile, precious literature has also
given the point that the high compressive residue stress is beneficial for wear resistance whereas the
tensile residual stress induced negative effects on wear resistance [19,46].

As shown in Figure 11a, the area from the ball was compressed andthe area behind the ball was
tensed during the sliding process. Fracture was always in the tensile stress area. When the tensile
stress exceeded the inter-splat bonding strength, cracks occurred. The intrinsic compressive residual
stress could neutralize parts of the tensile stress, which delayed the formation and propagation of
microcracks [47]. As shown in Figure 11b,c, the crack growth was prevented in C1, while the crack
propagated fully in C2 and more chipping was on the C2 surface.

As the frequency was increased to 10 Hz at A load of 10 N, the wear rate of C2 decreased
significantly although it was still higher than that of C1, while the wear rate of C1 increased slightly.
The different variation tendencies of wear rates for C1 and C2 further illustrated that porosity and
hardness were not the only influencing factors. The compressive residual stress should be an important
factor that restricted crack generation and propagation and protected splats from delamination at a low
frequency. At a high frequency, the quick relative motion during the wear test resulted in higher heat
and larger deformation in the contact surface [48,49]. The deformation relaxed the residual compressive
residual stress further [50,51]. It led to an increase in the wear rate of C1. More deformation usually
occurred on the center of the sliding surface, where the influence of the compressive residual stress on
the wear decreased dramatically [52]. Therefore, lots of grooves concentrated on the center of the C1
worn surface, as shown in Figure 10h.

Figure 11. Schematic diagram of a wear test (a). The cross-sections of the worn surfaces of C1 (b) and
C2 (c) obtained with a load of 10 N and a frequency of 10 Hz.
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4. Conclusions

Hard particles were delivered into a flame flow to achieve synchronous shot peening during the
HVOF spraying process. The result showed that the porosity was reduced, the coating became denser,
and its microhardness was increased significantly. Moreover, the compressive residual stress was
induced by shot peening, and it played an important role in wear resistance. Shot peening of hard
particles ZrO2 was random in the spraying process. In individual cases, the peeing went against splats
spreading or broke the deposited particles. Exceeding shot peening led to coating damage and relaxed
the compressive residual stress.

It can be seen from the results of the wear test that the COF did not change obviously for coatings
with and without shot peening. Compared with the unpeened coating, the wear resistance of the
coating under proper shot peening increased three-fold at a low frequency. It was mainly attributed to
the induced compressive residual stress. As the frequency of the wear test was increased, high heat
generated during the sliding process relaxed some of the compressive residual stresses. However,
the wear resistance of coatings obtained by the shot peening-assisted process was improved under all
test conditions. Hopefully, the new process can be applied in other coating preparation.
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