
coatings

Article

Electrospun Bilayer PAN/Chitosan Nanofiber
Membranes Incorporated with Metal Oxide
Nanoparticles for Heavy Metal Ion Adsorption

Hamad F. Alharbi 1,* , Mustafa Y. Haddad 1,2, Muhammed Omer Aijaz 3,
Abdulaziz K. Assaifan 1 and Mohammed R. Karim 3

1 Mechanical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia;
mhaddad@kacst.edu.sa (M.Y.H.); aassaifan@ksu.edu.sa (A.K.A.)

2 National Center for Advanced Materials Technology, King Abdulaziz City for Science
and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia

3 Center of Excellence for Research in Engineering Materials, King Saud University,
Riyadh 11421, Saudi Arabia; maijaz@ksu.edu.sa (M.O.A.); mkarim@ksu.edu.sa (M.R.K.)

* Correspondence: harbihf@ksu.edu.sa

Received: 22 December 2019; Accepted: 17 March 2020; Published: 19 March 2020
����������
�������

Abstract: Bilayer nanofiber membranes with enhanced adsorption and mechanical properties were
produced by combining a layer of polyacrylonitrile (PAN) functionalized with metal oxides (MO) of
ZnO or TiO2 with a layer of chitosan (CS) via consecutive electrospinning. The adsorption properties
of the bilayer PAN/MO–CS nanofiber membranes against lead (Pb(II)) and cadmium (Cd(II)) ions
were investigated, including the effects of the solution pH, initial ion concentrations, and interaction
time. The integration of a CS layer into PAN/MO nanofibers increased the adsorption capacity of
lead by 102% and cadmium by 405%, compared to PAN/MO single layer. The nonlinear optimization
method showed that the pseudo-second-order kinetic model and Langmuir isotherm equation better
described the adsorption results. More importantly, the incorporation of a supportive CS nanofiber
layer enhanced the tensile strength of PAN/MO–CS bilayer by approximately 68% compared to
the PAN/MO single layer, owing to the strong interaction between the fibers at the interface of the
two layers.

Keywords: adsorption; polyacrylonitrile; chitosan; titanium dioxide; zinc oxide; nanofibers;
electrospinning

1. Introduction

The rapid development of industrialization has led to more pollutants such as toxic heavy
metal ions in surface and ground waters [1,2]. The presence of these contaminants requires further
treatment to reduce their concentrations in water, as they are a serious concern to the environment
and human well-being [3,4]. Different approaches have been utilized for toxic metal ion removal from
wastewaters—such as adsorption, ion exchange, membrane separation, and solvent extraction [5–8].
Among these techniques, adsorption is more popular because of its cost effectiveness, high performance,
and ease of application [9]. Polymeric nanofiber membranes can significantly improve the adsorption
performance due to their high porosity, small pore sizes, and large surface area, which provide a large
number of potential active adsorption sites [10,11].

Polyacrylonitrile (PAN) is a common and low-cost product that has been investigated for facile
polymeric nanofiber production via electrospinning techniques [12–14]. PAN possess a good thermal
stability, wettability, and high chemical resistance [15,16]. However, pure PAN nanofibers are not
good enough for heavy metal ion adsorption applications [17,18]. Therefore, surface functionalization
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or the incorporation of other polymers and/or metal oxide nanoparticles into PAN nanofibers are
required to improve the ion adsorption of PAN adsorbents. Kampalanonwat et al. [19] demonstrated
the enhancement of the ion adsorption capacity onto PAN nanofibers by attaching amidino
diethylenediamine chelating groups on PAN nanofibers surfaces. Previously, adsorption of toxic metal
ions was improved by many researchers by incorporating metal oxides such as ZnO and TiO2 into
the nanofiber membranes [20–22]. Parlayici et al. [23] reported the improvement of the chromium
ion removal efficiency by incorporating TiO2 into PAN nanofiber membranes. The enhancement
was attributed to the TiO2 electrostatic attraction nature. In another approach, Makaremi et al. [24]
conducted a study in which chromium ions were removed using PAN mixed with ZnO nanoparticles.
The removal percentage was increased by 30% with the addition of ZnO nanoparticles. Similar
improvements were observed in our previous work, where lead and cadmium ions were adsorbed
onto PAN functionalized with ZnO and TiO2. The adsorption performance was significantly improved
to 260%, in comparison to pristine PAN nanofibers [9,25].

Chitosan (CS), a natural biopolymer with antibacterial and antifungal properties, has attracted
significant interest due to its unique advantages, such as its abundancy in nature, nontoxicity,
biodegradability, and heavy metal ion adsorption properties [26]. Biopolymers are well-known
as low cost and easy to use materials for different environmental applications [27]. In adsorption
studies, chitosan has received much attention due to its hydroxyl and amine groups, which are very
efficient in toxic metal ion adsorption by electrostatic interactions [28]. Makaremi et al. [24] combined
an electrospun chitosan layer with nanofibrous PAN membranes for chromium removal from aqueous
solutions. The results showed an increase in the adsorption efficiency from 4% to 43%. In another
study, Haider et al. [29] used electrospun chitosan membranes to adsorb lead and copper from aqueous
solutions. The membranes showed an improved adsorption affinity towards lead and copper ions due
to the larger surface area. Aliabadi et al. [30] mixed a chitosan solution with a polyethylene oxide (PEO)
solution and electrospun the mixture to form a nanofibrous membrane. He used the membrane to
adsorb cadmium, lead, nickel, and copper. The heavy metal ions attachment onto the membrane was
endothermic, feasible and spontaneous. Furthermore, He et al. electrospun an environmentally-friendly
and non-toxic composite membrane of titanium dioxide/chitosan/poly(lactide-co-caprolactone) and
used it for Cu(II) adsorption. The results have shown a good adsorption capability towards copper
ions in aqueous solution [31].

Building on our recent results in this emerging field, we demonstrate in this paper for the first time
significant enhancements in both the adsorption and mechanical properties of electrospun PAN/ZnO
and PAN/TiO2 nanofiber mats coated with a nanofiber layer of electrospun chitosan. The fabricated
bilayer PAN/ZnO–CS and PAN/TiO2–CS (hereinafter, unless otherwise specified, both are referred to
as PAN/MO–CS) nanofiber mats were used to adsorb lead and cadmium ions in water by adsorption.
The bilayer PAN/MO–CS nanofiber mats were characterized using SEM, XRD, and FTIR to examine
the morphology, metal oxide availability, and chemical structures of the PAN/MO–CS nanofiber
mats. The adsorption performance was thoroughly investigated experimentally and numerically and
compared to a PAN/MO single layer and PAN–CS bilayer. Likewise, mechanical properties, such as
the tensile strength of the bilayer, was investigated in this study. In addition, elongation at break of the
bilayer mats was analyzed under uniaxial tension.

2. Materials and Methods

2.1. Materials

The polymers used in the synthesis of the nanofibers were polyacrylonitrile (Mw = 150,000),
chitosan (Mw = 50,000) and poly(vinyl alcohol) (PVA, Mw = 150,000). N,N-dimethylformamide (DMF)
was used as the electrospinning solvent. All these materials were supplied by Sigma Aldrich (Hamburg,
Germany). Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles, supplied by Sigma Aldrich,
had average sizes of 50 and 80 nm, respectively. For the adsorption experiments, lead and cadmium



Coatings 2020, 10, 285 3 of 18

standard solutions having a mass per volume of 1000 g/L for both solutions were purchased from
Panreac (Barcelona, Spain).

2.2. Preparation of Electrospun Bilayer Nanofiber Mats

The bilayer nanofiber mats composed of PAN/MO (PAN/ZnO and PAN/TiO2) and CS were
fabricated using electrospinning. The first layer of electrospun PAN mixed with 2.0 wt % ZnO or
PAN mixed with 2.0 wt % and 5.0 wt % TiO2 were prepared following our previously published
procedure [9,25]. It was found that as the concentration increases to more than these percentages,
the adsorption decreases. This could be attributed to the excessive aggregation of metal oxides which
would lead to steric hindrance and hence reduced adsorption performance [31]. The other CS layer
was prepared from a CS/PVA solution. First, a 2 wt % acetic acid in water was introduced to a 2 wt %
CS solution and mixed for 24 h to produce a homogenous solution. Afterward, another 10 wt % PVA
in water was prepared by dissolving the PVA in water and stirring for 1 h at 90 ◦C. These two solutions
were mixed at room temperature with a CS/PVA ratio of 30:70 and stirred for 1 h until the solution
became homogenous. The prepared CS/PVA solution was directly electrospun on top of the first
PAN/MO nanofiber layer, immediately after the completion of the first run, by injecting the CS/PVA
solution with a flow rate of 0.2 mL/h and an applied potential of 25 kV, the needle tip was placed 10 cm
from the collector. The fabrication process was running for two days to achieve a thick CS layer.

For the purpose of comparison, an additional electrospun nanofiber mat of a PAN–CS bilayer
(with no metal oxide nanoparticles) was also fabricated using the same solutions described above.
In summary, three different electrospun nanofiber mats were prepared in this study including:
(1) a bilayer of PAN–CS, (2) a bilayer of PAN/TiO2–CS, and (3) a bilayer of PAN/ZnO–CS. 2.0 wt % of
ZnO nanoparticles was used for lead and cadmium adsorption experiments, 2.0 and 5.0 wt % of TiO2

nanoparticles were used for lead and cadmium adsorption experiments, respectively. These amounts
were selected based on our previous study, as they provided the most favorable removal percentages
against the metal ions [9,25]. For the purpose of simplicity and clarity, the weight percentages of ZnO
and TiO2 will not be written explicitly in the labels of the bilayer mats (e.g., PAN/TiO2(2 wt %)–CS will
be referred to as PAN/TiO2–CS only).

2.3. Characterization

The polymeric nanofibers morphological structure was studied using a field-emission scanning
electron microscopy (JSM-7600 JEOL, Tokyo, Japan) after sputter coating the samples with platinum to
minimize electrostatic charging. At least four samples of PAN–CS, PAN/TiO2–CS and PAN/ZnO–CS
mats were imaged. The accelerating voltages used in these characterization studies were between 5
and 15 kV. The presence of metal oxide nanoparticles within the composite nanofibers was observed
using X-ray diffraction (XRD, D8 Bruker, Karlsruhe, Germany) with Cu-Kα radiation and a 2θ scanning
range from 10◦ to 80◦ at a rate of 5◦ per minute. Fourier transform infrared spectroscopy (Bruker,
Billerica, USA) was utilized to study the chemical structure of the mats.

2.4. Adsorption Studies

The toxic metal ion adsorption onto the surface of the bilayer nanofibers was studied in distilled
water at room temperature. The effects of solution pH, incubation times, and concentrations of ion
on adsorption performances were investigated. The adsorption results were compared with those
obtained from the bilayer PAN–CS nanofibers without metal oxide nanoparticles. In this work, a fixed
amount of approximately 18 mg of the fabricated nanofibers was agitated into 15 mL water having
certain lead and cadmium ions concentrations. The effects of incubation times on the toxic metal ion
adsorption were observed where the concentrations of the ions were measured using atomic adsorption
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spectroscopy (AA-7000 Shimadzu, Tokyo, Japan). The removal percentage of ions (% removal) or the
amount of adsorbed ions at equilibrium (qe; mg/g) can be used to express the adsorption performance as

% removal =
(Co −Ce)

Co
× 100, (1)

qe =
(Co −Ce) ×V

M
, (2)

where Co (mg/L) is the initial concentration of ions adsorbed in solution and Ce (mg/L) is the equilibrium
concentration of adsorbed ions in solution, V (L) is the total solution volume, and M (g) denotes the
dry mat mass.

To confirm reproducibility of the adsorption data, all adsorption experiments reported in this
paper were performed at least three times for each nanofiber mats. A standard statistical analysis based
on the mean and standard deviation was used to report the sample measurements. The Student’s t-test
was considered to assess any significant difference in the mean adsorption values between nanofiber
mats with a 95% confidence level.

2.5. Mechanical Testing

A micro-tensile machine (MTD-500 PLUS, Instron, Norwood, MA, USA) was used to identify
the tensile properties of all the fabricated nanofiber mats at ambient temperature. dog bone shaped
samples strips were prepared according to ASTM D 638-10 standard type-5 with a gauge length,
width, and thickness of approximately 10, 5, and 0.2 mm, respectively. Every strip was stretched to the
breaking point while recording the force and elongation under the influence of 0.5 mm/min cross-head
speed. Five nanofiber samples from each material were tested to ensure the reproducibility of the data.

3. Results and Discussion

3.1. Characterization of the Bilayer Nanofiber Mat

In Figure 1, SEM images of the bilayer PAN–CS mat from the sides of the PAN (Figure 1a) and CS
(Figure 1b) layers are shown. Both the PAN and CS layers have bead-free nanofibers with average
diameters of 122 ± 52 and 147 ± 22 nm, respectively. The image of PAN/MO–CS from the side of
PAN/MO is shown in Figure 1c where ZnO nanoparticles are used in this case. The agglomeration of
MO (for both ZnO and TiO2) nanoparticles and the PAN/MO nanofibers surface roughness increase
were observed in our electrospun mats. After incorporating MO nanoparticles into the electrospinning
solution, the solution becomes more viscous, resulting in an increase in surface roughness as discussed
in previous reports [32,33]. Moreover, the presence of MO agglomerates in the nanofiber structure can
largely influence the mechanical properties of the bilayers. This matter will be discussed in a later
section of this study. Figure 1d shows the cross-section of the PAN–CS bilayer at the interface. It can be
seen that the PAN mat is uniformly covered with a thin layer of CS. The CS layer was neither detachable
nor distinguishable from the PAN layer with the naked eye, indicating an excellent interaction between
the nanofibers of both layers. These linkages between the nanofibers can facilitate the load transfer
between the two layers and can enhance the mechanical properties of the bilayer PAN/MO–CS mats,
as explained later in the mechanical discussion. The average thicknesses of the PAN and CS layers
were approximately 255 and 275 µm, respectively.
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Figure 1. SEM images of the bilayer PAN–CS mat from the side of (a) PAN and (b) CS. The image of
PAN/ZnO–CS from the side of PAN/ZnO is shown in (c). The cross-section of the PAN–CS bilayer at
the interface is depicted in (d).

Metal oxide nanoparticles presence in the bilayer mats was verified using XRD (Figure 2). The ZnO
diffraction peaks were observed at 31◦, 34◦, 36◦, 48◦, 57◦, 63◦, and 67◦ 2θ angles, which correspond to
the (100), (002), (101), (102), (110), (103), and (201) crystallographic planes, respectively [34]. For TiO2,
the strong anatase diffraction peak observed at a 2θ of 25◦ is the (101) crystallographic plane. Moreover,
the small peaks at 2θ of 37◦, 49◦, 54◦, and 63◦ are the (103), (200), (211), and (204) planes of TiO2,
respectively [32].

Figure 2. XRD analysis of the bilayer nanofibers.

The FTIR spectra of the electrospun bilayers is shown in Figure 3. The peaks observed at 2244, 1736,
and 1450 cm−1 in the FTIR spectrum are attributed to the presence of PAN. Furthermore, these peaks
correspond to the C≡N, C=O, and C—O groups stretching vibrations, respectively [35]. The peaks
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of CS were observed in the range of 3500–2900 cm−1 and correspond to the –NH2 and hydroxyl
groups stretching vibrations. The peak at 1424 cm−1 can be attributed to the amide I of the remaining
acetamide group [36]. The spectrum illustrates that the bilayer nanofiber mats incorporating metal
oxide nanoparticles show no extra peaks compared to the PAN–CS nanofiber mats, indicating only
physical interactions between the layers [24,32].

Figure 3. FTIR analysis of the bilayer nanofibers.

3.2. Adsorption Study

3.2.1. pH Effect on Metal Ion Adsorption

The metal ion adsorption properties can be largely affected by the solution pH. In this work, lead
and cadmium removal percentages were investigated in solutions of 3.0, 5.0, 7.0, and 9.0 pH. The acidic
and basic solutions were prepared by adding acetic acid and sodium hydroxide to water. An 18 mg
piece of the nanofiber mat was immersed in 15 mL of 200 mg/L lead or cadmium solution at room
temperature for 5 min. Figure 4 shows the pH influence on the metal ions removal percentage by the
bilayer mats. Cadmium ions removal percentage for all the nanofiber mats clearly increased as the pH
increased and reached a saturation level at 7.0 pH. For lead ions removal percentage, the increase in pH
did not have a significant effect on the removal percentage. 5 pH was chosen for the removal of lead
ions since maximum adsorption occurs at this pH level. At low pH values, the surface hydroxyl group
protonation could result in repulsive electrostatic interaction between the lead and cadmium ions and
the positively charged surface sites, resulting in unfavorable adsorption [37,38]. The deprotonation
that occurs with increasing the pH value leads to an enhancement in the attachment of toxic metal ions
onto the surface [39,40].

The adsorbent’s point of zero charge (pHpzc) in solution, a point where the adsorbent surface charge
density is equal to zero, could better explain how adsorption properties are affected by the pH [41,42].
The surface charge of the nanofiber surface is negative at a pH value above the pHpzc, a condition
under which adsorption is usually favorable because of the attractive electrostatic interactions between
heavy metal cations and negatively charged surface sites. The pHpzc can be obtained by determining
the point of intersection of the pHinitial vs. pHfinal curve and the pHinitial = pHfinal line. The pHpzc for
our bilayer PAN/MO–CS (for both ZnO and TiO2) nanofibers in the absence of lead and cadmium ions
was very close to 7.1 (see Figure S1 in the Supplementary Information). Therefore, a pH value of 7.0
was used for the metal ion adsorption in all the subsequent studies.
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Figure 4. Removal percentage of (a) lead and (b) cadmium ions with different pH values using the
bilayer nanofiber mats.

3.2.2. Adsorption Kinetics

In the kinetics experiment, the contact time effect is observed by recording the amounts of
adsorbate (heavy metal ions) uptake per mass of adsorbent at different times t (qt). Figure 5 shows the
influence of different contact times on the toxic metal ion adsorption onto the bilayer mats. The insets
in the figure illustrate the adsorption capacity until equilibrium over a regular (linear) time scale.
Equilibrium of adsorption capacity of both lead and cadmium ions was reached within 5 and 60 min,
respectively, for all the nanofibers. At equilibrium, the adsorption capacity of the heavy metal ions
by the bilayer with metal oxide nanoparticles is higher than the adsorption capacity obtained by the
bilayer with no metal oxide nanoparticles by approximately 50%. At equilibrium, the best metal ion
adsorption was exhibited by the bilayer incorporating TiO2 with capacities of 127 and 160 mg/g for lead
and cadmium, respectively, while the bilayer PAN–CS mats exhibited adsorption capacities of lead
and cadmium of 83 and 110 mg/g, respectively. The enhanced PAN/MO–CS adsorption performance is
due to the increased surface area associated with the introduction of two nanofibrous layers and MO
nanoparticles. This is also evident based on the fast-reached equilibrium adsorption and the low mean
adsorption energy (see the adsorption isotherm section) [43]. To study the stability of the adsorption
or the desorption of the heavy metal ions from the bilayer mats surface after reaching adsorption
equilibrium, the adsorption data were recorded for a long time after equilibrium was reached. In our
kinetics experiments, the desorption of cadmium from the bilayer nanofiber mat was found to be
negligible (less than 5%) after 24 h, while the decrease in the adsorption of lead was approximately 10%.

The adsorption performance of the bilayer PAN/MO–CS nanofiber mats is significantly higher
than that obtained by the pristine PAN and PAN/MO single layer that were reported in our previous
work [9,25]. For example, the adsorption of cadmium by the PAN/TiO2–CS bilayer developed in
this study increased by 472% and 191% in comparison to pure PAN and the PAN/TiO2 single layer
(160 mg/g vs. 28 and 55 mg/g), respectively. The improvement of the adsorption of lead is less
significant than that of the adsorption of cadmium; the adsorption of lead by the PAN/TiO2–CS
bilayer increased by approximately 140% and 16% in comparison to pure PAN and the PAN/TiO2

single layer, respectively. Figure 6 compares the adsorption equilibrium capacity (qe) of lead and
cadmium using single PAN layer, PAN/MO layer, PAN–CS bilayer, and PAN/MO–CS bilayer. Once
again, this remarkable improvement in the adsorption performance is due to the enlarged surface area
because of the addition of the CS nanofiber layer and MO nanoparticles into the PAN nanofiber mat.
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Figure 5. Contact time effect on the capacity of adsorption of (a) lead and (b) cadmium ions using the
bilayer mats. The insets illustrate the adsorption up to the point of equilibrium over a regular (linear)
time scale.

Figure 6. Equilibrium of adsorption (qe) comparison of (a) lead and (b) cadmium ions using pristine
PAN, the PAN/MO single layer [9,25], the PAN–CS bilayer, and the PAN/MO–CS bilayer.

Usually, two kinetic models are used to analyze the kinetics of adsorption namely,
pseudo-first-order (PFO) and pseudo-second-order (PSO) equations [44,45]. The first and second order
models can be written, respectively, as

dqt

dt
= k1(qe − qt), (3)

dqt

dt
= k2(qe − qt)

2. (4)

where k1 and k2 (min−1) are the rate constants of the PFO and PSO reactions, respectively, and t (min)
is the time of adsorption. After integrating the abovementioned differential forms and imposing
appropriate boundary conditions, the adsorption capacity at time t can be expressed for the PFO
(Equation (5)) and PSO (Equation (6)) models as

qt = qe
(
1− e−k1 t

)
, (5)

qt =
q2

e k2 t
1 + k2 qe t

. (6)

The kinetic parameters (i.e., k1, k2, and qe) in the PFO and PSO models are usually obtained by fitting
the linear forms of these equations. Here, we instead employed the nonlinear optimization technique to
calculate these parameters, as nonlinear optimization was previously shown to provide better predictions
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of the kinetic data [46,47]. The comparison of the linear least square method and nonlinear optimization
method used to estimate the kinetic parameters is presented in the Supplementary Information (see Table
S1). The model’s ability to adequately analyze the adsorption kinetic data was evaluated by determining
the mean absolute adsorption error (MAAE), which is defined as

MAAE =
1
N

N∑
i=1

∣∣∣∣∣∣∣ (qt)
exp
i − (qt)

model
i

qexp
e

∣∣∣∣∣∣∣ × 100%. (7)

where qexp
e denotes the experimental equilibrium adsorption capacity, and (qt)

exp
i and (qt)

model
i denote

the values of the adsorption capacity at time t using the experimental and kinetic model, respectively.
In this work, the PSO model predictions were found to be in closer agreement with the experiments
than the PFO model. Figure 7 shows the measured and PSO model predictions of the adsorption
capacity of lead and cadmium ions by the bilayer with and without MO nanoparticles nanofibers
using the nonlinear optimization method. The mean errors and model parameters for each adsorbent
material are summarized in Table 1. It can be seen that the mean errors are very small (maximum error
~ 2.8%), and the calculated equilibrium adsorption capacities achieved from the PSO model are similar
to those achieved with experiments. Figure S2 shows the Linear fitting of the PFO and PSO models for
the adsorption of cadmium onto PAN–CS and PAN/MO–CS nanofiber mats.

Figure 7. Comparison of the predicted adsorption capacity of (a) lead and (b) cadmium ions obtained
by the PSO model against the corresponding experimental results for the bilayer PAN–CS and
PAN/MO–CS nanofibers.

Table 1. Kinetic parameters used by the PSO model to determine the adsorption of lead and cadmium
by the bilayer nanofibers. The mean errors between the model and the experiment are listed.

Adsorbents
Adsorption of Lead Adsorption of Cadmium

k2
(1/min)

qexp
e

(mg/g)
qmodel

e
(mg/g)

MAAE
%

k2
(1/min)

qexp
e

(mg/g)
qmodel

e
(mg/g)

MAAE
%

PAN–CS 0.0077 83.8 88.5 0.6 0.0078 110.5 114.0 2.5

PAN/TiO2–CS 0.0056 127.9 131.2 2.8 0.0136 160.1 159.2 0.7

PAN/ZnO–CS 0.0029 119.0 126.4 1.6 0.0067 133.3 137.4 2.3

3.2.3. Metal Ions Concentration Effect on Adsorption Properties

Figure 8 shows the initial ion concentrations effect on the adsorption of the metal ions using
the bilayer nanofiber mats. The study was carried out at room temperature for different lead and
cadmium initial concentrations ranging from 150 to 800 mg/L. The pH of the solutions was initially
adjusted to 7.0 for both metal ions. At equilibrium, the metal ions uptake amounts increased with
the increased concentrations of metal ions until a plateau was reached at 600 mg/L ion concentration.
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The adsorption capacities of the metal ions by PAN/TiO2–CS and PAN/ZnO–CS bilayers are very close
to each other but are higher than those of metal ions by PAN–CS bilayer by approximately 53% and
16%, respectively, at 600 mg/L initial ion concentrations. The values of the equilibrium adsorption
capacity (qe) of lead and cadmium by PAN/MO–CS were 390 and 461 mg/g, respectively, while those of
lead and cadmium ions by the bilayer without metal oxide nanoparticles were only 240 and 385 mg/g,
respectively. Once again, the current adsorption results are significantly higher than those obtained by
the single nanofiber layer of pure PAN or PAN/MO at each of the initial concentrations reported in
our previous work [9,25]. For example, at 600 mg/L initial ion concentrations, the adsorption of lead
and cadmium ions by the PAN/MO–CS bilayer increased by 320% and 640%, respectively, compared
to pure PAN, and by 102% and 405%, respectively, compared to the PAN/MO single nanofiber layer.
The possible mechanism of adsorption is discussed next.

Figure 8. Equilibrium adsorption of (a) lead and (b) cadmium ions at different initial concentrations
using the bilayer mats at room temperature.

3.2.4. Adsorption Isotherm

The adsorption isotherm study is useful for describing the equilibrium concentration Ce of heavy
metal ions in solution and the equilibrium adsorbed amounts qe at a given solution pH and temperature.
Figure 9 shows a plot of qe versus Ce for the lead and cadmium adsorption using the bilayer nanofiber
mats at room temperature. Here, the pH values were adjusted to 7.0, and the final pH values were
measured and found to be close (within ~10%) to the initial values. Clearly, PAN/MO–CS have a better
affinity than PAN–CS at all the tested equilibrium adsorbate concentrations.

Figure 9. Adsorption isotherms of (a) lead and (b) cadmium ions by the bilayer PAN–CS and
PAN/MO–CS nanofiber mats at room temperature.

In literature, different adsorption isotherm models have been applied, including the Henry,
Langmuir, Freundlich, Dubinin–Radushkevich, Temkin, Flory–Huggins, Hill, and Redlich–Peterson
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models. In our study, the equilibrium data were fitted by the most commonly used models, namely,
the Freundlich and Langmuir isotherms. The Langmuir model assumes monolayer surface sorption
with negligible interactions between the adjoining species and that all available sites for adsorption
are equivalent in terms of energy [48]. The Langmuir model can be expressed using the following
nonlinear or linear forms

qe =
qmax KL Ce

1 + KL Ce
, (8)

Ce

qe
=

1
qmax KL

+
1

qmax
Ce. (9)

The Freundlich model assumes non ideal adsorption on heterogeneous surfaces and is expressed
by either of the following nonlinear or linear forms [49]

qe = KF C
1
n
e , (10)

log(qe) = log(KF) +
1
n

log(Ce). (11)

where KL (L/mg) and KF ((mg/g)/(mg/L)n) are the Langmuir and Freundlich constants, respectively,
and n is the intensity exponent of Freundlich adsorption related to the heterogeneity of the adsorption.

The values of the model parameters (qmax, KL, KF, and n) are commonly extracted using a linear
regression based on the appropriate linear plot for each isotherm model. Figures 10 and 11 elucidate
the linear plots of Langmuir model as well as Freundlich model for the metal ion adsorption,
respectively, by all the fabricated bilayer adsorbates. Tables 2 and 3 list the regression values of
the model parameters. In the regression method, the best-fit model is selected based on the value
of the coefficient of determination, R2. Here, we also calculate the mean absolute adsorption error
MAAE% (see Equation (7)) to determine the fitting accuracy of the models. The model parameters
were also calculated using the nonlinear optimization method, as shown between the parentheses
in Tables 2 and 3. Based on the values of R2 and MAAE%, the present system follows the Langmuir
isotherm equation compared to the Freundlich isotherm. Note that the model parameters and errors
obtained from the linear regression and nonlinear optimization methods are very close for the Langmuir
model. However, the differences between the model parameters obtained by the linear regression and
nonlinear optimization methods for the Freundlich model are very large. The values of the errors
obtained from the nonlinear optimization method suggested that the Langmuir model equation better
described the measured adsorption equilibrium data. Hence, it is possible that the monolayer surface
adsorptive sites exhibit a homogeneous distribution. It should be admitted that more experimental
equilibrium data points in the complete isotherm may affect the quality of the fit and the corresponding
values of the model parameters [50].

Since the Langmuir model can describe the adsorption isotherm, the separation factor or equilibrium
parameter RL is calculated for different ranges of initial ion concentrations Co using the relation [51]

RL =
1

1 + KL Co
, (12)

The values of the calculated separation factor vary between 0.1 and 0.5, classifying the present
adsorption system as favorable (0 < RL < 1) [52]. Additionally, it is noticed that as the initial adsorbate
concentrations decreased, the values of RL increased. This shows that the lead and cadmium ions’
adsorption onto the bilayer nanofiber mats is more favorable at lower ion concentrations. This could
be due to the increased occupation of easily accessible external surface sorption sites of the nanofiber
mats. The subsequent slow adsorption phase could be due to the saturation of the adsorption sites.
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Figure 10. Isotherm models of (a) Langmuir and (b) Freundlich for lead ion adsorption using the
bilayer nanofibers.

Table 2. Parameters of Langmuir and Freundlich isotherms for the adsorption of lead by the bilayer
nanofiber mats. The values between the parentheses represent the results obtained by the nonlinear
optimization method.

Adsorbents
Langmuir Model Freundlich Model

qmax
(mg/g)

KL
(L/mg) R2 MAAE

% n KF
(mg/g)/(mg/L)n R2 MAAE

%

PAN–CS 234.45
(268.5)

0.0086
(0.008) 0.82 14.7

(15.4)
1.86

(2.92)
8.25

(25.2) 0.59 17.5
(103.4)

PAN/TiO2–CS 491.74
(502.9)

0.0079
(0.008) 0.90 7.4

(7.8)
1.63

(2.23)
11.82

(27.69) 0.85 11.7
(70.6)

PAN/ZnO–CS 662.56
(592.7)

0.0048
(0.007) 0.71 10.4

(10.5)
1.34

(1.99)
6.68

(22.7) 0.80 14.8
(124.4)

Figure 11. Isotherm models of (a) Langmuir and (b) Freundlich for cadmium ion adsorption using the
bilayer nanofibers.

Table 3. Parameters of Langmuir and Freundlich isotherms for the adsorption of cadmium by the
bilayer nanofiber mats. The values between the parentheses represent the results obtained by the
nonlinear optimization method.

Adsorbents
Langmuir Model Freundlich Model

qmax
(mg/g)

KL
(L/mg) R2 MAAE

% n KF
(mg/g)/ (mg/L)n R2 MAAE

%

PAN–CS 588.4
(530.3)

0.005
(0.008) 0.63 13.3

(13.6)
1.38

(2.23)
6.80

(28.4) 0.66 18.0
(154)

PAN/TiO2–CS 486.5
(529.3)

0.064
(0.06) 0.98 8.4

(8.9)
2.77

(3.98)
78.95

(125.2) 0.67 15.8
(29.7)

PAN/ZnO–CS 600.6
(588.7)

0.011
(0.014) 0.84 11.8

(12.2)
1.63

(49.7)
18.26
(2.48) 0.69 17.3

(46.1)
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In addition to the Langmuir and Freundlich isotherms, the Dubinin–Radushkevich equation [53]
was used to obtain insight about the adsorption process type (whether it is physical or chemical) by
evaluating the magnitude of the mean adsorption energy E (kJ/mol), which is defined as follows.

E =
1√

2 kDR
, (13)

where kDR (mol2/kJ2) is a constant related to the sorption energy obtained from the Dubinin–
Radushkevich equation

qe = qDR e−kDRε
2
, (14)

ε = R T ln
(
1 +

1
Ce

)
, (15)

where qDR (mg/g) is the adsorption capacity, ε is the Polanyi potential, R is the gas constant, and T
is the temperature in Kelvin. Some authors reported that the adsorption mechanism could be
controlled by a physical process (E < 8 kJ/mol), ion exchange (8 < E < 16 kJ/mol), or a chemical process
(E > 16 kJ/mol) [43,54,55]. In this study, the calculated value of E varies from 4.65 to 14.72 kJ/mol,
indicating a possible combination of a physical process and ion exchange adsorption. The fitting plots
and model parameters of the Dubinin–Radushkevich equation are described in the Supplementary
Information (see Figure S3 and Table S2). In summary, the enhancement in the physical adsorption
performance of the bilayer PAN/MO–CS nanofiber mats could be attributed to the enlarged surface
area of the composite nanofibers. Moreover, the addition of a CS nanofiber layer and MO nanoparticles
into the nanofibers improved the adsorption as the metal ions adsorb to the hydroxyl groups on the
surface of CS and the MO nanoparticles [28,56–58]. In our work, the NH2 groups and –OH of CS were
participated in the heavy metal ion adsorption via chelation. Metal oxide nanoparticles were involved
in the lead and cadmium adsorption process by the exchange reaction between the heavy metal ions
and protons [31].

3.3. Tensile Properties

For practical adsorption applications, the adsorbent materials should exhibit adequate mechanical
properties to withstand stresses under various loading conditions. In general, nanofiber adsorbents
have a reasonably good adsorption performance. However, their mechanical strength remains weak.
In our study, the objective was to improve the mechanical strength of the nanofiber adsorbents based
on PAN through the addition of an extra strong nanofiber layer of CS to the PAN or PAN/MO nanofiber
mats. The CS nanofiber mat was particularly selected because of its high mechanically stronger than
the PAN nanofiber mat. Figure 12 illustrates a typical stress–strain curves of our bilayer nanofiber
mats under uniaxial tension. The maximum tensile stress and elongation at break extracted from the
curves are listed in Table 4. For comparison, the tensile stress–strain curves of single layers of CS and
the PAN/MO nanofiber mats are also shown in Figure 12.

As shown in Figure 12, the electrospun CS single nanofiber layer tensile strength is much
higher than that of the electrospun PAN/MO single layer by approximately 160% (10.43 MPa for CS
vs. 3.73 for PAN/ZnO and 4.18 for PAN/TiO2). Thus, the addition of a CS nanofiber layer to the
PAN/MO nanofiber mat enhanced the maximum tensile strength of the bilayer PAN/MO–CS mats
by approximately 73.4% for PAN/TiO2–CS compared to PAN/TiO2 and by 65.7% for PAN/ZnO–CS
compared to PAN/ZnO. This increase is due to the strong physical interaction between the nanofibers
of these two layers (see Figure 1d), which facilitates stress transfer at the interface and enhances
the rigidity of the membranes. However, the incorporation of metal oxides (ZnO and TiO2) slightly
decreased the tensile strength of the bilayer mats by approximately 8.3% for PAN/TiO2–CS compared
to PAN–CS and by 21.8% for PAN/ZnO–CS compared to PAN–CS. This decrease could be due to the
metal oxide nanoparticles’ agglomeration within the structure of nanofibers (see Figure 1c), which in
turn hindered the amount of ions transferred between the nanoparticles and the polymer due to
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the weak interface interaction and may have also served as the stress concentration sites [24,59].
Moreover, the agglomeration of metal oxide nanoparticles may also disrupt the PAN polymeric chains,
reducing the rigidity of the nanofibers. The mechanical response of the nanofiber membrane is strongly
dependent on the intrinsic physical properties of the individual constituent fiber and the morphology of
the membrane microstructure (e.g., distributions of the fiber diameter, fiber orientation, and porosity).
Without exploring the effect of the various microstructural morphology on the mechanical response,
the current mechanical results just offer present useful information about the expected enhancement in
the tensile mechanical properties after the addition of a CS layer to the PAN/MO nanofiber mats.

Figure 12. Bilayer nanofiber mats tensile stress–strain curves. For comparison, the stress–strain curves
of single layers of CS and the PAN/MO nanofiber mats are also shown by the dotted and dashed
lines, respectively.

Table 4. Maximum tensile stress values and elongation at break for different mats

Nanofiber Mat Maximum Tensile Strength
(MPa) Elongation at Break

CS 11.72 ± 0.96 0.11 ± 0.09
PAN–CS 7.91 ± 0.74 0.55 ± 0.06

PAN/TiO2 4.18 ± 0.53 0.92 ± 0.07
PAN/TiO2–CS 7.25 ± 0.65 0.52 ± 0.05

PAN/ZnO 3.73 ± 0.35 0.54 ± 0.05
PAN/ZnO–CS 6.18 ± 0.71 0.43 ± 0.03

4. Conclusions

In this paper, we produced bilayer nanofiber adsorbents with significantly enhanced adsorption
and mechanical properties via the subsequent electrospinning of the PAN/MO (PAN/ZnO or PAN/TiO2)
and CS nanofiber mats. The SEM cross-section images at the interface between PAN/MO and CS
showed a good interaction between the nanofibers of the two electrospun polymers. The metal ion
adsorption onto the bilayers incorporating metal oxide nanoparticles was studied systematically and
accounted for the effects of the solution pH, initial ion concentrations, and contact time. The maximum
equilibrium adsorption capacities of lead and cadmium by bilayer with metal oxide nanoparticles were
around 102% and 405% higher than those obtained by the PAN/MO single layer, respectively (389 vs.
193 mg/g for Pb(II) and 461 vs. 91 mg/g for Cd(II)). Moreover, the incorporation of MO nanoparticles
into PAN enhanced the lead and cadmium ions adsorption onto PAN/MO–CS by 63% and 20%,
respectively, compared to the bilayer PAN–CS nanofibers. Furthermore, the nonlinear optimization
method showed that the pseudo-second-order kinetic model and Langmuir isotherm equation can
better describe the adsorption results. The improvement of the adsorption performance was mainly
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due to physical processes and the possible increase in the surface area of the composite nanofibers.
In terms mechanical behavior, the addition of the supportive CS layer improved the tensile strength
of the PAN/MO–CS nanofiber mats by approximately 68% compared to the PAN/MO single layer,
while the incorporation of MO nanoparticles slightly decreased the tensile strength of the bilayer mats
by approximately 8.3% for TiO2 and 21.8% for ZnO. In brief, the excellent adsorption and mechanical
properties obtained in this study clearly demonstrate the potential applications of the synthetic bilayer
PAN/MO–CS nanofibers in the adsorption of heavy metal ions from wastewaters.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/3/285/s1,
Figure S1: Point of zero charge (pHpzc) of the bilayer PAN/MO–CS nanofiber mat; Figure S2: Linear fitting
of the PFO and PSO models for the adsorption of cadmium onto PAN–CS and PAN/MO–CS nanofiber mats;
Figure S3: Fitting of the Dubinin–Radushkevich model for the adsorption of lead and cadmium onto PAN–CS
and PAN/MO–CS nanofiber mats; Table S1: Comparison of kinetics parameters of the PSO model for the
adsorption of cadmium obtained by linear fitting and nonlinear optimization methods; Table S2: Parameters of
the Dubinin–Radushkevich equation and the mean adsorption energy E for the adsorption of lead and cadmium
by PAN–CS and PAN/MO–CS nanofibers.
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