Supplementary Materials: Mutated Human P-Selectin Glycoprotein Ligand-1 and Viral Protein-1 of Enterovirus 71 Interactions on Au Nanoplasmonic Substrate for Specific Recognition by Surface-Enhanced Raman Spectroscopy

Kundan Sivashanmugan ^{1,2}, Han Lee ¹, Jiunn-Der Liao ^{1,3,*}, Chen-Chu Wang ⁴, Chen-Hsueh Lin ¹, Yuh-Shyong Yang ⁴ and Jaya Sitjar ¹

- ¹ Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan; sivashanmugannst87@gmail.com (K.S.); rick594007@hotmail.com (H.L.); az436436@gmail.com (C.-H.L.); jaya.sitjar@gmail.com (J.S.)
- ² School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
- ³ Medical Device Innovation Center, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
- ⁴ Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; rick594007@yahoo.com.tw (C.-C.W.); ysyang@faculty.nctu.edu.tw (Y.-S.Y.)
- * Correspondence: jdliao@mail.ncku.edu.tw; Tel.: +886-6-2757575 (ext. 62971); Fax: +886-6-2346290

1. Experimental Section

Figure S1. Schematic illustration of fabrication of Au nanoporous substrate.

2. Characterization of Au Nanoporous Substrate

Figure S2. HR-FETEM image of optimized Au nanoporous substrate and EDS mappings of areas marked in HR-FETEM image.

Sample -	Nanopore S	Size (±2 nm)	Contact Angle (°)		
	0.3 (Å/s)	1 (Å/s)	0.3 (Å/s)	1 (Å/s)	
Alloy	-	-	80.23	80.23	
Aup_30s	39	22	98.12	97.58	
Aup_60s	46.5	41.3	76.08	75.88	
Aup_90s	50	44.7	76.00	75.13	
Aup_120s	60.7	50.7	75.61	74.65	
Aup_150s	66.6	57	75.43	74.41	
Aup-180s	73.7	61.8	75.27	74.19	
Aup_210s	85.8	66.3	75.15	74.5	

Table S1. Nanopore size and contact angle of as-fabricated Au nanoporous substrates.

3. Optical Properties of Au Nanoporous Substrate

The COMSOL calculated Au nanoporous cavity width and length were 60 and 90 nm, respectively, with and without roughness of surface. Figure S(3c) shows the simulation results of the SPR shift and local field distributions on the Au nanoporous cavity surface. The strong SPR peaks obtained at 605 nm calculated for the nanoporous substrate are due to high plasmonic coupling generated in the porous cavity environment. In addition, the EF increased with increasing roughness of porous cavities.

Figure S3. SPR spectra of as-fabricated Au nanoporous substrate created at deposition rates of (**a**) 0.3 Å/s and (**b**) 1 Å/s with optimized dealloying times (120 and 150 s, respectively). (**c**) COMSOL calculation of smooth and roughed Au nanocavity.

4. SERS Characterization of PPIs on Au Nanoporous Substrate

3APTES	3APTES + Glu	GST-PSGL-1	S-GST-PSGL-1	Raman Assignment
629, 677	670	671	647	υ(C–C), υ(C–S), amino acid (tyrosine)
751	784	778, 742	694, 753	u(C–S)
813	-	-	805	(C–O–C) weak
-	-	827	851	NH2, CH2 wag
861	878	-	873, 888	QCH₂, δCH₃
948	903	974	950	CH ₂ , Carboxylic acid
	-	-	984	SO_4^{2-}
1007	1005	-	-	Si–O–Si, Si–O–C
	_	-	1030	-SO3
	1046	1035		C ₄ N ⁺ stretching
	_	_	1077	C–C in-plane bending, –SO3
1101	1113, 1162	1132, 1172	1121, 1150	U(C=S), (C–C) stretching, CH ₃ , CH ₂
	,	,	,	twisting, –SO ₃
1188	-	-	1192	-SO3
1240	1206	1222	1237	C–C stretching, CO in ring stretching CH of ring, Amide III
1288	_	1261	_	C–C stretching, C–N
		1001		Stretching, S=O
1312	-	1304	-	δ(CH ₂) twisting or wagging of protein
1336	1326	1348	1325, 1345	Nitro, Amide III, and CH2 wagging vibrations from glycine backbone
1379	_	_	1380	C–CH3, δCH3 symmetric (lipid
1577			1500	assignment)
1486	1438	1419, 1449,	1409 1451 1477	CH ₂ /CH ₃ deformation of lipids and
1100	1100	1498	1107, 1101, 1177	proteins
1534	1501, 1528	_	1530, 1548, 1572	C–N, Nitro, Amide
	_	1584	1589	C=C aromatic
1601	1593, 1657	1619	1627	O–C=O stretching

 Table S2. Raman assignment for protein immobilized on Au nanoporous substrate [1–12].

Table S3. Raman assignment for protein mutants on Au nanoporous substrate [1–12].

M0	M1	M2	M3	M4	M5	M6	M7	Raman Assignment
647, 693, 752	674	729	_	622, 794	778	637, 677, 771	621, 689, 728	υ(C–C), υ(C– S), amino acid
824	812	_	_	_	_	_	_	NH2, CH2 wag
870	_	-	_	_	886	_	891	QCH2, δCH3
950	_	-	_	_	_	949	914	CH2, carboxylic acid
986	-	982	_	_	_	_	_	SO4 ²⁻
_	1004	1002	999	998	999	998	1001	Phenylalanine
1030	-	_	_	_	_	_	_	–SO3
1084	_	-	_	_	_	1067	1082	C4N+ stretching, – SO3
1122, 1151, 1194		1148	1148		1118, 1148	1124	1103, 1166	-SO3
1239	1216	1270	_	1261	1278	_	1261	S=O
_	_	-	_	-	_	-	1302	δ(CH2) twisting or

S4	of	S1	0

								wagging of protein	
								Nitro, amide	
							100(III, and CH ₂	
1323	-	-	-	-	1328	-	1326,	wagging	
							1347	vibrations	
								from glycine	
								backbone	
								С–СН3, бСН3	
-	1361	1387	1390	1385	1397	1388	-	symmetric	
								(lipid	
								assignment)	
								CH ₂ /CH ₃	
1412,	1450	_	-	-	1452, 1496	1475	1410,	deformation	
1449	1452						1499	of lipids and	
								proteins	
1532, 1548,	1531,	1570		1515	1526 1554	1510,	1550	C–N, nitro,	
1574	1576	1570	-	1515	1536, 1554	1543, 1570	1552	amide	
_	-	-		1585	-	_	-	C=C aromatic	
1501 1/0/	1(20	1622,	1595,	1(0)	1(02 1(22	1502 1(21	1744	O-C=O	
1591, 1626	1638	1638 1649	1649	1622	1626	1602, 1632	1392, 1631	1044	stretching

Samples are denoted as M0 (46, 48, 51), M1 (46F), M2 (48F), M3 (51F), M4 (46F, 48F), M5 (46F, 51F), M6 (48F, 51F), and M7 (46F, 48F, 51F).

Table S4. Raman assignment for protein-antibody interaction on Au nanoporous substrate [1–13].

Anti-Sulfotyrosine	S-GST-PSGL-1	Raman Assignment			
649, 789	659, 743, 799	U(C–S)			
888	840, 878	QCH2, δCH3, NH2			
_	901	CH ₂ , carboxylic acid			
989	978	SO_42^-			
1025	_	-SO3			
1057	1057	C ₄ N ⁺ stretching			
1112,1135	1115,1194	-SO3			
1248, 1285	1223, 1282	-SO3, S=O			
1000 1000	1228 1206	Nitro, amide III, CH2 wagging, δCH3			
1555, 1577	1556, 1596	symmetric (lipid assignment)			
1401, 1452,1483	1449	CH ₂ /CH ₃ deformation of lipids and proteins			
1534	1531, 1556	C–N, nitro, amide			
	1597	C=C aromatic			
1642, 1684	1701,1764,1801	H–C=O, O–C=O stretching			

Figure S4. Relationship of relative Raman intensities for various mutants and antibody-sulfotyrosine interactions on Au nanoporous substrate determined using *I*_{SERS} peak regions at 990–1010 and 1601–1636 cm⁻¹.

Figure S5. VP1 of EV71 on Au nanoporous substrate examined at Raman laser wavelength of 633 nm.

Fable 5. Raman assignmen	for PPIs on Au nano	porous substrate [3–13]
--------------------------	---------------------	-------------------------

V 0	V1	V2	V3	V4	V 5	V6	V7	Raman Assignment
(5)	665	675	629,	648, 681,	650	645,	709	v(C–C), v(C–S), amino
652	663	675	757	793	639	676	708	acid
_	813	826	822	_	_	838	_	NH2, CH2 wag
_	_	886	886	870	_	858	882	QCH2, δ CH3
_	_	948		931	954	_		CH2, carboxylic acid
_	_	_	983	_	_	_	978	SO4 ²⁻
1014	_	993	-	_	_	_		Phenylalanine
	_	1028	_	1036	_	_	1028	–SO3, phenylalanine
1099	_	1070	_	1087	_	1078	_	C ₄ N ⁺ stretching, –SO ₃

S6 of S1 0

_	1121	1114 <i>,</i> 1154	1168	1105, 1139, 1183	_	1158, 1174	1131	–SO3
1237	1262	1215, 1240, 1288,	1239	1219	_	1254	1248	S=O
_	_	_	1316	_	_	1329	_	Nitro, amide III, and CH2 wagging vibrations from glycine backbone
1361	_	1349	_	1353 <i>,</i> 1391	1350	_	1370	C–CH3, δCH3 symmetric (lipid assignment)
1407, 1489	_	1425 <i>,</i> 1495	1402	1451	_	1420, 1454, 1495	1474	CH2/CH3 deformation of lipids and proteins (tyrosine)
1531, 1555	1520, 1535	1562	1532	1543	1550, 1567	1523, 1550, 1579	1531, 1574	C–N, nitro, amide
1592	_	_	1580,	1589	_	_	_	C=C aromatic
1600, 1618	1600	1601, 1621	1601, 1628	1600, 1614, 1643	1600, 1633	1602, 1644	1600, 1618	O–C=O stretching

Samples are denoted as V0 (46, 48, 51), V1 (46F), V2 (48F), V3 (51F), V4 (46F, 48F), V5 (46F, 51F), V6 (48F, 51F), and V7 (46F, 48F, 51F).

References

- 1. Fischer, W.B.; Eysel, H.H. Polarized Raman spectra and intensities of aromatic amino acids phenylalanine, tyrosine and tryptophan. *Spectrochim. Acta A: Mol. Spectrosc.* **1992**, *48*, 725–732.
- Ashton, L.; Brewster, V.L.; Correa, E.; Goodacre, R. Detection of glycosylation and iron-binding protein modifications using Raman spectroscopy. *Analyst* 2017, 142, 808–814.
- 3. Li, Y.T.; Li, D.W.; Cao, Y.; Long, Y.T. Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. *Biosens. Bioelectron.* **2015**, *69*, 1–7.
- 4. Ravikumar, B.; Rajaram, R.K.; Ramakrishnan, V. Raman and IR spectral studies of L-phenylalanine L-phenylalaninium dihydrogenphosphate and DL-phenylalaninium dihydrogenphosphate. *J. Raman Spectrosc.* **2006**, *37*, 597–605.
- 5. Singho, N.D.; Johan, M.R. Complex impedance spectroscopy study of silica nanoparticles via sol-gel method. *Int. J. Spectrosc.* **2012**, *2012*, 7.
- 6. Brewster, V.L.; Ashton, L.; Goodacre, R. Monitoring the glycosylation status of proteins using Raman spectroscopy. *Anal. Chem.* **2011**, *83*, 6074–6081.
- Davies, H.S.; Singh, P.; Deckert-Gaudig, T.; Deckert, V.; Rousseau, K.; Ridley, C.E.; Dowd, S.E.; Doig, A.J.; Pudney, P.D.A.; Thornton, D.J.; et al. Secondary structure and glycosylation of mucus glycoproteins by Raman spectroscopies. *Anal. Chem.* 2016, *88*, 11609–11615.
- 8. Madzharova, F.; Heiner, Z.; Kneipp, J. Surface enhanced hyper-Raman scattering of the amino acids tryptophan, Histidine, Phenylalanine, and Tyrosine. *J. Phys. Chem. C* **2017**, *121*, 1235–1242.
- 9. Arp, Z.; Autrey, D.; Laane, J.; Overman, S.A.; Thomas, G.J. Tyrosine Raman signatures of the filamentous virus Ff are diagnostic of non-hydrogen-bonded phenoxyls: demonstration by Raman and infrared spectroscopy of p-cresol vapor. *Biochemistry* **2001**, *40*, 2522–2529.
- 10. Hernández, B.; Pflüger, F.; Kruglik, S.G.; Ghomi, M. Characteristic Raman lines of phenylalanine analyzed by a multiconformational approach. *J. Raman Spectrosc.* **2013**, *44*, 827–833.
- 11. Li, X.; Martin, S.J.H.; Chinoy, Z.S.; Liu, L.; Rittgers, B.; Dluhy, R.A.; Boons, G.-J. Fast production of selfassembled hierarchical α-Fe₂O₃ nanoarchitectures. *Chem.A Eur. J.* **2016**, *22*, 11180–11185.

- 12. Lu, X.; Liu, Q.; Benavides-Montano, J.A.; Nicola, A.V.; Aston, D.E.; Rasco, B.A.; Aguilar, H.C. Detection of receptor-induced glycoprotein conformational changes on enveloped virions by using confocal micro-Raman spectroscopy. *J. Virol.* **2013**, *87*, 3130–3142.
- 13. Sivashanmugan, K.; Liu, P.-C.; Tsai, K.-W.; Chou, Y.-N.; Lin, C.-H.; Chang Y.; Wen, T.-C. An anti-fouling nanoplasmonic SERS substrate for trapping and releasing a cationic fluorescent tag from human blood solution. *Nanoscale* **2017**, *9*, 2865–2874.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).