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Abstract: Photovoltaic characteristics of solar cell devices in which ethylammonium (EA) and
formamidinium (FA) were added to CH3NH3PbI3 perovskite photoactive layers were investigated.
The thin films for the devices were deposited by an ordinary spin-coating technique in ambient
air, and the X-ray diffraction analysis revealed changes of the lattice constants, crystallite sizes and
crystal orientations. By adding FA and EA, surface defects of the perovskite layer decreased, and the
photoelectric parameters were improved. In addition, the highly (100) crystal orientations and device
stabilities were improved by the EA and FA addition.
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1. Introduction

Organic-inorganic perovskite solar cells provide photoelectric conversion in wide wavelength
ranges and exhibit excellent photovoltaic properties [1–6]. Since the film of CH3NH3PbI3 (MAPbI3)
can be formed by a spin-coating method, there is an advantage that the production process is easy
and low cost. In spite of these merits, there is a serious problem that the stability is extremely low.
In order to solve this problem, research and development of devices with higher power conversion
efficiency and stability using formamidinium (FA) [7–13], guanidinium [14,15] or alkali metal [16–21]
doped perovskites for the methylammonium (MA) site have been conducted.

There also exists research and development of devices with ethylammonium (EA) added to
perovskites [22–26]. EA has a larger ionic radius (2.74 Å) than that of MA (2.17 Å), and the addition
of EA can be expected to improve stability from the viewpoint of calculations [25,27] and tolerance
factor [1]. In addition, there is a report that the thermal stability and crystallinity are higher than those
of MA, and the addition of EA to the perovskites showed a surface coating with fewer defects and
improves the stability of the device [23,28]. However, it should be noted that excessive addition of EA
leads to phase separation, a decrease in crystallinity, and precipitation of PbI2 as an impurity [29,30].

The purpose of this study is to examine the microstructures and photovoltaic characteristics of FA
and EA co-added CH3NH3PbI3 perovskite solar cells. The stability of a MAPbI3 perovskite structure
might be predicted by calculating the tolerance factor (t-factor) [31–35], which is given by t = rMA+rI√

2(rPb+rI)
,

where r is an ionic radius [36]. When the t-factor is in the range of 0.81–1.1, perovskite structures could
be formed [35]. If the t-factor is adjusted to 1.0, perovskite structures with cubic symmetry could be
realized. The ionic radii of MA+, FA+, EA+, Pb2+, I−, Br−, and Cl− are 2.17, 2.53, 2.74, 1.19, 2.20, 1.96,
and 1.81 Å, respectively [35,36]. By adding FA+ and EA+ with larger ionic radii than MA+, t-factor
gets closer to 1, and the stability is expected to be improved. In addition, EA addition is expected to
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promote the crystal growth and improve the stability of the device [23,28], and there are few reports on
simultaneous addition of FA and EA to the perovskite layer. The effects of the simultaneous addition
to the perovskite compounds were analyzed by microstructural and photovoltaic characterization.

2. Materials and Methods

A cross-section and deposition process of the present perovskite solar cells is summarized and
shown in Figure 1. A fluorine-doped tin oxide (FTO, Nippon Sheet Glass Company, Ltd., Tokyo, Japan)
substrate was dipped and washed in an ultrasonic washing machine using acetone twice and methanol
once, and cleaned with flowing N2. The 0.15 and 0.30 M precursor solutions of TiO2 were prepared
from 0.055 and 0.11 mL titanium disopropoxide bis (acetyl acetonate) (Sigma Aldrich, Tokyo, Japan)
and 1-btanol (1.0 mL, Nacalai Tesque, Kyoto, Japan). The solutions were cast on the transparent FTO,
and spin-coated at 3000 rpm for 30 s and heat-treated at 125 ◦C for 5 min [37–39]. The processes with
0.30 M precursor solutions were repeated twice. In order to form a dense electron transport TiO2, the
deposited samples were annealed at 550 ◦C for 30 min. The mesoporous TiO2 layer was deposited
with TiO2 nanoparticles (P-25, Aerosil, Tokyo, Japan) and polyethylene glycol (Nacalai Tesque, Kyoto,
Japan) in ultrapure water. The solution was blended with acethylacetone (20 µL, Fujifilm Wako Pure
Chemical Corporation, Osaka, Japan) and triton-X-1001 (10 µL, Sigma Aldrich, Tokyo, Japan) for
30 min, and allowed to stand for 24 h to remove bubbles from the mixed solution. The prepared
TiO2 mixed solution was spin-coated at 5000 rpm for 30 s and annealed at 550 ◦C for 30 min, and a
mesoporous TiO2 layer was formed.
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Figure 1. Cross-section of the cell and process conditions.

The perovskite precursor solutions were prepared as mixed solutions of methylamine hydroiodide
CH3NH3I (MAI, 2.4 M, Tokyo Chemical Industry, Tokyo, Japan) and PbCl2 (0.8 M, Sigma Aldrich,
Tokyo, Japan) in N,N-dimethylformamide (DMF) (0.5 mL, Sigma Aldrich, Tokyo, Japan) at 60 ◦C for 24 h.
This is used as a standard cell, and the amount of MAI was reduced by adding formamidine hydroiodide
CH(NH2)2I (FAI, Tokyo Chemical Industry, Tokyo, Japan), ethylamine hydrobromide CH3CH2NH3Br
(EABr, Tokyo Chemical Industry, Tokyo, Japan), and ethylamine hydrochloride CH3CH2NH3Cl (EACl,
Tokyo Chemical Industry, Tokyo, Japan). Detailed compositions of the perovskite compounds are
listed in Table 1, together with the t-factors. The perovskite precursor solutions were spin-coated at
2000 rpm for 60 s and applied an air-blowing method during spin-coating [40,41]. The device was
annealed at 150 ◦C for 20 min in the ambient air.

The hole-transport layer was deposited by spin-coating. A chlorobenzene solution (0.5 mL) of
2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD, Fujifilm Wako
Pure Chemical, Corporation, Osaka, Japan, 36.1 mg) was prepared by mixing it for 12 h. An acetonitrile
solution (0.5 mL) of lithium bis (trifluoromethylsulfonyl) imide (Li-TFSI, Tokyo Chemical Industry,
Tokyo, Japan) was also prepared by mixing it for 12 h. A mixture solution of the spiro-OMeTAD
solution with 4-tertbutylpridine (14.4 µL, Sigma Aldrich, Tokyo, Japan) and Li-TFSI solution (8.8 µL)
was prepared by mixing it at 70 ◦C for 30 min. The spiro-OMeTAD layer was deposited by spin-coating
at 4000 rpm for 30 s. After that, gold (Au) thin film electrodes were deposited as electrodes by vacuum
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evaporation. As investigated in the previous works [42–44], layer thicknesses of the compact TiO2,
mesoporous TiO2 + perovskite, spiro-OMeTAD, and Au layers were roughly estimated to be 40, 600,
50, and 200 nm, respectively.

Table 1. Compositions and calculated t-factors of the present perovskite compounds.

Composition of Perovskite EABr (%) FAI (%) t-Factor

MAPbI3 0 0 0.912
MA0.9FA0.1PbI3 0 10 0.919
MA0.8FA0.2PbI3 0 20 0.927
MA0.5FA0.5PbI3 0 50 0.949

MA0.8FA0.1EA0.1PbI2.7Br0.3 10 10 0.933
MA0.75FA0.2EA0.05PbI2.85Br0.15 5 20 0.933

MA0.7FA0.2EA0.1PbI2.7Br0.3 10 20 0.940
MA0.6FA0.2EA0.2PbI2.4Br0.6 20 20 0.954

MA0.75FA0.2EA0.05PbI2.85Cl0.15 5 20 0.934
MA0.7FA0.2EA0.1PbI2.7Cl0.3 10 20 0.941

The light-induced current density voltage (J–V) curves of the fabricated devices were obtained by
using air mass 1.5 illuminator (San-ei Electric XES-301S, 100 mW·cm−2) and a current-voltage apparatus
(B2901A, Keysight, Santa Rosa, CA, USA). In addition, the external quantum efficiencies of the devices
were obtained (QE-R, Enli Technology, Kaohsiung, Taiwan). Optical microscopy (Eclipse E600, Nikon,
Tokyo, Japan) and X-ray diffraction (D2 PHASER, Bruker, Billerica, MA, USA) measurements were
performed to analyze the surface morphologies and nanoscopic structures.

3. Results and Discussion

J–V curves collected in the light condition for the fabricated perovskite solar cells are displayed in
Figure 2. Table 2 shows summarized parameters of the fabricated solar cells. A conversion efficiency
(η) of the standard cell is 6.72%. The JSC, VOC and η were improved from 19.2 mA·cm−2, 0.687 V and
6.72% to 21.5 mA·cm−2, 0.922 V and 14.25% by addition of FA 20% at the MA site. When EA 10% and
FA 10% were added simultaneously, the JSC, VOC and η increased 19.9 mA cm−2, 0.946 V and 12.43%.
Addition of EACl was also effective for the improvement of the device properties. Further addition of
EA and FA would decrease the device performance.
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Figure 2. J–V characteristics collected in light condition for the fabricated solar cells.
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Table 2. Measured parameters of the cells fabricated in this study. JSC: short-circuit current density.
VOC: open-circuit voltage. FF: fill factor. RS: series resistance. RSh: shunt resistance. η: conversion
efficiency. ηave: averaged efficiency of three cells.

Device JSC
(mA·cm−2)

VOC
(V) FF RS

(Ω·cm2)
RSh

(Ω·cm2)
η

(%)
ηave
(%)

Standard 19.2 0.687 0.509 8.8 337 6.72 6.35
+FAI 10% 21.8 0.816 0.574 6.2 1663 10.24 8.04
+FAI 20% 21.5 0.922 0.719 3.4 4839 14.25 13.66
+FAI 50% 15.7 0.926 0.712 4.7 13,545 10.36 10.31

EABr 10% + FAI 10% 19.9 0.946 0.660 6.1 4667 12.43 12.23
EABr 5% + FAI 20% 21.0 0.834 0.648 5.6 4952 11.33 10.63

EABr 10% + FAI 20% 19.3 0.789 0.572 5.7 1015 8.47 8.70
EABr 20% + FAI 20% 18.1 0.851 0.562 4.8 2340 8.68 8.27
EACl 5% + FAI 20% 20.4 0.879 0.618 6.4 1879 11.06 10.63

EACl 10% + FAI 20% 20.2 0.933 0.647 5.2 66,637 12.21 11.64

Figure 3 is the J–V curves of the fabricated photovoltaic cells after 4 weeks in ambient air, and the
estimated parameters are shown in Table 3. The conversion efficiency of the standard cell was lowered
to 5.69%. Co-addition of small amount of EA and FA to MAPbI3 provided higher stability compared
with the standard cells, as shown in Figure 4.
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Figure 3. J–V characteristics collected in light condition for the fabricated solar cells after 4 weeks in
ambient air without encapsulation.

Table 3. Measured photovoltaic parameters of the fabricated cells after 4 weeks.

Device JSC
(mA·cm−2)

VOC
(V) FF RS

(Ω·cm2)
RSh

(Ω·cm2)
η

(%)
ηave
(%)

Standard 19.0 0.633 0.474 8.9 212 5.69 5.25
+FAI 10% 17.3 0.925 0.615 8.7 5123 9.85 9.30
+FAI 20% 20.7 0.961 0.675 4.6 2455 13.43 13.30
+FAI 50% 14.8 0.964 0.684 6.0 75,968 9.74 8.99

EABr 10% + FAI 10% 17.3 0.925 0.615 8.7 5123 9.85 9.30
EABr 5% + FAI 20% 18.6 0.919 0.699 5.2 19,971 11.93 11.41

EABr 10% + FAI 20% 18.2 0.819 0.564 7.6 1129 8.39 6.86
EABr 20% + FAI 20% 18.2 0.870 0.585 6.6 946 9.26 8.77
EACl 5% + FAI 20% 17.3 0.900 0.682 5.1 4097 10.62 9.98

EACl 10% + FAI 20% 17.0 0.932 0.664 5.8 5407 10.54 9.49
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Optical microscopy images of the perovskites through spiro-OMeTAD are shown Figure 5.
By adding EA and FA, surface defects of the perovskite layer decreased. Obtaining a perovskite layer
with few defects enables efficient charge separation and charge extraction, which is thought to have
led to improved device performance. In addition, defects in the perovskite layer are a cause of charge
recombination, and it is considered that suppression of the defect has led to improvement in stability.
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Figure 5. Optical microscopy images of cells with the compositions of (a) FAI 20%, (b) EABr 5% + FAI
20%, (c) EABr 10% + FAI 20%, and (d) EABr 20% + FAI 20%.

External quantum efficiency (EQE) spectra of the fabricated photovoltaic cells are shown in
Figure 6. The band gap energies (Eg) were estimated from EQE spectra around 800 nm by linear fitting
using band gap calculator software (Enli Technology, QE-R), and the measured band gap energies
of the perovskite compounds increased from 1.54 to 1.57 eV by adding EA. The Eg value of the 20%
EABr-added perovskite crystals was wider than that of the 20%FAI-added perovskite. The EQE values
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of the EABr-added device was lower between 350 and 750 nm than that of the FAI-added device, which
led to a decrease of the JSC values.
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Figure 6. External quantum efficiency spectra of the fabricated solar cells.

X-ray diffraction (XRD) patterns of the fabricated cells added with EABr and FAI are shown in
Figure 7a. Increases of (100) and (200) diffraction reflections are observed by adding FAI or EABr.
In addition, only (100) and (200) peaks are observed, which indicates that the cells exhibited highly
oriented (100) perovskite crystals by the air-blowing method [40].Coatings 2020, 10, x FOR PEER REVIEW 7 of 11 
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Microstructural parameters of the present perovskite compounds are listed in Table 4. The lattice
constants of the FAI-added perovskites were higher compared with the standard MAPbI3 material,
whereas those of the EABr and FAI co-added perovskite decreased. Crystallite sizes were estimated
from the (200) reflections, and they increased by the addition of FAI and EABr. The I100/I210 intensity
ratios of (100) reflections (I100) to (210) reflections (I210) were measured from the XRD data in Figure 7a,b,
and the results are shown in Table 4. If the CH3NH3PbI3 cubic perovskite particles are randomly
oriented, then the I100/I210 value should be 2.08 [35]. For the standard cell prepared in the present
study, the I100/I210 is 48, which means the (100) crystal surfaces of the cubic structures are strongly
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aligned in the solar cell. By the addition of FAI to the perovskite compounds, I100/I210 was increased
to 1694, and the I100/I210 increased further to 1939 by adding EABr. This is 40 times higher than the
I100/I210 of the standard perovskite device.

Table 4. Microstructural parameters for the perovskite crystals. Preferred crystal orientations were
indicated with ratios of 100 diffraction intensities (I100) to 210 diffraction intensities (I210).

Perovskites Lattice Constant
a (Å)

Crystallite Size
D200 (Å)

Orientation
I100/I210

Standard 6.274(1) 479 48
+FAI 20% 6.286(1) 647 1694

EABr 5% + FAI 20% 6.281(0) 528 460
EABr 10% + FAI 20% 6.283(1) 1506 1155
EABr 20% + FAI 20% 6.280(2) 830 1939

A schematic model showing molecular structures (MA, FA, and EA) and the lattice structure
of the FAI and EABr added perovskites is shown in Figure 8a,b, respectively. The lattice constant
a of 6.315 Å for a perovskite single crystal [35,45] is greater compared with the a of the perovskite
compound in a cell configuration [46,47]. If the perovskite particles were synthesized and deposited on
the mesoporous TiO2 layer, some of the CH3NH2 molecules might be desorbed. Then, MA vacancies
could be formed, and the lattice constant (6.274 Å) of MAPbI3 is smaller than that of single crystal, as
listed in Table 4. When FAI was added to the standard MAPbI3, the FA would occupy the defects and
MA sites, and the lattice constant increased to 6.286 Å, as shown in Figure 8b and Table 4. As the size
of Br− is fairly small compare with that of I−, a values of the EABr-added crystals decreased to 6.280 Å
compared with FAI-added perovskite crystals, as indicated by arrows in Figure 8b. Combination of the
present EA/FA with other molecules [15,48] and alkali metals [21,49] might also be effective for the
stabilization of the perovskite compounds.
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4. Conclusions

Solar cells using perovskite in the photoactive layer were produced by using spin-coating technique
in ordinary air, and the influence on photovoltaic characteristics by adding EA and FA to the perovskite
phase was investigated. From the results of J–V characteristics, the addition of EA and FA improved
VOC and FF, leading to an improvement in photoelectric conversion efficiency. Devices with EA and
FA added maintained photoelectric conversion efficiencies even after 4 weeks compared to that of
the standard device. Optical microscope results showed surface improvement, and X-ray diffraction
results showed FA and EA substitution at MA position of the perovskite. By substituting FA and
EA, which have larger ionic radii than MA, the perovskite structures would have more stable cubic
structures with higher stability.
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