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Abstract: Layered piezo-composite unimorph actuators have been studied by many research teams
to provide active vibration control of thin-walled aerospace structures, control the shapes of aircraft
wing airfoils, and control the fins of small missiles, because they require less space and provide better
frequency responses than conventional electro-magnetic motor actuator systems. However, due to the
limited actuation strains of conventional piezo-composite unimorph actuators with poly-crystalline
piezoelectric ceramic layers, they have not been implemented effectively as actuators for small
aerospace vehicles. In this study, a lightweight piezo-composite unimorph actuator (LIPCA-S2) was
manufactured and analyzed to predict its flexural actuation displacement. It was found that the
actuated tip displacement of a piezo-composite cantilever could be predicted accurately using the
proposed prediction model based on the nonlinear properties of the piezoelectric strain coefficient
and elastic modulus of a piezoelectric single crystal.

Keywords: piezoelectric ceramic; piezo-composite actuator; unimorph; piezoelectric single
crystal; LIPCA

1. Introduction

Over the past two decades, research on piezo-composite actuators has been actively
performed as a response to strong demands for light, compact actuators to replace conventional
electro-magnetic motor actuators in micro robots, small flying drones, and compact missile systems.
Layered piezo-composite actuators have become an attractive option for small aerospace structures
because they are relatively simple and compact compared with conventional actuators using
electro-magnetic motors. Several types of piezo-composite actuators using piezoelectric ceramic
materials have been studied. RAINBOW [1] is a unimorph actuator produced by chemically
reducing one side of a lead-containing piezoelectric ceramic at an elevated temperature. The
flexspar bimorph [2,3] design was introduced for an all-moving active aerodynamic surface using
piezo-composite active actuators for the flight control of a subsonic missile. THUNDER [4,5]
demonstrated the possibility of producing piezoelectric ceramic-based unimorph actuators capable of
generating significant displacement and force. The lightweight piezo-composite actuator (LIPCA) [6–8]
is a promising unimorph actuator that is suitable for aerospace applications because it is lighter
than other piezo-actuators. A microfiber composite actuator (LaRC-MFCTM) [9] developed by the
NASA LaRC team demonstrated that actuation displacement can be increased considerably using
interdigitated electrodes on sliced piezoelectric ceramic wafers. PUMPS [10,11] was designed as a
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curved piezoelectric unimorph actuator using a simple fabrication method. Its action displacement
and force can be predicted accurately by applying the PZT-5A nonlinear piezoelectric strain coefficient.
Among the piezo-composite actuators mentioned above, the THUNDER, LIPCA, and MFC unimorph
actuators have received the most attention because they exhibit attractive actuation performance
with large actuation displacement and simple manufacturing processes. However, due to the limited
actuation strain of conventional piezo-composite actuators using poly-crystal piezoelectric ceramic
layers, the LIPCA has not been implemented effectively for small aerospace vehicles. To increase the
actuation performance of LIPCA, Park et al. [12] designed the LIPCA-S2 with a PMN-29PT piezoelectric
single-crystal layer and reported that the LIPCA-S2 can produce an actuation displacement 2.7 times
greater than that of the LIPCA-C3, which was designed with a poly-crystal piezoelectric ceramic layer.
Yoon et al. [13] designed control fins for a small flying vehicle using piezo-composite unimorph actuators
and proposed a linear cantilever tip displacement prediction model [14] for the compression stress
variations in a PMN-29PT single-crystal layer considering changes in the piezoelectric strain coefficient
and elastic modulus. For a micro actuator application, Nguyen et al. [15] theoretically investigated the
dynamics of piezo-actuated stick–slip micro-drives (PASSMDs), by exploiting micro-vibration and
considering the dynamic contact status, which improved performance by about 15%.

In this study, piezo-composite actuator LIPCA-S2 and LIPCA-C3 specimens were prepared and
tested to investigate the actuated tip displacement of piezo-composite cantilevers. The measured tip
displacements were compared to predicted results based on linear and nonlinear beam and composite
laminate deflection models.

2. Design, Analysis, and Manufacturing of Piezo-Composite Actuators

One of the actuator types that was specifically designed to provide excellent flexural displacement
performance is the piezo-composite unimorph. These actuators incorporate a piezoelectric single-crystal
actuation material layer embedded in a composite laminate. The LIPCA [6] was developed as
a lightweight unimorph actuator. In the LIPCA, the material stacking sequence is designed such that
the actuation layer is separated from the flexural neutral surface of the piezo-composite actuator to
produce a greater actuating bending moment.

2.1. Deflection Analysis of Piezo-Composite Unimorph Cantilever

To predict the tip deflection of a piezo-composite cantilever beam (see Figure 1), a tip deflection
calculation model is proposed in Equations (1)–(3) by modifying the mathematical model proposed by
Barret et al. [2], where δ1 is the deflection of a piezo-composite beam with a piezo-electric layer; δ2 is
the displacement of a composite beam without a piezo-electric layer; R is the radius of curvature of
a piezo-composite beam with a piezo-electric layer; θ is the arc angle of a piezo-composite beam with
a piezo-electric layer; κ is the curvature of a piezo-composite beam with a piezo-electric layer; l0 is the
length of a piezo-composite laminate; and ltot is the total length from the fixed position of a cantilever
unimorph to the end of the cantilever. All of these geometric symbols are shown in Figure 1.

δ1 = R(1− cosθ) =
1− cos(kl0)

k
(1)

δ2 = (ltot −Rθ)sinθ =

(
ltot −

sin(kl0)
k

)
sin(kl0) (2)

δ = δ1 + δ2 (3)
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Figure 1. Side-view schematic of the deflection of a piezo-composite unimorph actuator.

To calculate the load-carrying and deflection characteristics of piezo-composite beams, we adopted
the Euler–Bernoulli beam theory, which is a simple linear theory for elasticity assuming that beam
cross sections are symmetrical about a plane perpendicular to the neutral plane without any slippage
between layers under a bending moment.

Based on the Euler–Bernoulli beam theory, a simple analytical model for describing the curvature
change of a layered unimorph actuator (see Figure 2) can be expressed using Equations (4)–(6).
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dκ =
1
ρ
=

dMa

D
=

a·dPa

D
(4)

D =
∑

Ei·Ii (5)

dPa = Aa·Ea·dεa = Aa·Ea·d3x·
dV
ta

(6)

where a is the length of the moment arm from the neutral axis of the neutral surface of the beam;
D is the total bending stiffness, which is the sum of the bending stiffness of each layer with respect
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to the neutral axis; Ei and Ii are the modulus and area moment of inertia of each layer, respectively;
Ea, Aa, ta, and wa are the elastic modulus, cross-sectional area, thickness, and width of the actuation
layer, respectively; d3x is the piezoelectric strain constant in the x-axis direction with an electric field
on a third axis in the thickness direction; and dV is the vatiation of excitation voltage. We define the
coefficient of a piezoelectric unimorph actuator cpua in Equation (7) as the ratio of a to D, multiplied by
Ea, d3x, and Aa.

cpua =
a
D
·Ea·d3x·Aa (7)

dκ = cpua·
dV
ta

(8)

Based on Equations (7) and (8), it is expected that if the cross section of a layered unimorph
actuator is designed to have a higher value of cpua, a greater curvature change should be observed.

2.2. Lay-Up Structure Design of a Unimorph Cantilever

Based on the LIPCA design principle defined in Equations (7) and (8), it is clear that the greater the
coefficient of a piezoelectric unimorph actuator, the greater the curvature change that can be generated.
The LIPCA-S2 [12], which uses a PMN-29PT single-crystal layer, and the LIPCA-C3 [8], which uses
a poly-crystal piezoelectric ceramic layer, were analyzed to compare the actuation performances of
piezo-composite unimorph cantilevers. These actuators were designed, manufactured, and tested in
our Artificial Muscle Research Laboratory. The lay-up structures of the LIPCA-S2 and the LIPCA-C3
are presented in Figures 3 and 4, respectively. The cpua value of each lay-up structure was calculated by
applying the material properties listed in Table 1.
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Table 1. Properties of materials used in LIPCA-S2 and LIPCA-C3.

Properties PMN-29PT CTS 3203HD Glass/Epoxy Carbon/Epoxy PI Film

E1 (GPa) 8.9 62.0 21.7 231.2 3.0
E2 (GPa) 44.0 62.0 21.7 7.2 3.0

G12 (GPa) 3.42 23.9 3.99 4.3 1.15
ν12 0.3 0.31 0.13 0.29 0.3

α1 (*10−6/◦k) 9.5 3.5 14.2 −1.58 20.0
α2 (*10−6/◦k) 9.5 3.5 14.2 32.2 20.0

d3x (*10−12

m/V)
−1742 (d32) −320 (d31) - - -

t (mm) 0.25 0.25 0.09 0.10 0.03
Manufacturer Ceracomp CTS SK Chemical SK Chemical Dupont

2.3. Fabrication of Piezo-Composite Actuators

The layers of the LIPCA-S2 were stacked on a flat mold using the stacking sequence depicted
in Figure 3. A bottom layer of polyimide film (65 mm × 12.5 mm × 0.03 mm) with a coated
high-temperature adhesive film and printed copper electrode circuit was placed on a flat base mold,
and a PMN-29PT(a) piezoelectric layer (50 mm × 12.5 mm × 0.25 mm) was laid on top of the bottom
layer. Another electric insulating polyimide film layer with a coated high-temperature adhesive film
and printed copper electrode circuit on the bottom surface was placed on top of the piezoelectric
layer. A carbon/epoxy unidirectional prepreg (50 mm × 12.5 mm × 0.1 mm) and a top polyimide film
layer were then stacked on top. The stacked laminate was vacuum-bagged and cured in an oven
at an elevated temperature (177 ◦C) following the prepreg curing cycle. The cured LIPCA-S2 and
LIPCA-C3 were connected to an electric power line via soldering, as shown in Figure 5.
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3. Characterization of the Orthotropic Properties of a PMN-29PT Single Crystal

PMN-29PT single-crystal materials are piezoelectric materials with orthotropic piezoelectric strain
coefficients and an orthotropic elastic modulus that can change when stresses vary. Because variations
in piezoelectric strain coefficients and the elastic modulus may affect the actuation performance
of a piezo-composite actuator, we performed characterizations of these properties based on stress
variation. To characterize the orthotropic properties, 0◦ (one-axis direction of a piezoelectric layer
plane) and 90◦ (two-axis direction of a piezoelectric layer plane) coupon specimens with dimensions of
12.5 mm× 25.0 mm× 0.5 mm were cut from a PMN-29PT wafer. Thin gold electrodes were deposited on
the upper and lower surfaces and the electrode wires were connected via soldering. Strain gauges were
bonded to the electrode surfaces in the longitudinal and transverse directions, as shown in Figure 6.
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Figure 6. Schematic of compression testing for the characterization of thin piezoelectric layers.

Supporting plates were placed on both surfaces to prevent bending deformation of the specimens
during the in-plane compression loading process. The specimens and supporting plates were placed
into the compression jigs of a compression loading test machine. The compression stress measured by
a load cell was controlled by adjusting a rotating wheel that moved the middle plate of the compression
test machine, as shown in Figure 7. Using strain measuring equipment, strains were recorded by
increasing the excitation voltage up to 450 V for different compression stresses of 0, 3.1, 5.5, 7.8, 11.8,
and 15.7 MPa.
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Figure 8 presents the measured strain data for each compression stress condition. All the tests
were performed three times on each specimen. One can see that the variation in compression strain
generated by electric field excitation decreases significantly when the compression stress increases.
Figure 9 reveals that the d32 value in the measured strain data decreases by approximately 80% when
the piezoelectric single-crystal layer is compressed by 15.7 MPa of pressure in the two-axis direction,
but d31 does not change significantly. It is noteworthy that d32 changes significantly at approximately
12 MPa, which can be explained by a phase transition from a tetragonal phase to a rhombohedral phase.
The elastic modulus E2 values obtained from the measured data of compression stress and strain are
presented in Figure 10 with no electric field. One can see that E2 decreases by approximately 40%
near the phase transition compression stress level, but E1 does not change significantly. By comparing
d31 and d32 in Figure 9 and E1 and E2 in Figure 10, we found that there is a significantly different
orthotropy between d31 and d32, and a very similar orthotropy between E1 and E2. This orthotropy of
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a PMN-29PT single-crystal layer may facilitate the design of a unimorph actuator to increase actuation
performance. A similar behavior was reported by Feng et al. [16], who found that moderate uniaxial
stress can improve electromechanical properties, but high stress results in crystal depolarization and
suppressed electromechanical responses, severely limiting actuator materials. They also explained
that nonlinear behavior and hysteresis are the result of polarization switching and ferroelastic domain
switching, which can be analyzed using the X-ray diffraction analysis.
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4. Internal Residual Stress Analysis of a Laminate

In an orthotropic material layer, the strains induced by piezoelectric deformation are also
orthotropic. We denote the piezoelectric strain coefficients (strain/V) as d31 and d32, in the material
principal axis direction. The change of piezoelectric strains induced by a change in electric field
dE = dV/t excitation voltage divided by thickness of piezoelectric layer) are defined as

{
dεP

}
=


dεP

11
dεP

22
dγP

12

 =


d31

d32

0

 · dV
ta

(9)

where d31 and d32 are the piezoelectric strain coefficients for strain induced in the one-axis and two-axis
directions, respectively, with an applied electric field in the three-axis (thickness) direction.

The stress–strain relationship equation for a laminate [6] was modified to generate Equation (10)
to include piezoelectric deformation effects and calculate internal stresses induced by piezoelectric
actuation itself, as well as any temperature variation during the specimen curing process.

dσxx

dσyy

dσxy

 =


Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66





dε0
x

dε0
y

dε0
xy

+ z


dκx

dκy

dκxy

−

αx dT
αy dT
αxy dT

−


dx dV/t
dy dV/t
dxy dV/t


 (10)

where {σ} is the stress vector, {ε} is the strain vector, {α} is the coefficient of thermal expansion vector,
and dT is the temperature change during the curing process. Here, the x direction is the axis direction
perpendicular to the actuator beam cross section and the y direction is the axis direction parallel
to the actuator beam cross section. Figures 11 and 12 present the calculated internal stresses in the
principal geometrical direction of the plane section perpendicular to the principal axes of LIPCA-S2
and LIPCA-S3, respectively. One can see that the internal compression stress of the piezoelectric
material layer increases when we increase the excitation electric field for both LIPCA-S2 and LIPCA-C3.
Therefore, it is expected that the piezoelectric strain coefficient and elastic modulus will decrease when
the excitation electric field increases based on the data in Figures 9 and 10.
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5. Performance Evaluation of Actuators and Discussion

A device for measuring the tip displacement of a unimorph cantilever was constructed to
characterize the performance of LIPCA-S2 and LIPCA-C3. As shown in Figure 13, the measuring system
consisted of a jig to fix the cantilever actuator, a high-voltage actuation signal generator (TD-2 power
supply, Face International Corporation, Norfolk, USA, and a non-contact laser displacement measuring
system (Keyence LK-081, RJ-800), which is the same measuring system used in [12]. Figure 14 presents
the measured deflection and predicted deflection of the LIPCA-S2 and the LIPCA-C3 up to an applied
static electric field of 450 V. One can see that the actuation displacements of the LIPCA-S2 at 450 V
are 264% greater than those of the LIPCA-C3. The cpua values of the LIPCA-S2 and the LIPCA-C3 are
compared in Table 2. One can see that the cpua values of the LIPCA-S2 are 780% greater than those of
the LIPCA-C3, indicating that greater actuation displacement can be obtained from an actuator with
a greater cpua value.
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Table 2. Comparison of actuator performances and characteristics.

Specimens
D NA a cpua

δmax
(@450 V)

N·m2 mm mm 1/V mm

LIPCA-C3 1.045 0.3679 0.1529 −3.63 × 10−5 2.08
LIPCA-S2 0.1266 0.3408 0.1858 −2.84 × 10−4 5.50

D = Total Bending Stiffness, NA = Neutral Axis, a = Moment Arm.

The measured and predicted actuation displacements are compared in Figure 14a for the LIPCA-S2
and Figure 14b for the LIPCA-C3. It was found that the measured actuation displacement of the
LIPCA-C3 can be accurately predicted using the linear mathematical prediction model defined
in Equation (8). However, the predicted actuation displacement of the LIPCA-S2 cantilever tip using
the linear prediction model was more than three times greater than the measured data. To reduce this
large discrepancy between the predicted and measured data, variations in material properties with
changes in the compression stress of a PMN-29PT piezoelectric single crystal were considered using
the nonlinear prediction method. The core idea of the nonlinear prediction method is to use different
d32 and E2 values, which are obtained from measured strains, for different compression stresses at
each level of excitation voltage, as shown in Table 3. These values were derived from measured data
in Figures 9 and 10. For a specific level of voltage, the internal compression stress level can be calculated
using Equation (10) and the corresponding d32, d31, and E2 values can be obtained from Figures 9 and 10.
The corresponding curvature change and tip displacement can be predicted for each electric field
increment. The predicted total tip displacement of the nonlinear prediction model is equal to the sum of
each individual tip displacement. We found that the actuation displacement of the LIPCA-S2 cantilever
can be predicted more accurately by using the nonlinear prediction model with varied piezoelectric
strain coefficients d32 and d31, and elastic moduli E2, even though there is still a considerable difference
between the predicted and measured values. To reduce the prediction discrepancies at lower voltages,
additional theories, such as the classical laminate plate theory that considers the change in the elastic
modulus E2, d32, and d31 to determine the variation in the two-dimensional plane stresses (σxx, σyy, σxy),
effects of longitudinal-transverse and regular interactions of the layers, and voltage actuation at the
boundaries of a piezoelectric layer, will be considered in subsequent studies.
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Table 3. Changes in PMN-29PT material properties with compression stress variations.

Incremental
Step

Excitation
Voltage (V)

σ

(MPa)
E2

(GPa)
d31

(pm/V)
Cpua
(1/V)

A 0–20 −1.0 8.9 −1706 −2.79 × 10−4

B 20–40 −2.0 8.9 −1662 −2.71 × 10−4

C 40–60 −3.0 8.9 −1626 −2.66 × 10−4

D 60–80 −4.0 8.9 −1546 −2.53 × 10−4

E 80–100 −5.0 5.4 −1440 −1.43 × 10−4

F 100–150 −7.5 5.4 −888 −8.81 × 10−5

G 150–250 −12.5 5.4 −533 −5.28 × 10−5

H 250–350 −17.5 5.4 −213 −2.11 × 10−5

I 350–450 −22.5 5.4 −213 −2.11 × 10−5

6. Conclusions

The LIPCA-S2 and the LIPCA-C3, which are piezo-composite unimorph actuators with
piezoelectric layers, were tested and analyzed to predict tip displacement performance during
the actuation process based on electric excitation. The measured actuation displacement of the
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LIPCA-C3 was accurately predicted using the proposed linear prediction model. However, we found
that the predicted displacement of the LIPCA-S2 cantilever tip was more than three times the measured
displacement when using the linear prediction model. To reduce this large discrepancy between the
predicted and measured results, the nonlinear material behaviors of a PMN-29PT piezoelectric single
crystal were considered. Based on piezoelectric deformation tests under various compression stresses,
we found that the piezoelectric strain coefficient obtained from the measured strain data was reduced by
approximately 80% when a piezoelectric single-crystal layer was compressed by 15.68 MPa of pressure
in the two-axis direction. Additionally, the elastic modulus E2 decreased by more than 40% while the
elastic modulus E1 remained relatively stable. It was also found that the actuation displacement of
a LIPCA-S2 cantilever can be predicted more accurately by using a nonlinear prediction model instead
of a linear prediction model.
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