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Abstract: We examine the photocatalytic activity (PCA) of ZnO/graphitic carbon nitride g-C3N4

(g-CN) composite material for methylene blue (MB) degradation under visible-light irradiation
(VLI). The polymeric g-CN materials were fabricated by the pyrolysis of urea and thiourea. More
importantly, ZnO/g-CN nanostructured composites were fabricated by adding the different mounts
(60, 65, 70, and 75 wt.%) of g-CN into ZnO via the simple hydrothermal process. Among fabricated
composites, the 75% ZnO/g-CN nanocomposites displayed a superior PCA for MB degradation, which
were ~three-fold an enhancement over the pure ZnO nanoparticles. The fabricated materials have
been evaluated by X-ray diffraction (XRD), UV-Vis, Fourier transform infrared (FT-IR) spectroscopy,
and electron microscopy. More importantly, the photodegradation of MB could get 98% in ZnO/g-CN
could be credited to efficient separation of photo-induced charge carriers between ZnO and g-CN.
Also, the recycling efficiency of the as-prepared composites was studied for multiple cycles, which
shows that the photocatalysts are stable and suitable to carry out photocatalytic degradation in the
logistic mode. Additionally, the probable photocatalytic mechanism has also discussed. The synthetic
procedure of ZnO/g-CN based materials can be used in numerous fields such as environmental and
in energy storage applications.
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1. Introduction

In the modern world, consumption of non-renewable fossil fuels by the growing human population
is resulting in a rapid depletion of fuels and ecological pollution at a frightening rate [1,2]. Currently,
water pollution is highlighted as a vital concern for human beings, as it is frequently being influenced
by numerous toxic pollutants such as textiles, cosmetics, food, and paint industries [3,4]. In this regard,
there are several techniques available for handling polluted water, visible-light-based photocatalysis
is considered to be a green approach and has fascinated globally owing to its inexhaustible solar
energy [5–7]. Typically, photocatalytic features are generally ruled by its inherent physicochemical
natures of materials, including its band-gap position, surface area, pore size, and morphological
structures [8–11] Until now, the existing photocatalytic semiconductors such as the metal oxides and

Coatings 2020, 10, 500; doi:10.3390/coatings10050500 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0002-6293-1631
http://www.mdpi.com/2079-6412/10/5/500?type=check_update&version=1
http://dx.doi.org/10.3390/coatings10050500
http://www.mdpi.com/journal/coatings


Coatings 2020, 10, 500 2 of 14

sulfides, oxynitrides, polymers, and organic metal complexes have been demonstrated to possess
effective photocatalytic features. Among these, semiconductor metal oxides, such as ZnO, TiO2,
Cu2O, CuO, NiO, BiVO4, WO3, and ZnO, have the efficiency to maximize the absorption of incident
photons [12–14]. More importantly, wider band-gap semiconductor materials such as TiO2, ZnO, and
SrTiO3 are already recognized as effective photocatalytic materials due to its great redox potential
of photoinduced charge carriers [15,16]. In recent years, n-type ZnO semiconductors are preferred,
due to its low cost, eco-friendly, simple synthetic procedure, and wide bandgap with comparison
to TiO2. Particularly, the photocatalytic performance of ZnO was comparatively better than TiO2 in
few reports. For instance, Sakthivel et al., also reported visible-light assisted photodegradation of
azo dye: competition of photocatalytic efficiency [17]. However, ZnO or other single metal-based
materials mostly suffered from photocorrosion and have average performance. On this regard, few
scientific efforts are now dedicated to finding suitable approaches for decreasing the recombination
rate of charge carriers working under VLI [18,19].

In recent years, various reports are carried out to promote the PCA employing conventional
several supporting candidates which can haste an efficient separation of photoinduced charge carriers,
namely semiconductors, graphene, CNT, and other carbonaceous materials. In particular, Vadivel et
al. reported the BiPO4/multi-walled carbon nanotubes (MWCNTs) composites for the photocatalyst
and supercapacitor applications [20]. Similarly, the fabrication of graphene and MWCNTs supported
materials are economically expensive and produce toxicity during functionalization [21]. To solve
the problems, the researcher introduced polymeric g-CN materials incorporates with semiconductor
materials. More importantly, g-CN is used to improve the electron-hole pair recombination rate, stable,
inexpensive, proper band position, low-cost characteristic, easily separable, unique properties, and
also examined as the visible-light active materials [22–25]. The CN photocatalyst materials possessing
conjugated electronic alignment with the band-gap of nearly 2.7 eV, holds greater thermal, chemical,
electro-optical properties [26,27]. During the past decades, Wang et al. demonstrated the polymeric
g-CN photocatalytic materials for a visible-light-assisted water-splitting reaction [28]. The metal-free
g-CN is restricted by lower photocatalytic activity due to fast charge recombination. Afterward, Pragati
et al., studied the degradation of methylene blue (MB) using ZnO/g-CN as a photocatalyst, urea carbon
source [29].

The metal-free g-CN can be fabricated by the direct pyrolysis of different organic precursors.
The commercially accessible urea and thiourea were recognized as green organic precursors for the
fabrication of g-CN. It was evidenced that the usage of urea and thiourea might evolve CO2, H2S,
NH3, and H2O vapor during the pyrolysis process [30], which can be employed as a bubble soft
template. Also, g-CN with the enriched surface area was fabricated by annealing both precursors of
urea and thiourea, which were recrystallized in ethanol. More importantly, Zhang et al. revealed that
the fabricated g-CN with the mixture of thiourea and urea exhibits the greater specific surface area
and enhanced PCA compared to g-CN derivatives from the mixture of urea and thiourea [31]. Also,
numerous research efforts have been found for homogeneous carbon sources like urea, melamine,
formaldehyde resin and thioureas derived graphitic carbon and are incorporated with semiconductor
nanoparticle [32–34]. Numerous g-CN-based heterojunctions photocatalysts have been developed by
coupling g-CN with different inorganic photocatalysts [35–43]. For instance, effective combinations of
catalysts comprise heterojunctions of graphene/g-CN, Au/g-CN, TiO2/g-CN, MoS2/g-CN, TaON/g-CN,
ZnO/g-CN, Bi2WO6/g-CN, CdS/g-CN, WO3/g-CN, and BiOBr/g-CN [35–43].

The PCA of ZnO is restricted owing to its wider bandgap and photoinduced charge carriers
are easy to recombine. Also, the incorporation of various metal ions onto ZnO photocatalysts can
efficiently enhance PCA [44–48]. Recently, doped ZnO-based photocatalysts have been demonstrated
improved photocatalytic features for MB degradation [49]. Similarly, it is also revealed that the stability
and PCA of ZnO can be promoted by loading with carbonaceous materials. Recently, Raghavan et al.
fabricated a reduced graphene oxide (rGO)/TiO2/ZnO system via a two-step solvothermal process [50].
Tien et al. demonstrated a hybrid photocatalyst composed of rGO and ZnO spheres by an easy and
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rapid microwave-assisted solvothermal reaction [51]. The formation of heterojunctions between ZnO
and g-CN has the potential to develop efficient materials for photocatalytic applications. In this regard,
it is imperious to synthesize a different variety of carbon sources to fabricate polymeric g-CN catalysts
by a simple and cost-effective method. Hence, in this work, we have fabricated g-CN-based materials
derived from the mixture of urea/thiourea.

Herein, ZnO/g-CN nanocomposites were fabricated by a simple and cost-efficient
deposition-precipitation method, and its catalytic activity was investigated through photodegradation
of MB. The graphitic CN was prepared by urea and thiourea mixture using the pyrolysis method. More
importantly, ZnO/CN nanocomposite shows excellent activity in as than its corresponding pristine ZnO
and g-CN. Because of the type-II band position of ZnO and g-CN, the interface between g-CN and ZnO
benefits the rapid transport of photoinduced charge carriers, thus influenced ZnO/CN to be efficient
photocatalysts. More importantly, photostability and reusability of fabricated composites investigation
were also completed to identify the reactive species and explore the stability and reusability of
composite materials for long time use. Lastly, a feasible photodegradation mechanism of MB above
synthesized ZnO/g-CN nanocomposites has also been proposed.

2. Experimental Details

2.1. Materials

Zinc Sulfate (99.5%), sodium hydroxide (98%), and ethanol (99%) were purchased from SRL
chemicals (Mumbai, India). Urea (99.5%) and thiourea (99%) were purchased from Nice Chemicals (P)
Ltd. (Ernakulam, India), MB dye was purchased from Loba Chemie (P) Ltd. (Mumbai, India).

2.2. Preparation of g-CN/Zn Ophotocatalyst

The g-CN was fabricated via a pyrolysis method in which 6 g of urea and 6 g of thiourea were
taken in two different 100 mL beakers and dissolved in 20 mL of deionized water [4]. Afterward, the
prepared solution of urea and thiourea were mixed and then dried in an oven at around 80 ◦C. After
which the dried reaction mixture is transferred into a crucible and heated at 550 ◦C for 5 h with the
heating rate of 15 ◦C/min. Subsequently, the attained g-CN metal-free heterojunction photocatalysts
were obtained. To prepare g-CN/ZnO nanocomposites were fabricated by a simple hydrothermal
process. Typically, 50 mL of ZnSO4·7H2O (0.05 moles, 0.72 g) solution were taken in a 100-mL beaker,
and then an appropriate quantity of g-CN was dispersed using a sonicator. To prepare different
nanocomposites, the amount of ZnO contents in g-CN/ZnO composites were varied from 60 to 75 wt.%.
Further, 50 mL of NaOH (1.0 M, 2 g) solution was introduced under magnetic stirring. Subsequently,
the whole reaction mixture was moved to stainless-steel autoclave and kept in oven 180 ◦C for 12 h.
After the hydrothermal process, the attained precipitate was then filtered and washed about 3–4 times
and then dried around 60 ◦C for 24 h. The similar procedure used to prepare other composites viz.,
g-CN/ZnO 60, 65, 70, and 75 wt.% of ZnO materials. According to this method, bare-ZnO was also
prepared through the same hydrothermal process.

2.3. Materials Characterization

The phase purity and crystalline nature of g-CN/ZnO nanocomposites were collected and
analyzed by using XRD techniques (Rigaku ULTIMA 1V IR-Technology service Pvt. Ltd., Tokyo, Japan).
The surface functional group and introduction of the ZnO onto the surface of g-CN were studied
using FT-IR on a Cary 630 FT-IR Agilent Technologies India Pvt. Ltd., United States. The surface
morphology and size of the g-CN, ZnO and its composites were used to study field emission scanning
electron microscope (FE-SEM) Carl Zeiss: Sigma, Germany. A high-resolution transmission electron
microscope (HR-TEM) was performed on a JEOL: JEM2100 PLUS, Tokyo, Japan operating at 200 kV.
The photocatalytic performance of the g-CN, ZnO, and its composites were studied using UV-Vis
spectroscopy (Shimadzu, Model UV-3600, Kyoto, Japan).
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2.4. Photocatalytic Study

PCA of the fabricated photocatalytic materials was examined by the degradation of MB solution
under VLI. The photocatalyst solution was prepared by the addition of 0.1 g of catalyst into a 100 mL
MB (50 mg/L) solution irradiation. Initially, a sorption balance has been achieved between the
MB solution and catalyst after stirring 60 min without VLI. After that, the prepared photocatalyst
solutions were treated with VLI with a 500 W Xe Lamp, where the UV-light (λ < 420) had been
prevented by a cut off filter. At a particular time interval, 0.2 mL of solution was withdrawn and
then centrifuged to eliminate the catalyst particles. The absorption concentrations of the MB dye
solution were spectrophotometrically observed by assessing the absorbance of solutions at 664 nm
during the degradation process at numerous time intervals. The absorbance maximum at λ = 664 nm
was employed to estimate the concentration of the MB dye solution. The photodegradation of dye is
conveyed by C/C0; Where C0 is the residual concentration of MB, and C is the primary concentration
of the MB.

3. Results and Discussion

XRD analysis was used to assess the phase purity and crystalline nature of the fabricated samples.
Figure 1a shows the powder XRD patterns of the prepared bare-ZnO, g-CN, and a series of g-CN/ZnO
nanocomposites. As seen from Figure 1a, observed peaks at 31.8◦, 34.43◦, 36.27◦, 47.57◦, 56.67◦, 62.93◦,
67.99◦, and 69.20◦ and the corresponding diffraction plans from (100), (002), (101), (102), (110), (103),
(112), and (201) planes clearly indicated that hexagonal wurtzite crystal phase of ZnO (JCPDS card
# 89-0510) [12]. Also, the powdered XRD patterns of ZnO particles display the peak of Zn(OH)2

(Figure 1a). Particularly, the pure g-CN sample has two distinct peaks at 2θ = 13.34◦ and 27.38◦

which can be related to (100) and (002) diffraction planes (JCPDS No. 87-1526) [22]. Also, the peak
positioned at 13.34◦ related to the in-plane packing motif (100) peak of tristriazine units. In particular,
the distance is estimated to be 0.675 nm, which is agreed to the hole-to-hole distance in the nitride
pores. Simultaneously, another intense peak of 27.38◦ is related to C–N aromatic stacking units with a
distance of 0.324 nm, attributing to the (002) plane of the interlayer stacking of the conjugated aromatic
system. In this regard, the sharp and intense diffraction peaks of both g-CN and ZnO evidenced
their crystallinity nature. In fabricated composites, all the series of g-CN/ZnO nanocomposites shows
the identical distinctive diffraction peaks with the bare-ZnO. With the ZnO incorporation over the
g-CN, the ZnO crystalline peaks appeared at g-CN/ZnO composites. There is no impurity found in the
g-CN/ZnO composites, thus confirmed the successfully prepared high purity of g-CN and g-CN/ZnO
nanocomposites. Further, the average particle size of the ZnO particles was used to calculate Scherrer’s
equation, the obtained particle size was 40 ± 2 nm. These results revealed that the ZnO fabricated onto
g-CN with the chemical bonding of Zn–N was successfully achieved via condensation reactions.

Figure 1b shows the FT-IR spectra of ZnO, g-CN, and a series of g-CN/ZnO photocatalysts
with different ZnO contents. FT-IR spectra of g-CN showed the following characteristic bands; C–N
stretching vibration mode at the wavenumber of 1628 cm−1 and the aromatic C–N stretching modes
are observed at 1230, 1398, and 1543 cm−1 [52]. Also, the band witnessed at 802 cm−1 is credited
to out-of-plane bending modes of C–N heterocycles [53]. More importantly, the FT-IR spectrum of
independent-ZnO, the peak located at 591 cm−1 was assigned to the stretching vibration of Zn–O [53].
Further, a broad absorption peak positioned at 3500 cm−1 was owing to the existence of water
molecules [54]. More importantly, Figure 1b also displays the FT-IR spectra of a series of ZnO/g-CN
composite materials, the observed peaks are identical to those of peaks of g-CN are observed in the
composite. However, with the increase in the percentage of ZnO (60% to 75%), the peak intensity
also increased. Also, it is evidenced that the obtained peaks correspond to the g-CN and ZnO are
witnessed in the g-CN/ZnO composite materials. All results have shown that the fabricated materials
were nanocomposite rather than a physical combination of two distinct phases ZnO and g-CN.
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Figure 1. (a) XRD pattern of g-CN, ZnO, g-CN/ZnO (60%), g-CN/ZnO (65%), g-CN/ZnO (70%), and
g-CN/ZnO (75%). The Powdered XRD pattern for composite corresponds to pure ZnO (wurtzite);
(b) and its corresponding Fourier transform infrared (FT-IR) spectra of fabricated materials.

The surface morphology and microstructure of the g-CN, ZnO and g-CN/ZnO (75%) composites
were inspected through FE-SEM as presented in Figure 2. Figure 2a shows the FE-SEM images of
g-CN which is composed of nanosheets sheets like structures and fluffier. Also, hydrothermally
fabricated ZnO particles are obtained with an irregularly aggregated spherical particle (Figure 2b).
Interestingly, the surface morphology of fabricated g-CN/ZnO (75%) composites (Figure 2c,d) contains
both spherical ZnO particles and nanosheet morphologies, which were homogeneously dispersed.
Thus the fabricated binary nanocomposites materials are expected to play a vital role in determining
its photocatalytic performances.
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Figure 2. Field emission scanning electron microscope (FE-SEM) image of: (a) g-CN, (b) bare-ZnO,
and (c,d) g-CN/ZnO (75%) composite materials prepared using a hydrothermal process.

To further assess the morphological features of fabricated composites, the HR-TEM measurements
were carried out and are depicted in Figure 3. HR-TEM images of g-CN/ZnO (75%) composite as seen
in Figure 3a,b, clearly observed the darker particles of ZnO over the thin layer sheets of g-CN, which is
consistent with FE-SEM analysis. Furthermore, HR-TEM of a composite at higher magnifications to
observe more number of fringe patterns of ZnO particles over g-CN sheets (Figure 3c,d). The observed
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interplanar distance (d) of 0.252 nm is observed to have matched with the lattice fringe spacing of
the (101) ZnO hexagonal wurtzite phase, which also reveals the interface between the hexagonal
ZnO and g-CN sheets [12]. Inset of Figure 3d reveals the respective selected area electron diffraction
(SAED) pattern of g-CN. These morphological investigations evidenced the interface between g-CN
nanosheets and ZnO particles in the composites and are appropriate candidate materials to enhance
the charge-separation and thereby enhancement of the PCA.Coatings 2020, 10, x FOR PEER REVIEW 6 of 15 
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Figure 3. High-resolution transmission electron microscope (HR-TEM) images of: (a,b) g-CN/ZnO (75%)
(low magnification), (c,d) g-CN/ZnO (75%) (high magnification), and the inset shows the diffraction
pattern of CN/ZnO (75%).

3.1. Photocatalytic Activity

The photocatalytic MB dye degradation performances of ZnO and g-CN/ZnO photocatalyst were
studied under VLI. In a typical process, the maximum absorption concentration MB dye peak at 664
nm was taken to investigate the catalytic degradation of MB dye. Particularly, the time-dependent
absorption spectra of MB with differently prepared photocatalysts were displayed in Figure 4.
The maximum absorption intensity MB dye was slowly decreased in the presence of pristine ZnO with
the illumination of VLI. The observed result clearly shows the low degradation efficiency of pristine
ZnO nanoparticles (Figure 4a). Moreover, after the addition of g-CN into the ZnO nanoparticles,
the catalytic activity was gradually increased which means the g-CN nanosheets are influenced
toward the enhanced PCA. Interestingly, the photodegradation efficiency of the g-CN/ZnO (75%)
photocatalysts was considerably greater than that of pristine ZnO and other combinations of g-CN/ZnO.
Amongst all the as-prepared samples, g-CN/ZnO (75%) exhibited improved catalytic activity because
of the enhanced visible-light absorption and suppressed recombination rate in comparison with bare
ZnO photocatalyst or g-CN. Similarly, g-CN provided more active surface and strong absorption
capacity to MB dye molecules. Furthermore, the layered nanosheets structure of g-CN favored the
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photogenerated electron-hole transfer from g-CN to ZnO. It is a significant factor in photocatalytic
activities of g-CN/ZnO (75%) nanocomposites as photocatalysts.Coatings 2020, 10, x FOR PEER REVIEW 7 of 15 
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Figure 5 reveals the photodegradation of MB over bare-ZnO, undoped g-CN, and a series of
g-CN/ZnO composites. The blank analysis was performed without a catalyst to determine the stability
of MB under illumination conditions and the results indicated that the MB was stable under illumination.
Figure 5 shows the kinetic plot of (C0/Ct) vs. irradiation time (min) to examine the degradation of MB
dye in the presence of as-prepared catalysts.
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Figure 5. Photodegradation of MB dye over the presence of: (a) bare-ZnO, (b) undoped g-CN,
(c) g-CN/ZnO (60%), (d) g-CN/ZnO (65%), (e) g-CN/ZnO (70%), and (f) g-CN/ZnO (75%).

Further, to understand the reaction kinetics of the MB degradation catalyzed by fabricated catalysts,
the experimental data were fitted by a first-order kinetic model as shown by following Equation (1):

ln(C0/C) = kt (1)

where C0 and C are the initial and concentration of MB at a certain time interval and k is the rate
constant. Figure 6 shows the linear fitting kinetic plot for the degradation of MB for fabricated catalysts.
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The observed results clearly show that the prepared catalyst obeyed the pseudo-first-order kinetics.
The calculated rate constants (Kapp), agreeing with correlation coefficients (R2), and maximal dye
degradation in the presence of pristine and g-CN/ZnO nanocomposites are given Table 1. The estimated
k values for the bare ZnO, bare g-CN, g-CN/ZnO (60%), g-CN/ZnO (70%), and g-CN/ZnO (75%) are
found to be 0.0021, 0.0038, 0.0047, 0.009, and 0.0128 min−1, correspondingly. Also, it is demonstrated
that g-CN/ZnO (75%) composite has a greater rate constant which was ~6-folds superior to the bare ZnO.
The existence of more reacting species, larger surface area, and enriched acting sites are improving
the PCA. More importantly, the observed rate constant value also larger than that obtained for
Fe-doped ZnO as reported by Isai et al [55] and larger with that observed for boron-doped g-CN-based
composite [56].
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Figure 6. Pseudo-first-order kinetic plots of: (a) bare ZnO, (b) bare g-CN, (c) g-CN/ZnO (60%),
(d) g-CN/ZnO(65%), (e) g-CN/ZnO (70%), and (f) g-CN/ZnO (75%).

Table 1. Data obtained from a pseudo-first-order kinetic linear fit of as-prepared catalyst.

Sample Bare ZnO Bare g-CN g-CN/ZnO
(60%)

g-CN/ZnO
(65%)

g-CN/ZnO
(70%)

g-CN/ZnO
(75%)

Intercept −0.0155 ±
0.018

−0.0159 ±
0.012

−0.010 ±
0.023

−0.0532 ±
0.026 −0.027 ± 0.03 0.0217 ±

0.038

Rate
Constant

0.0021 ±
0.00017

0.00389 ±
0.000119

0.00477 ±
0.00021

0.00658 ±
0.000242

0.00922 ±
0.0003295

0.01283 ±
0.0003542

R-Square 0.96877 0.99535 0.99045 0.99328 0.99365 0.9962

Figure 7 shows the photodegradation efficiency of as-prepared nanocomposite samples in
comparison with bare samples. The bare ZnO, bare g-CN, g-CN/ZnO (60%), g-CN/ZnO (65%),
g-CN/ZnO (70%), and g-CN/ZnO (75%) materials are found to degrade around 26%, 45%, 60%, 69%,
80%, and 91% the MB solution under 120 min of irradiation. These results evidenced that with
an increase in the amount of ZnO into the g-CN the PCA also gradually increased. The observed
degradation result confirms that the g-C3N4 prominently improve the PCA.
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3.2. Reactive Species Studies

To know the role of active species in the MB dye degradation activity, radical trapping tests were
performed, as displayed in Figure 8. The close inter-phase contact coupling of g-CN and ZnO particles
in g-CN/ZnO must play a major part in improving PCA [39,57]. In general, the close coupling of
ZnO/g-Cn nanoparticles results in promoting the electron transfer between interfaces and hindering
the recombination of photoinduced charge carriers [58]. Usually, during the photocatalysis process,
hydroxyl, holes, and superoxide radicals are the promising reactive species for the degradation of organic
pollutants [59]. Herein, isopropyl alcohol (IPA), triethanolamine (TEOA), and p-benzoquinone (BQ)
which are engaged as the scavengers for hydroxyl, holes, and superoxide radicals, correspondingly [12].
In a scavenger free reaction, the MB dye maximum degradation efficiency was observed up to 90.64% in
180 min irradiation for g-CN/ZnO (75%). So the g-CN/ZnO (75%) samples were selected to investigate
the radical trapping study. After the introduction of radical trapping agents into the photocatalytic
reaction, the degradation efficiency was decreased particularly, the observed efficiency was 90.6, 42.1,
76.3, and 62.9 percentages for without scavenger, TEOA, BQ, and IPA, respectively. This investigation
confirmed that hole played a major role in the photocatalytic MB degradation compared to other
radicals which means that after the addition of TEOA into the reaction nearly 60% of the efficiency was
hindered. Hence, these results show that MB degradation mainly is governed by photogenerated holes.

Coatings 2020, 10, x FOR PEER REVIEW 9 of 15 

 

 

Figure 7. MB dye degradation efficiency of as-prepared catalysts: (a) bare-ZnO, (b) undoped g-CN, 
(c) g-CN/ZnO (60%), (d) g-CN/ZnO(65%), (e) g-CN/ZnO (70%), and (f) g-CN/ZnO (75%). 

3.2. Reactive Species Studies 

To know the role of active species in the MB dye degradation activity, radical trapping tests were 
performed, as displayed in Figure 8. The close inter-phase contact coupling of g-CN and ZnO 
particles in g-CN/ZnO must play a major part in improving PCA [39,57]. In general, the close 
coupling of ZnO/g-Cn nanoparticles results in promoting the electron transfer between interfaces and 
hindering the recombination of photoinduced charge carriers [58]. Usually, during the photocatalysis 
process, hydroxyl, holes, and superoxide radicals are the promising reactive species for the 
degradation of organic pollutants [59]. Herein, isopropyl alcohol (IPA), triethanolamine (TEOA), and 
p-benzoquinone (BQ) which are engaged as the scavengers for hydroxyl, holes, and superoxide 
radicals, correspondingly [12]. In a scavenger free reaction, the MB dye maximum degradation 
efficiency was observed up to 90.64% in 180 min irradiation for g-CN/ZnO (75%). So the g-CN/ZnO 
(75%) samples were selected to investigate the radical trapping study. After the introduction of 
radical trapping agents into the photocatalytic reaction, the degradation efficiency was decreased 
particularly, the observed efficiency was 90.6, 42.1, 76.3, and 62.9 percentages for without scavenger, 
TEOA, BQ, and IPA, respectively. This investigation confirmed that hole played a major role in the 
photocatalytic MB degradation compared to other radicals which means that after the addition of 
TEOA into the reaction nearly 60% of the efficiency was hindered. Hence, these results show that MB 
degradation mainly is governed by photogenerated holes. 

 

Figure 8. Influence of radical scavengers for the photodegradation of MB on g-CN/ZnO (75%) 
nanocomposite under illumination conditions. 
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3.3. Reusability Studies

The stability of the synthesized catalyst materials was examined by recycling the photocatalysts
for the photocatalytic degradation of MB dye. Each cycle, a fresh MB dye solution was used for the
next photocatalytic test. The catalyst particles were collected by centrifuged and washed, with distilled
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water then reused. As shown in Figure 9, no major reduction was observed in the efficiency after four
consecutive cycles, as a result, the g-CN/ZnO (75%) photocatalysts were photostable.
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3.4. Mechanism

The apparent charge-transfer mechanism for MB degradation over g-CN/ZnO system was
presented in Figure 10. As it is known that, the pure ZnO cannot be excited by visible light irradiation,
the photodegradation of MB can mainly be attributed to the photogenerated hole oxidation and
photoreduction process. On comparing pure g-CN, the g-CN/ZnO photocatalysts exhibited remarkable
enhancement for degrading MB under visible light. The CB and VB edge potentials of as-synthesized
pristine ZnO and g-CN were acquired from Butler–Ginley method [60,61]. The CB and VB edge
potentials of the g-CN were calculated to be −1.12 and +1.57 eV, while the CB and VB edge position of
ZnO are −0.26 and +2.83 eV, respectively. The appropriate band positions of g-CN and ZnO endorse the
creation of the heterojunction and thereby improvement in PCA. According to the proposed mechanism,
both ZnO and g-CN are expected to be photoinduced to create carriers. Under VLI conditions, since the
CB potential of g-CN is more negative than that of ZnO, the photogenerated electrons on g-CN particle
surfaces transfer easily to ZnO through the well-developed interface [62]. So the excited electron on
g-CN could directly inject into the CB of ZnO. The electron-hole separations are also driven by the
internal reassembly rebuilt electric fields in the two semiconductors. This decreases the strength of
electron-hole recombination and leads to large numbers of electrons on the ZnO surface and holes on
the g-CN surface, respectively, thus promoting the photocatalytic reactions to degradation MB.Coatings 2020, 10, x FOR PEER REVIEW 11 of 15 
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4. Conclusions 

In conclusion, we adopted a facile hydrothermal approach to produce new g-CN/ZnO 
composites for photocatalytic decomposition of MB under VLI. The various compositions of g-
CN/ZnO composites in the range of ZnO from 60% to 75% were prepared. The structural analysis of 
the g-CN/ZnO composite was studied using XRD, FT-IR, SEM, and TEM techniques. The g-CN/ZnO 
composites exhibited higher PCA and an easy recycling process, but ZnO easily suffered 
photocorrosion. The main reason could be suggested that the porous nature of g-CN can effectively 
separate photoinduced charge carries and diminish the photocorrosion of ZnO and thereby 
extraordinarily enhance visible-light PCA for the photodegradation of pollutants. The obtained 
results reveal that the g-CN/ZnO (75%) composites can effectively degrade 98% of MB dye within 
180 min under UV light which is greatly superior to that of ZnO and g-CN. More importantly, the 
PCA of g-CN/ZnO under VLI was increased six times for the degradation of MB in comparison to 
bare ZnO. In the photodegradation of MB by g-CN/ZnO composites, photoinduced holes are the 
major species. Besides, benefiting from the graphitic carbon nitride excellent supporting materials, 
green synthetic, cost-effective of precursors, the obtained flexible heterojunctions g-CN/ZnO 
composites provide very fascinating prospects and may be stretched to the applications such as 
adsorbents, electrochemical materials, and support for sensors. 
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4. Conclusions

In conclusion, we adopted a facile hydrothermal approach to produce new g-CN/ZnO composites
for photocatalytic decomposition of MB under VLI. The various compositions of g-CN/ZnO composites
in the range of ZnO from 60% to 75% were prepared. The structural analysis of the g-CN/ZnO composite
was studied using XRD, FT-IR, SEM, and TEM techniques. The g-CN/ZnO composites exhibited higher
PCA and an easy recycling process, but ZnO easily suffered photocorrosion. The main reason could be
suggested that the porous nature of g-CN can effectively separate photoinduced charge carries and
diminish the photocorrosion of ZnO and thereby extraordinarily enhance visible-light PCA for the
photodegradation of pollutants. The obtained results reveal that the g-CN/ZnO (75%) composites
can effectively degrade 98% of MB dye within 180 min under UV light which is greatly superior to
that of ZnO and g-CN. More importantly, the PCA of g-CN/ZnO under VLI was increased six times
for the degradation of MB in comparison to bare ZnO. In the photodegradation of MB by g-CN/ZnO
composites, photoinduced holes are the major species. Besides, benefiting from the graphitic carbon
nitride excellent supporting materials, green synthetic, cost-effective of precursors, the obtained flexible
heterojunctions g-CN/ZnO composites provide very fascinating prospects and may be stretched to the
applications such as adsorbents, electrochemical materials, and support for sensors.
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