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Abstract: Microstructural features have a vital effect on the comprehensive performance of thermal
barrier coatings (TBCs) and highly depend on the thermal spray processing parameters. Herein,
a novel hybrid machine-learning method was proposed to predict the microstructural features
of TBCs using thermal spray processing parameters based on a support vector machine method
optimized by the cuckoo search algorithm (CS-SVM). In this work, atmospheric-plasma-sprayed
(APS) TBCs samples with multifarious microstructural features were acquired by modifying the spray
powder size, spray distance, and spray power during thermal spray processing. The processing
parameters were used as the inputs for the CS-SVM model. Then, the porosity, the pore-to-crack ratio,
the maximum Feret’s diameter, the aspect ratio, and the circularity were counted and treated as the
targets for the CS-SVM model. After optimization and training procedure of the CS-SVM model,
the predicted results were compared to the results of experimental data, as a result, the squared
correlation coefficient (R2) of CS-SVM model showed that the prediction accuracy reached by over 95%,
and the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE) were less than 0.1, which also verified the reliability of the CS-SVM model. Finally,
this study proposed a novel and efficient microstructural feature prediction that could be potentially
employed to improve the performance of TBCs in service.

Keywords: microstructural feature; thermal barrier coatings (TBCs); support vector machine; cuckoo
search algorithm

1. Introduction

Thermal barrier coatings (TBCs) provide thermal insulation to the hot sections of the gas turbine
or aero engines under severe operation conditions, thereby improving the gas turbine or aero engine
performance and efficiency. A foremost TBC system classically consists of four layers: the brittle
ceramic top coating (TC), metallic bond coating (BC), thermally grown oxide (TGO), and superalloy
substrate [1,2]. Among these four layers, the TC determines the strength, heat conductivity, fracture
toughness, wear resistance, and thermal expansion rate of TBCs, most of these physical indicators,
which are correlated with lifetime and comprehensive properties of TBCs, mainly depend on the
microstructure features of TC [3–7]. Yttria partially stabilized zirconia (YSZ) is generally chosen as
an attractive material for TC, owing to its superior mechanical and thermophysical properties [2,4].
Thermal spray includes a set of processes for coating manufacturing in which finely divided YSZ material
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is deposited under semimolten or molten conditions. Plasma-spraying and electron beam–physical
vapor deposition are generally chosen as the deposition techniques, atmospheric plasma-spraying
(APS) TBCs is usually chosen to reduce thermal conductivity to a greater degree, owing to its superior
lamellar and porous structures, and APS process has been regarded as one of the most efficient
techniques for depositing high-performance coatings at low cost and high efficiency. Moreover,
the coating performances are highly dependent on the process parameters of the APS process. Particle
size, spray distance, and spray power were regarded as the most important APS process parameters
affecting the melting indexes of in-flight particles [8–12].

Considering the complexity of actual spray preparation process parameters, experimentally,
the orthogonal design method is the most commonly used solution to determine the optimal process
parameters, and is the most widely used method to estimate the impact of thermal spraying process
parameters on the APS coatings performance, because the test sample size has been streamlined in
advance. However, various process parameters will all affect the quality of the coating, so in most cases
orthogonal design method merely distinguishes the primary and secondary factors, but cannot get
the best process parameters, the actual guidance of the method is limited [13,14]. In modeling terms,
numerical modeling and simulation have also been widely used to simulate and control the spraying
process. Nevertheless, owing to the intricate multiphysical coupling phenomenon of the thermal spray
process, numerical simulation is difficult to effectively model the actual spraying behavior [15–17].

Over the past few decades, several modeling and experimental methods for coating
characterization have been presented, compared to the conventional coating properties prediction
methods, a variety of artificial intelligence techniques have been a focus area of research, owing to
their own unique modeling superiorities and predictive performance (i.e., simple implementation,
easy to understand and implement, fast speed, low storage resource, low generalization error rate, low
computational overhead, easy to interpret results) [18–20]. Nevertheless, the traditional multiple linear
regression method is more suitable for the analysis of linear data [21]; the artificial neural network
(ANN) method has the defects of “overfitting” and overlength learning time, and is easy to fall into
local minima [20,22]; the time series analysis method has complicated model and low prediction
accuracy [23]; the gray theory method has high requirements on data [24]. Indeed, there is not a single
machine-learning algorithm that can integrate all the advantages as mentioned above, and has its own
shortcomings, so how to choose the appropriate prediction method is particularly important.

Generally, it is difficult to obtain sufficient thermal spraying process parameters and coating
data sets during actual modeling, because the process is time-consuming and difficult. Therefore,
for modeling with fewer data sets, to obtain the coatings required in actual engineering service,
hence, a method for quantitative analysis, prediction, and optimization of coatings microstructural
features is essential. The support vector machine (SVM) algorithm is according to limited sample
information and seeks the best concession between model complexity and learning capacity to obtain
the best generalization ability, compared to the methods mentioned above, the support vector machine
regression (SVR) algorithm is preferable to settle the problems of small samples, nonlinear data,
and refraining from falling into local minima [20,25–27]. However, the generalization capabilities
and learning performance of the SVR algorithm mainly depend on the model system parameters,
the common parameter searching methods are as follows: the grid search (GS) method; the genetic
algorithm (GA); and the particle swarm optimization (PSO) algorithm. The GS method needs to perform
exhaustive verification and searches one by one within a given range, which is very time-consuming,
and the obtained parameters are generally not the optimal parameters, and the regression performance
of the model cannot be guaranteed. GA and PSO algorithms have high efficiency, but they are prone to
fall into local extreme values [28–31]. The proposed basis of this natural heuristic algorithm cuckoo
search (CS) algorithm is based on the behavior of the biological habits, and the CS algorithm is a very
novel algorithm of late years. Its advantages are fewer parameters, stronger global search capability,
and more excellent search path. It is suitable for a multiobjective solution [32–34]. Based on this,
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this work proposes a prediction method of APS thermal barrier coating microstructural features using
processing parameters based on the support vector machine optimized by the CS algorithm.

2. Experimental Procedures and Modeling Methods

2.1. Coatings Fabrication and Microstructural Features Characterization

In this work, as shown in Figure 1, to acquire the tested samples and the calibration samples with
multifarious microstructural features, the ZrO2 8 wt.% Y2O3 (8YSZ) powders (Beijing Sunspraying
Technology Co., Ltd., Beijing, China) were received with two batches of the nominal particle size
distribution of 40–96 µm and 15–55 µm, 24, 30, 33, and 36 kW were chosen as the spray power during
TBCs samples preparation, respectively; the spray distance was chosen from 70 to 120 mm. Disk-shaped,
grit-blasted, carbon steel substrate plates (Ø 25.4 × 3.1 mm2) were used as the substrates [3].
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of the scratch in the sample is perpendicular to the direction of rotation of the polishing cloth. Until 
all the wear marks disappear, the polishing time should not be too long to prevent it from excessive 
polishing. Finally, the polished sample surface was cleaned with alcohol and dried with an electric 
hair dryer to obtain the final metallographic sample. Microstructure features observations were made 
using a scanning electron microscope (SEM, ZEISS EVO MA15, Carl Zeiss SMT Ltd., Oberkochen, 
Germany). Image analyses were performed using the ImageJ software (vl.46, National Institutes of 

Figure 1. Particle sizes of the two batches 8YSZ powders. (a) 40–96 µm; (b) 15–55 µm.

The APS spray experiments were carried out with a commercial APS system (APS-2000, Beijing
Aeronautical Manufacturing Technology Research Institute, Beijing, China). A manipulator (Asea
Brown Boveri Ltd., Zurich, Switzerland) was employed to fix the gun at a velocity of 15 cm/s. The argon
and hydrogen were chosen as the principal plasma gas and ancillary gas, respectively, and the pressure
of argon and hydrogen was maintained at 0.4 and 0.25 MPa, respectively. Argon was also employed as
the powder feed gas at a flow rate of 10 L/min. The APS spray process parameters are listed in Table 1.

Table 1. The atmospheric-plasma-sprayed (APS) process parameters for deposition of the 8 wt.% yttria
partially stabilized zirconia (YSZ) ceramic top coatings.

APS Parameters Optional Indicators

Particle size (µm) 40–96, 15–55
Spray distance L (mm) 70, 80, 90, 100, 110, and 120

Spray power (kW) 24, 30, 33, and 36
Powder feed rate (L/min) 10

gun speed (cm/s) 15

The inlaid TBCs samples were polished with 240#, 400#, 600#, 800#, 1000#, and 1200# water
sandpaper, and began to be water milled at 800# sandpaper. After the sample is polished, polish it
with a diamond abrasive paste with a particle size of 1.5 µm on the polishing machine. The direction
of the scratch in the sample is perpendicular to the direction of rotation of the polishing cloth.
Until all the wear marks disappear, the polishing time should not be too long to prevent it from
excessive polishing. Finally, the polished sample surface was cleaned with alcohol and dried with
an electric hair dryer to obtain the final metallographic sample. Microstructure features observations
were made using a scanning electron microscope (SEM, ZEISS EVO MA15, Carl Zeiss SMT Ltd.,
Oberkochen, Germany). Image analyses were performed using the ImageJ software (vl.46, National
Institutes of Health, Bethesda, MD, USA). The binary conversion was used to split image to extract the
microstructural features, plentiful isolation of pores of various types jumbled together, as shown in
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Figure 2, the YSZ matrix (white region) and pore network (black region) represented the one-threshold
level and zero-threshold level, severally. To distinguish and count the spherical pore and crack network,
an opening operation was implemented to remove and add pixels from the edges of objects, successively.
It should be noted that this so-called crack network is a collection of linear porosity. Hence, in the
preprocessing phase, the image was processed by using morphological operations, and the background
noises were removed from the image by the morphological operating [35,36]. To further do statistical
analysis of the microstructure features, porosityω, pore-to-crack ratio k, maximum Feret’s diameter Df,
aspect ratio AR, and circularity Cr, which were considered to reflect the morphology of micropores
more comprehensively, were chosen to perform statistical analysis, we obtained the average value as
the modeling output according to the frequency weighting of the respective microstructural feature
distribution, and 5 different discontiguous SEM images were counted for each processing parameter to
ensure the reliability of the statistical results. The definitions of these chosen microstructural features
are listed in Table 2, and the schematic illustration of these chosen microstructural features could be
found in [35,36].
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Figure 2. Implementation of thresholding and opening operation for microstructural features extraction.

Table 2. Definitions of various microstructure features.

Microstructure Feature Definition Symbol

Porosity The volume percent of pore ω

Pore-to-crack ratio The ratio of the globular pore area to crack network area k
Maximum Feret’s diameter Maximum distance between two points on the boundary Df

Circularity 4πA/p2 (A is the pore area and p is the pore perimeter) Cr
Aspect ratio Ratio of the longest diameter to shortest diameter (best fitting ellipse) AR

2.2. Methodological Background and Model Construction

2.2.1. Support Vector Machine

SVM is a novel machine-learning method based on the statistical learning theory proposed by
Vapnik in 1995 [37]. It can effectively solve subsistent problems and has become intelligent technology.
The research hotspot in the field has been widely used in various domains, such as status assessment,
pattern recognition, failure diagnosis, and so on. SVM is continuously developed from the linear
time-sharing optimal classification hyperplane and the idea of modeling is aimed to find the support
vector to establish the optimal classification hyperplane. Mathematically, it can be reducible to a
quadratic optimal solving problem. This algorithm has many advantages, for example, the structural
risk is optimal, and it has good generalization ability for learning small sample data to prevent the
overfitting problem. The support vector machine algorithm is based on the assumption that the
geometric interval is maximized, and the data is assumed to be linearly separable. In fact, in most cases,
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it is linearly inseparable, so the basic type of support vector machine adds a slack variable. According
to the given training data set (X,Y), an SVM recognizer could be established, which can be expressed as
follows [20,38]:

Y(X) = ωT
·ϕ(X) + b + ϑ (1)

where Y(X) is the predictable outcome; the symbol T represents the transpose processing of the matrix;
ϑ is the noise, which is defined by the error tolerance ζ; ϕ(X) is the kernel function;ω and b are the
regression function parameter, respectively, could be calculated via the principle of error function
minimization as follows:

min

1
2
ωTω+ c

 N∑
j=1

εθ +
N∑

j=1

εθ
∗


 (2)

subject to {
−ζ− ε∗

θ
≤ Y(X)−ω

T
·φ(X) − b ≤ ζ+ εθ

ε∗
θ
≥ 0, εθ ≥ 0, θ = 1, 2, . . . , i

(3)

where c is the regularization parameter representing the penalty loss; if the data examples are outside
of them ζ, then the slack variables εθ∗ and εθ will be existent; i is the sample size.

Previous studies have shown that the commonly used kernel functions of SVM include linear
inner product kernel function, polynomial kernel function, and radial basis function (RBF). When there
is a lack of a priori knowledge, the RBF has fewer parameters and better performance, which are better
than other kernel functions [39–41]. Therefore, this study selects the Gaussian version of RBF as the
kernel function of the SVM and CS methods were applied to optimize SVM parameters to acquire the
optimum prediction results.

2.2.2. Cuckoo Search Algorithm

The cuckoo search algorithm is a meta-heuristic algorithm developed by Xin-she Yang and Suash
Deb in 2009. The algorithm was developed based on the parasitic reproduction strategy possessed by
the cuckoo population itself [33,42]. CS algorithm uses egg nests on behalf of the solutions. In the
oversimplified case, there is one egg per nest, and the cuckoo’s egg signifies a new solution. The aim is
to adopt new and latently better solutions instead of suboptimal solutions. To simulate the cuckoo
bird’s nesting behavior, the CS algorithm sets three rules as follows [43,44]:

Firstly, at a time the cuckoo just lays one egg, and uses it on behalf of a solution to the problem,
and stochastically puts the eggs in a bird’s nest for hatching.

Secondly, in these nests, some of them have high-quality eggs, which is a good solution to the
problem, and these nests will be reserved for the next generation.

Thirdly, the total number of bird nests is invariable. The probability that the owner finds that the
egg is an exotic egg is Pa(Pa ∈ [0, 1]).

The search path of the CS algorithm is extraordinary in comparison to the ordinary algorithm.
The algorithm uses the Levy flight search method with strong randomness. Suppose the position of
the ith nest of the tth bird’s nest is x(t)i , and the machine search path is L(λ), then the update formula of
the cuckoo’s path and position for finding the bird’s nest can be expressed as follows:

x(t+1)
i = x(t)i + α⊕ L(λ), i = 1, 2, 3, · · · , n (4)

where α is the step control amount. After the position is substituted, a number r of [0,1] is stochastically
generated. If r > Pa, the nest position x(t+1)

i is changed, otherwise it keeps constant. Finally, the group

of nest positions y(t+1)
i with the best-retained effect is still recorded as x(t+1)

i .
In the CS algorithm, the step size is random and short of adaptivity, which could not ensure rapid

convergence. To solve the problem between the global optimization ability and accuracy, based on the
CS algorithm, on the basis of the search results of various stages, the step size is adaptively adjusted
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dynamically. The adaptive step adjustment strategy from the optimal bird’s nest position can be
expressed as follows:

stepi = stepmin +
(
stepmax − stepmin

)
di (5)

di =
ni − nbest

dmax
(6)

where stepmax and stepmin are the maximum and minimum step size, respectively; nbest is the best
state of the current nest position; ni is the ith nest position; dmax is the maximum distance between the
optimal position and other nests.

2.2.3. SVM Parameter Optimization Based on CS

• The SVM parameters determine the learning and generalization ability of the SVM model.
Two crucial and decisive RBF parameters are C and σ, respectively. The former determines the
balance between the complexity of the SVM model and empirical error, the latter determines the
complexity of the sample data distribution. Hence, in this study, MATLAB software (R2017a,
MathWorks. Inc) is used for modeling implementation, the CS algorithm is applied to optimize the
SVM model parameters C and σ as follows [34]: Gather the training set samples, and preprocess
the training set samples to acquire SVM learning samples. As a matter of experience, set the value
range of SVM parameters C and σ, the minimum step stepmin and the maximum step stepmax of
the CS algorithm, and the number of iterations N [34].

• Set the probability Pa = 0.25 and the number of nests n = 20 from the beginning, stochastically

generate the position p(0)i =
[
x(0)1 , x(0)2 , · · · , x(0)n

]T
of the n nests, each nest corresponds to a

set of parameters (C,σ), calculate the fitness evaluation function of each set of nest positions
corresponding to the training set, and find the optimum nest position x(0)b and fitness evaluation
function Fmax at present.

• Keep the position x(0)b of the optimal nest of the previous generation, calculate the Levy flight step
length according to Equations (5) and (6), use the Levy flight to update the positions of other nests
to acquire a new set of nest positions, and calculate their fitness evaluation function F.

• According to the fitness evaluation function F, the position of the new bird’s nest is compared with
the position Pi−1 of the previous generation bird’s nest, and the poorer bird’s nest position
is replaced with a better bird’s nest position to acquire a new set of bird’s nest position

pt =
[
x(t)1 , x(t)2 · · · , x(t)n

]T
.

• Use random number r to compare with Pa, keep the bird’s nest with the smaller probability of
being found in Pt, update the bird’s nest with the higher probability of discovery, calculate the
fitness evaluation function of the new nest, and make comparison with the fitness evaluation
function of the position Pt, and replace the bad position with a better bird’s nest position to get a
set of the latest and better bird’s nest position Pt.

• Find the optimal nest position b in Step (5), determine whether the fitness evaluation function F is
up to the standard. If it is up to the standard, the search is stopped, and output the global best
fitness evaluation function F and its optimal nest t; if it is not up to the mustard, return back to
Step (3) to continue the optimization.

• Set the SVM parameters according to the optimal parameters (C,σ) corresponding to the optimal

bird’s nest position x(t)b .

2.2.4. Model Performance Indicators

In this work, the APS process parameters of 12 samples (80%) were used as the training sets to
set up the cuckoo search–support vector machine (CS-SVM) model, and the remaining APS process
parameters (20%, 3 samples) were used as the validation and prediction sets, when modeling the
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validation and prediction sets, a random method is used to create these data sets. The accuracy and
reliability of the proposed CS-SVM model were evaluated using four parameters objectively, including:
squared correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). Their definitions are as follows:

R2 =


n∑

i=1

(
Ŷi − Ŷ

)(
Yi −Y

)
√

n∑
i=1

(
Ŷi − Ŷ

)2
√

n∑
i=1

(
Yi −Y

)2



2

(7)

RMSE =

√√ n∑
i=1

(
Yi − Ŷi

)2
/n (8)

MAE =
n∑

i=1

∣∣∣Yi − Ŷi
∣∣∣/n (9)

MAPE =
n∑

i=1

∣∣∣Yi − Ŷi
∣∣∣

Yi
/n (10)

where n is the number of samples for modeling, Yi is the real value of TC microstructural features, Ŷi is
the predicted value of TC microstructural features obtained by the CS-SVM model.

3. Results and Discussion

3.1. Microstructure Features

Generally, APS coatings are layered structures formed by the accumulation of countless flattened
completely melted particles, partially melted particles, pores, oxides, inclusions, and other complex
components. As a vital structural defect, pores have an important impact on the performance and
service life of the coatings. Therefore, it is necessary to quantitatively and accurately characterize
the microstructural features, and then establish the relationship among the microstructural features,
the process parameters, and the service performance of the coatings [7,35].

As displayed in Table 3, different processing parameters will lead to the change of melting
indexes of inflight particles during the preparation, these 15 samples have different microstructure
features [45,46]. For the distribution of the porosity of APS coatings, the porosity mainly varies from
8.99% to 23.01%, the processing parameters of particle size of 40–96 µm, spray distance of 120 mm,
and spray power of 36 kW contributes to the largest porosity of 23.01%, larger values of porosities
mainly occur with relatively coarse particle (40–96 µm) and long spray distance (120 mm). For the
distribution of the pore-to-crack ratio of APS coatings, the pore-to-crack ratio mainly varies from
0.3480 to 0.5902, the processing parameters of particle size of 15–55 µm, spray distance of 120 mm,
and spray power of 36 kW contributes to the highest pore-to-crack ratio of 0.5902, larger values of
the pore-to-crack ratios mainly occur with relatively fine particle (15–55 µm). For the distribution of
the Maximum Feret’s diameter of APS coatings, the maximum Feret’s diameter mainly varies from
1.2949 to 3.0536 µm, the processing parameters of particle size of 40–96 µm, spray distance of 120 mm,
and spray power of 36 kW contributes to the greatest maximum Feret’s diameter of 3.0536 µm, larger
values of maximum Feret’s diameters mainly occur with relatively coarse particle (40–96 µm) and
long spray distance (120 mm). For the distribution of the aspect ratio of APS coatings, the aspect ratio
mainly varies from 1.6312 to 1.8350, the processing parameters of particle size of 40–96 µm, spray
distance of 120 mm, and spray power of 36 kW contributes to the highest aspect ratio of 1.8350, larger
values of aspect ratios mainly occur with relatively coarse particle (40–96 µm) and long spray distance
(120 mm). For the distribution of the circularity of APS coatings, the circularity mainly varies from
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0.7322 to 0.8591, the processing parameters of particle size of 15–55 µm, spray distance of 70 mm,
and spray power of 36 kW contributes to the largest circularity of 0.8591, larger values of circularity
mainly occur with relatively fine particle (15–55 µm, maximum Feret’s diameter).

Table 3. Database for the training, validation, and test of the cuckoo search–support vector machine
(CS-SVM) model.

No.

APS Process Parameters Microstructural Features (Average Value)

Particle
Size
(µm)

Spray
Distance

(mm)

Spray
Power
(kW)

Porosity Pore-to-Crack
Ratio

Maximum Feret’s
Diameter (µm)

Aspect
Ratio Circularity

1 15–55 70 36 11.83% ± 1.04% 0.4062 ± 0.0222 1.2949 ± 0.2160 1.6312 ± 0.0519 0.8591 ± 0.0231
2 15–55 80 36 11.37% ± 1.63% 0.5005 ± 0.0479 1.6076 ± 0.3802 1.6983 ± 0.0517 0.8436 ± 0.0130
3 15–55 90 24 12.98% ± 1.98% 0.5419 ± 0.0278 1.7304 ± 0.1842 1.7283 ± 0.0136 0.8286 ± 0.0115
4 15–55 90 30 11.91% ± 1.02% 0.5337 ± 0.0346 1.9900 ± 0.1723 1.7126 ± 0.0155 0.8039 ± 0.0052
5 15–55 90 33 11.25% ± 1.65% 0.4336 ± 0.0517 1.6842 ± 0.3143 1.7333 ± 0.0431 0.8130 ± 0.0048
6 15–55 90 36 8.99% ± 0.96% 0.3582 ± 0.0387 1.7011 ± 0.0591 1.7281 ± 0.0297 0.7899 ± 0.0134
7 15–55 100 36 10.14% ± 1.92% 0.3998 ± 0.0301 1.8026 ± 0.1241 1.7658 ± 0.0295 0.8028 ± 0.0078
8 15–55 110 36 13.02% ± 1.44% 0.4305 ± 0.0147 1.8072 ± 0.1407 1.7800 ± 0.0131 0.8049 ± 0.0049
9 15–55 120 36 16.83% ± 2.05% 0.5902 ± 0.0271 2.0997 ± 0.2245 1.8294 ± 0.0384 0.7968 ± 0.0083

10 40–96 70 36 15.02% ± 1.77% 0.3690 ± 0.0571 2.4856 ± 0.1337 1.7172 ± 0.0271 0.7899 ± 0.0163
11 40–96 80 36 15.38% ± 1.56% 0.3480 ± 0.0194 2.2385 ± 0.1580 1.7898 ± 0.0167 0.7710 ± 0.0254
12 40–96 90 36 15.93% ± 1.85% 0.3620 ± 0.0201 2.6294 ± 0.2081 1.7981 ± 0.0635 0.7811 ± 0.0169
13 40–96 100 36 18.31% ± 2.23% 0.3720 ± 0.0288 2.6478 ± 0.2335 1.7821 ± 0.0215 0.7638 ± 0.0140
14 40–96 110 36 20.62% ± 1.79% 0.3990 ± 0.0302 2.9361 ± 0.3542 1.8054 ± 0.0457 0.7529 ± 0.0234
15 40–96 120 36 23.01% ± 2.42% 0.4100 ± 0.0256 3.0536 ± 0.2861 1.8350 ± 0.0529 0.7322 ± 0.0134

Based on the above analysis, it seems that the particle size has a greater impact on the microstructure
features, nevertheless, there are no obvious relationships among the porosity, the pore-to-crack ratio,
the maximum Feret’s diameter, the aspect ratio, and the circularity. Hence, we need to analyze the
range of the three factors (A, B, and C) at each level to determine the order of each factor influence
on the characteristics of each microstructural feature, so as to further reveal the influence of various
process parameters on the microstructural features qualitatively. The specific implementation method
of range analysis is to average the microstructure features at each level corresponding to each process
factor (A, B, and C), and then to calculate the difference between the maximum and minimum values
of these averages at each level. The difference is the range of this process factor, and then the ranges of
different process factors are compared and sorted in order from largest to smallest. It is regarded as the
ranking of the influence of different factors on the microstructure features. As displayed in Table 4,
for the variations of porosity and aspect ratio, the influence of spray distance is the greatest of the three
factors; for the variations of the pore-to-crack ratio and circularity, the influence of spray power is the
greatest of the three factors; for the variation of maximum Feret’s diameter, the influence of particle
size is the greatest of the three factors. Beyond that, it is still very difficult to determine the relationship
between the APS processing parameters and the microstructure features quantitatively using the curve
fitting method, hence, a CS-SVM model is built to predict the microstructural features in this study.

Table 4. Range analysis of three factors at each level.

Range Analysis Particle Size
(Factor A)

Spray Distance
(Factor B)

Spray Power
(Factor C) Influence Rank

Porosity 0.0601 0.0771 0.0379 B > A > C
Pore-to-crack ratio 0.0894 0.1142 0.1298 C > B > A

Maximum Feret’s diameter 0.9188 0.6865 0.5078 A > B > C
Aspect ratio 0.0538 0.1580 0.0508 B > A > C
Circularity 0.0506 0.0600 0.7907 C > B > A

3.2. Analysis of the Training and Prediction Process of CS-SVM Model

As shown in Figure 3, the comparison results of the testing data and prediction data obtained by
the CS-SVM model were given, where the black and red symbols stand for the tested and predicted
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values of microstructure features of 12 random samples, respectively, and these comparison results
were in good consistency.
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To compare the prediction results of the microstructural features of the 12 random training samples,
accuracy and reliability of the CS-SVM training model were shown in Table 5, it can be seen clearly that
the R2 of CS-SVM training model on all these microstructural features reached by over 95%, and all
these error performance indices (RMSE, MAE, MAPE) had low values, all these indicators meant
that the CS-SVM training model obtained by 12 random samples had high accuracy and reliability in
microstructural features prediction.

Table 5. The prediction performance of the 12 remaining random samples obtained by the
CS-SVM model.

Training Results R2 RMSE MAE MAPE

Porosity 0.9773 0.0050 0.0046 0.0360
Pore-to-crack ratio 0.9900 0.0118 0.0117 0.0273

Maximum Feret’s diameter (µm) 0.9709 0.0794 0.0739 0.0382
Aspect ratio 0.9569 0.0106 0.0102 0.0058
Circularity 0.9759 0.0059 0.0057 0.0072

To verify the prediction accuracy and reliability of our proposed CS-SVM model, the remaining
three samples were used to check the performance of CS-SVM model, as shown in Figure 4, the orange
and blue symbols stand for the experimental and predicted values of microstructure features of three
remaining random samples, respectively, these comparison results were in also good agreement.
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In the same way, to compare the prediction results of the microstructural features of the three
remaining random samples, accuracy and reliability of the CS-SVM training model were shown in
Table 6, it can be seen clearly that the R2 of CS-SVM training model on all these microstructural features
also reached by over 95%, and all these error performance indices (RMSE, MAE, MAPE) also had low
values, all these indicators meant that the CS-SVM training model obtained by 12 random samples
had high accuracy and reliability in microstructural features prediction. It indicated that the CS-SVM
model was very accurate in predicting all the microstructure features of APS coatings, even though
some microstructure features changed slightly when the processing parameters changed significantly,
so the CS-SVM model could meet the requirements in microstructure feature prediction.

Table 6. The prediction performance of the 3 remaining random samples obtained by the CS-SVM model.

Prediction Results R2 RMSE MAE MAPE

Porosity 0.9922 0.0061 0.0057 0.0303
Pore-to-crack ratio 0.9798 0.0076 0.0063 0.0159

Maximum Feret’s diameter (µm) 0.9955 0.0954 0.0943 0.0408
Aspect ratio 0.9767 0.0140 0.0130 0.0074
Circularity 0.9953 0.0061 0.0047 0.0059

4. Conclusions

In this work, APS TBCs was deposited with various powder sizes at different spray distances and
power to acquire samples with various microstructural features, including porosityω, pore-to-crack
ratio k, maximum Feret’s diameter Df, aspect ratio AR, circularity Cr, owing to the variation of melting
indices during the preparation process. An SVM model had been optimized by the CS algorithm,
employed to build regression models, and trained to predict the coating microstructural features using
the APS processing parameters. Fifteen samples were conducted to set up the data set for the training
and prediction of the CS-SVM model. Five CS-SVM models with high R2 values (>95%) and low
error values (<0.1), in terms of five kinds of microstructure features prediction, were achieved by
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12 random samples. The accuracy and reliability of the CS-SVM models have been further verified
by the remaining three random samples test sets, where the R2 values also reached by over 95% and
error values were less than 0.1. Undoubtedly, these indicators proved that the proposed novel CS-SVM
model in this work is very suitable for small sample regression prediction and its performance could
meet the accuracy needed in actual microstructure features prediction. Additionally, this novel hybrid
machine-learning method will potentially be extensively employed to establish the relationship among
the process parameters, microstructure features, and service performance, and to monitor and ensure
the integrity and safety of TBCs.
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