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Abstract: Graphene-based materials are found as excellent resources and employed as efficient anti-
microbial agents, and they have been receiving significant attention from scientists and researchers
in this regard. By giving special attention to recent applications of graphene-based materials, the
current review is dedicated to unveiling the antimicrobial properties of graphene and its hybrid
composites and their preparation methods. Different factors like the number of layers, concentration,
size, and shape of the antibacterial activity are thoroughly discussed. Graphene-based materials
could damage the bacteria physically by directly contacting the cell membrane or wrapping the
bacterial cell. It can also chemically react to bacteria through oxidative stress and charge transfer
mechanisms. This review explains such mechanisms thoroughly and summarizes the antibacterial
applications (wound bandages, coatings, food packaging, etc.) of graphene and its hybrid materials.

Keywords: graphene; antibacterial activity; mechanism; graphene-based materials

1. Introduction

Frequent increase in population leads to contamination of water and air in our day-
to-day life. Consequently, infectious diseases and pathogens are developed worldwide.
Over the past few years, drug resistance was developed in many pathogens because
of the excessive utilization of antibiotics like β-lactam, chloramphenicol, carbapenem,
etc. [1,2]. Therefore, multidrug resistance of pathogens affecting humans with various
infections globally could be one of the crucial problems that needed to be resolved [3].
Several antimicrobial agents like carbon nanotubes, metal nanoparticles, and metal oxide
nanoparticles have been discovered to address this problem. Graphene and its hybrid
materials are currently recognized as efficient antimicrobial agents and have shown a
deleterious effect on plant pathogens [4–6].

Graphene (GR) is a two-dimensional structure with hexagonal carbon arrangements
in a honeycomb manner in which each carbon atom undergoes sp2 hybridization and
contains one pure Pz electron. This is the reason for its exceptional electrical properties, and
it is the thinnest material ever found on earth [7–9]. Graphene has grabbed much attention
from researchers and scientists in several areas of nanotechnology owing to its distinctive
physical, thermal, and electrical properties [10,11]. Graphene oxide is an oxidation form of
graphene and having oxygen polarity groups on the planes of 2D structure, which is highly
dispersible in water [5]. Graphene-based materials can hold biomolecules, particularly;
graphene and graphene oxide nanomaterials could act as powerful bactericidal effects
against all types of pathogenic microorganisms. This bactericidal mechanism is a complex
structure and completely associated with the intrinsic properties of graphene-related mate-
rials. The parameters like the nature of the targeted microorganism, surface modification
and composition, and the characteristics of the environment in which cell and graphene
interaction take place are essential for efficient antibacterial activity. Current research
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unveiled that graphene oxide is a good candidate for antimicrobial applications, as it pos-
sesses polar oxygen groups. Thus, it can undergo oxidative stress. Several investigations
have already reported that graphene, graphene oxide, and their hybrid materials could
act efficiently against Gram-positive and Gram-negative bacteria [12–14]. Furthermore,
graphene and graphene oxide could interact with bacterial cells either physically or chemi-
cally, responsible for their antimicrobial activity [15,16]. Physically, graphene may cause
structural damage to the microorganism, capable of biologically isolating cells from their
environment, ultimately leading to cell death. Furthermore, chemical interaction between
graphene and microorganism releases toxic substances called reactive oxygen species (ROS).
In addition, the electron transfer phenomenon could occur where electrons are progres-
sively drained from the microbial’s outer surface, which further causes ROS-independent
oxidative stress leading to biological death.

Currently, plenty of research is ongoing on graphene-based materials and their com-
posites for their enormous diversifying implications. Although comprehensive research on
graphene-based composites materials has already been established [17–21], exploration
of graphene products commercialization is still under process. Such composites’ final
performance entirely relies on the graphene dispersion and interfacial interactions associ-
ated with them. Graphene has already proved an excellent antimicrobial agent as a nano
reinforcement in manufacturing hybrid composites, catalyst in catalysis, the sensor in solar
cell applications, wastewater treatment, drug delivery, etc.

In literature, many reviews on graphene-based materials are reported with differ-
ent perspectives [22–24]. Nevertheless, a combined analysis of preparation methods of
graphene and their antimicrobial activity is infrequent. In the present review, initially, the
first part dealing with preparation methods of graphene from biosources. Then, the second
part highlights the antimicrobial action mode of graphene and graphene-based materials.
Finally, the antibacterial applications of graphene-based materials are enumerated.

2. Preparation Methods of Graphene from Waste and Bioprecursors

The initial part of the present review emphasizes the preparation methods of graphene
using waste and bio precursors. Due to the industrial revolution, waste generation and
accumulation have become inevitable, so innovative approaches are required to utilize
waste for valuable products. Converting this waste to use carbon materials like graphene
is an appreciable approach. Graphene can be prepared by bio precursors like glucose,
chitin, grape seed extract, alginate, etc. In this review, the preparation methods of graphene
from different resources have been summarized, highlighting the merits and demerits. If
graphene is economically produced using biomass or from waste, it can be utilized for
various applications.

2.1. Significance of Preparation of Graphene from Bioresources

Inexpensive biosources have been identified from the available literature and dis-
cussed. This review intended to unveil the eco-friendly and straightforward preparation
methods of graphene and augment the innovative approaches. In recent years, much
research has been progressing to prepare graphene with good quality with high yield. This
section will undoubtedly enable the readers to obtain valuable information over other
sources and ultimately raise some challenges to the researchers to fabricate economically
viable and quality graphene.

Manifold sustainable resources are essential for synthesizing graphene. This review
highlights the use of various renewable bioresources such as glucose, rice husk, hemp,
and disposable paper cups, and a detailed mechanism for synthesizing graphene and its
applications.

2.2. Different Bioprecursors

Generally, the paper cups are made of wood, containing cellulose and hemicellulose,
an extraneous material. However, a research team perceived it differently to utilize them
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as a starting material for preparing graphene. Hong Zhao et al. had prepared graphene
using disposable paper cups as a precursor in the presence of an iron catalyst [25]. They
highlighted two great uses of this approach. One is preparing graphene from waste with
high yield compared to other conventional methods, and the second one is the excellent
quality of the product. The preparation mechanism involves the activation treatment of
paper cups with the aid of K+ and KOH ions, and these ions are adsorbed on the structure
of paper pulp. The addition of Fe catalyst results in the exchanging of ions Fe2+ with K+.
In the end, the Fe3C layer could be formed when heated at higher temperatures, similar
to the graphitization process. Carbon diffuses out to form multilayers of graphene over
the Fe during the temperature reduction and thus resulting in the Fe/graphene composite.
In the end, the etching process can be employed to eliminate Fe ions from the resultant
graphene product. Besides, Pt/graphene can also be prepared [25] by exchanging Fe ions
with Pt through galvanic displacement. The entire mechanism is summarized in Figure 1.
This method is economically viable, quality graphene can be prepared from disposable
paper cups, and it is a pioneering fabrication method that still requires optimization.
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Figure 1. Formation mechanism of graphene sheets from paper cups [25].

The rice husk covers rice kernels, and rice is produced annually in huge million
tons. As a consequence, rice husk is being considered a substantial agricultural waste.
The potential use of rice husk has been implemented for synthesizing graphene [26–30]
(see Figure 2). However, it is also utilized to manufacture silica products [31,32] because
it contains more amount Si concentration. Eliminating the Si from rice husk results in
a large amount of organic carbon, which is being wasted [33]. Recently, research has
been conducted on deriving nanocarbon materials from the same. Research reports have
revealed that a biocompatible graphene quantum dot could be prepared from rice husk with
a good yield of 15%. The biocompatibility of the obtained product was confirmed using a
cell viability test. Besides, silicon nanoparticles with a vast surface area can also be prepared
from the rice husk as they can be utilized for comprehensive purposes. In the past, Hiroyuki
et al. revealed a new synthetic method for the preparation of graphene through activation
of rice husk by activating it with KOH, and substantial heating at high temperatures was
conducted at 1123 K [34]. Herein, KOH helps prepare high-quality graphene containing
sharp edges and can induce porosity while eliminating Si impurities. Nevertheless, the
research team failed to explain the mechanism of the formation of graphene. In another
report, graphene was prepared using rice husk for high-energy storage applications [35]
due to the rice husk’s inter-connected nanoporous structure. Therefore, quality-related
issues should be thoroughly answered when utilizing rice husk to prepare graphene.
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Glucose is a carbohydrate molecule having the structural formulae C6H12O6, and it
is a renewable carbon resource. Many researchers utilize graphene and its derivatives to
identify glucose non-invasively due to its sensitivity to environmental changes [36]. On
the other side, glucose can be starting precursor for synthesizing graphene. Recently, a
report revealed the preparation of graphene from glucose with the aid of ferric chloride [37].
In this preparation method, initially, glucose was dissolved with water in the presence
of FeCl3. Then, the resultant mixture was heated to 80 ◦C, subsequent calcination at
700 ◦C with inert gas atmosphere results in the formation of graphene and Fe (0). In the
end, Fe can be removed with the aid of HCl. Here, FeCl3 plays a crucial role in forming
quality graphene because it acts as a catalyst. Therefore, this method can be easily adapted
for the mass production of graphene. The schematic representation of the preparation
method is given in Figure 3. Xin Hao Li and his group [38] also reported the preparation of
graphene utilizing glucose and formed graphene named patched graphene. In this method,
dicyandiamide (DCDA) was mixed with glucose in the presence of a nitrogen atmosphere
to form the layered graphitic nitride (g-C3N4). Complete thermolysis of the developed
g-C3N4 results in sheet-like graphene having high crystallinity with a pure atomic structure.
This method is suitable for obtaining nitrogen-doped graphene because it can regulate
nitrogen content. As in the Hummer method, graphene oxide (GO) substantially aggregates
into thick flakes. In this approach, entangled graphene sheets can be produced without
any separation or post-purification process.
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Hemp fiber is another type of bioresource that can be utilized for the preparation
of graphene. It is derived from the cannabis plant known as bast. The fibrous part of
this plant could be employed as clothing oil, rope, and plastics. Huanlei Wang and his
coworkers synthesized nanographene from hemp fiber waste, an inexpensive starting
material [39]. In another report, David Miltin revealed that Hemp bast is considered
nanocomposite, which is made of hemicellulose, lignin, and crystalline cellulose [39]. The
hydrothermal method was used to prepare nanocarbon material from Hemp fiber with
the aid of KOH activation. Initially, the fibers were heated at 180 ◦C for 24 h to dissolve
lignin and cellulose components. The following material was treated with KOH to prepare
porous graphene (refer Figure 4). The prepared graphene can be used for energy and
environmental applications.
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3. Antimicrobial Mechanism of Graphene Materials

Many research articles have summarized the antimicrobial activity of graphene and
its derivatives. However, the mechanisms of antimicrobial activity of such nanomaterials
are still under investigation [40,41]. Initially, graphene is invented by Andre Geim and K.
Novoselov through tape peeling of two-dimensional graphene layers from graphite [42,43].

Antibacterial Activity Mechanism of Graphene-Based Materials (GBMs)

Different mechanisms of antibacterial activity of GBMs are available in the literature
(see Figure 5), mainly oxidative stress through the production of reactive oxygen species [15]
and the extraction of phospholipids from bacteria [44]. In the past, Zhang et al. had revealed
that oxidative stress plays an important role. It entirely depends on the oxidation level
of Graphene oxide (GO), which decides the cytotoxicity of GO. It was found that ROS
production could be controlled in mammalian cells depending on various oxidation levels
of GO [45]. They confirmed that the GO with less oxidation could enhance more ROS.
These results could be further corroborated by electron spin resonance (ESR) spectrometry.
It indicated that lower oxidation GO is strongly associated with indirect oxidative damage
by activating H2O2 decomposition, which enhances the natural oxidative abilities of cells.
Besides, theoretical simulations confronted that the size of oxidative groups and aromatic
carbon ring of the nanographene sheet had a remarkable effect on the energy barrier of the
decomposition reaction of H2O2.

In the past, Tu et al. had identified the effect of GO on the structural changes of E. coli
using transmission electron microscopy (TEM) [44]. The interaction between membrane
and GO is stimulated through the lipid extraction mechanism. A symbolic structure of GO
can be observed inner and outer parts of E. coli during this process, which indicates that
the GO nanosheets extract the phospholipids. The main driving force for the extraction of
phospholipids is the van der Waals forces between GO sheets and membrane lipids.

After extraction, hydrophobic forces among lipids’ hydrophobic tail interact with the
hydrophobic part of GO (i.e., aromatic carbon ring). Besides, electrostatic interactions are
developed between the hydrophilic head of lipids and unoxidized hydrophobic regions of
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GO. Thus, it is speculated that there is a drastic drop in cell viability owing to the insertion of
graphene and destructive lipid extraction, which imposes massive stress on the membrane.
The whole process of cell viability ultimately depends on the concentration and lateral size
of graphene sheets [44]. The insertion mode of action mechanism is proposed in which
two-dimensional sharp graphene sheets utilize their sharp edges to destroy bacterial cells
through the cell membrane and cause cell death due to leakage of intracellular material [46].
In the past, Akhavan et al. had reported that the biocidal activity of GO and rGO is because
of direct contact of sharp edges with bacterial cell walls for different bacterial cells [47]. In
another report, Li et al. revealed that graphene sheets penetrate inside the bacterial cell
through lipid bilayer by piercing the cell wall of bacteria with its sharp edges [48].

Furthermore, the effect of incorporating various sizes of graphene sheets into the
lipid layer of bacteria was unveiled by Yi et al. [49]. If the graphene is in micrometer size,
it could orient near perpendicular configuration to the cell wall. In contrast, nanosize
graphene could adopt a parallel position concerning the lipid bilayer of bacteria. Due to the
interactions between lipids hydrocarbon tail with flat lipophilic graphene, graphene could
sink between lipid tails. Consequently, graphene successfully penetrates inside the cell
membrane. Nevertheless, in another report, Dallavalle had identified that graphene with
smaller sizes could diffuse into the lipid membrane and orient themselves perpendicular
configuration [50]. In contrast, large size graphene sheets arranging themselves across
the cell membrane. Antibacterial behavior of pristine graphene and its cytotoxicity were
analyzed by Pham et al. using experimental simulation and computer calculations to
enhance the knowledge related to the cytotoxicity of graphene [51]. They found that
graphene edges’ density could significantly affect the antibacterial activity by creating
an imbalance in osmotic pressure, leading to pores in bacteria’s cell wall and eventually
cell death. Another exciting mechanism proposed by the researchers is that the lipophilic
flat surface of graphene destabilizes the 3D structure of the protein by disconnecting the
protein-protein bonds on the cell membrane, causing the functional failure of bacteria [52].
As the metabolic activity of bacteria increases, the GO can be converted to graphene,
resulting in a reduction reaction, which causes antibacterial activity. This effect is known
as self-killing bacteria.

Besides insertion mode of action, another mechanism is explained based on direct
contact of graphene basal plane with the cell membrane of bacteria, leading to the de-
struction of the growth of bacteria [53,54]. Recently, the direct attachment effect of CVD
graphene on bacterial strains of E. coli, LF82, and UTI89 has been analyzed. It is concluded
that these CVD graphene interfaces show no antibacterial activity due to there being no
membrane damage of bacteria [40]. Furthermore, no morphological changes of bacteria
were observed through SEM images. In contrast, the adherent strain of E. coli can quickly
and easily proliferate into bio-based films.

A report revealed that the substrate electronic properties play a crucial role in destruc-
ting the Gr-coated surfaces [53]. For instance, graphene films having a large area coated
on Ge and Cu restricted the bacteria growth, while graphene films coated on SiO2 cannot
inhibit the growth of bacteria. The leading cause for the antibacterial activity of Cu and
Ge is that the easy transfer of electrons as graphene on the substrate can serve as electron
pumping, which is responsible for oxidative stress in the membrane by pumping electrons
away from the bacterial membrane. Mangadlao et al. had disclosed that sharp edges
of graphene have no significant effect on its antibacterial activity. Still, the bactericidal
activity is affected by the contact between GO basal planes and E. coli Moreover, and it
was confirmed that covering or masking graphene or GO basal plane could diminish the
antibacterial activity because it decreases the direct contact of GO sheet with bacteria [55].
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4. Factors Affecting the Antibacterial Activity of Graphene and Its Derivatives

Graphene size, shape, electronic structure, and surface-related features could signifi-
cantly influence antibacterial activity [12,57]. Moreover, the interaction between pathogens
and nanomaterials and the conditions like medium, incubation time, and concentration
significantly affect the antibacterial activity of nanomaterials [57–59].

4.1. Bacteria Shape and Type

Many reports have revealed that graphene oxide (GO) and reduced graphene oxide
(rGO) can prevent gram-positive and gram-negative bacteria [60–63]. Nevertheless, size,
type of bacteria, and shape significantly affect the extent of the activity. In addition, the
bactericidal efficiency of nanoparticles is less for gram-positive than gram-negative due
to bacteria cell structural changes [13]. Moreover, the graphene nanoparticle is difficult to
enter the cell structure of gram-positive bacteria because of the thick three-dimensional
layer (20–80 nm) of peptidoglycan, while gram-negative bacteria have a thin layer of
7–8 nm of the same, which is not sufficient to restrict the ingress of nanoparticle into it [64].
Therefore, S. aureus (Gram-positive bacteria) is more fascinated by GO than P. aeruginosa
(Gram-negative bacteria).

On the other hand, cells of P. aeruginosa are more fascinated by (rGO) because of
the curvature structure and elongated shape of rGO despite having a protecting layer of
lipopolysaccharide and phospholipid in cell membranes. Herein, smaller surface area and
spherical shape result in less susceptibility of S. aureus cells to rGO [65]. Besides, different
shapes and morphologies of bacteria like bacillus, spiral, filament, and spherical (coccus)
can also behave differently of microbes to antimicrobial agents [66].

4.2. Number of Layers (Graphene)

The number of graphene layers could also regulate the antibacterial activity of
graphene-based materials [67]. In the past, Wang et al. had observed that graphene
contains three layers that have more energy barrier to penetrating ability into bacterial lipid
layer than single-layer graphene with the same lateral size with the help of molecular dy-
namics simulations [68]. This observation substantiated that single-layer graphene having
more excellent antibacterial activity than multilayer. Besides, the accumulation of graphene
occurs with an increasing number of layers, resulting in fewer interactions among bacteria
and graphene layers. Therefore, fewer graphene layers show better antibacterial activity
than more graphene layers.



Coatings 2021, 11, 1197 9 of 18

4.3. Graphene Sheet Size

Graphene sheet size can significantly influence antibacterial activity. GO with a smaller
size show excellent antibacterial activity in surface coating based on GO [69]. During the
oxidative mechanism, more significant defects created in the GO sheet causing a reduction
in the size of GO had explained efficient antibacterial activity. On the other hand, the cell
entrapment mechanism explained the influence of the area of GO sheet on developing
bacteria on cell suspensions. According to this mechanism, greater size in GO exhibited
efficient antibacterial activity. Several research works evaluated the effect of various sizes
of rGO and GO on their cytotoxicity [70]. However, the exact relationship between the
cytotoxicity and scaffold cell interactions of GO and rGO with different 3D structures is still
not understood completely. The graphene flake size influences the cytotoxicity of graphene
derivatives. Smaller size flakes are more cytotoxic, show higher cellular internalization, and
can significantly affect the functionality of cells. In the past, Shi et al. synthesized few-layer
rGO films by controlling the reduction of GO to a moderate level. They found that the
intermediate oxidation level significantly influences the cell behavior; cell performance is
greatly reduced at a high thermal reduction [71].

4.4. Concentration of Graphene-Based Materials

The concentration of graphene and its derivatives is one of the main factors that can
significantly influence antibacterial activity [72]. When suspensions of GO were exposed to
the cells of E. coli with different concentrations like 80, 40, 20, and 5 µg/mL, it was found
that the bacterial susceptibility to GO increased with the increment of GO concentration.
Besides, at the concentration of 80 µg/mL, it was identified that more than 90% of bacteria
were eradicated [57,73]. Likewise, when exposed bacteria at a similar concentration of rGO
at 80 µg/mL results in 76.8% mortality [57]. Moreover, antibacterial activity was evaluated
at higher concentrations of graphene from 25–200 µg/mL. The mortality of P. aeroginosa was
identified at 100 µg/mL for rGO and 75 µg/mL for GO. Based on the results, the threshold
concentration of GO is 80 µg/mL, which showed more than 90% antibacterial activity. At
the same time, the threshold rGO concentration for efficient activity is 100 µg/mL [40].

5. Antimicrobial Applications of Graphene and Its Composites

Many reports have revealed that graphene-based materials could be utilized as po-
tential antimicrobial agents [74–77]. Besides, graphene-associated polymer composites
or graphene reinforced polymer composites could be employed in many antimicrobial
applications, including bandages, wound dressings, drug delivery, and antimicrobial films
and coatings [78,79].

5.1. Graphene-Based Antimicrobial Hydrogels

Due to the inherent and distinctive properties of the 3D GO-based hydrogels, they
have gained profound interest from researchers. Nevertheless, preparing such hydro-
gels with efficient antimicrobial ability with low cost and recyclability is complicated and
challenging. Thus, in probing such hydrogels, a report disclosed the preparation of novel
graphene-based hydrogels with high antimicrobial properties [80]. Another report revealed
a multi-functional graphene-based hydrogel using an agarose polysaccharide that is biolog-
ically compatible and acts as a stabilizer and crosslinking agent [81], which can effectively
prevent bacteria growth. Another report revealed that the commercial preservative called
benzalkonium bromide was mixed with GO to obtain the dual role of the antimicrobial
ability of both materials [16]. The resultant benzalkonium bromide/GO hydrogel per-
formed efficient antimicrobial properties towards gram-positive (91%) and gram-negative
(99%) bacteria. Similarly, the synergistic effect of hybrid materials of graphene hydrogel
nanocomposite that is silver/graphene was examined for improved levels of antimicrobial
activity. In addition, many other hybrid hydrogels like Ag/PVA/GR and Ag/GR had ex-
hibited good responses over E. coli and S. aureus [82,83]. The following Table 1 summarizes
the examples of graphene-based antimicrobial hydrogels.



Coatings 2021, 11, 1197 10 of 18

Table 1. Examples of graphene-based hydrogels.

Material Inference Antibacterial Ability Reference

Benzalkonium bromide/GO Commercial preservative based
benzalkonium bromide/GO hydrogel

Strong antibacterial action against
gram positive (91%) and gram

negative (99%)
[16]

Rose Bengal/GO/Poly vinyl alcohol
(PVA)

This hydrogel can be used in
photothermal therapy and

photodynamic therapy

Sustainable activity against S. aureus
and E. coli [84]

Tannic acid/rGO

Plant polyphenol (tannic acid) was
used for green one-step strategy is

developed to fabricate
three-dimensional (3D) hydrogel

99.99% activity against S. aureus and
58.12% against E. coli [85]

Ag/rGO hydrogel Gravity-driven 3D hydrogel for water
disinfection applications 97% against E. coli [86]

Electroresponsive
Supramolecular GO

Hydrogels

Electroresponsive hydrogel, electric
field at 15 V was used to inactivate

bacteria
100% against S. aureus and E. coli [87]

GO−silver/bacterial cellulose
hydrogel

Wearable Hydrogel Microfibers with
sustainable antibacterial property

Sustainable activity aginst S. aureus
and E. coli [88]

Gr/PVA/Ag Polymer based hydrogel Good antimicrobial activity (90%) [82]

Gr/Ag Hybrid hydrogel Excelnet antibacterial activity (>98%) [83]

5.2. Packaging with Antimicrobial Ability

Flexible packaging is one of the most emerging areas in food science and technol-
ogy, the addition of graphene inside polymer enhances the thermomechanical and barrier
properties. Besides, graphene-based materials’ antibacterial properties could be utilized
for bio-based innovative packaging with antimicrobial ability. Graphene-based polylactic
acid composites can be applicable in bio-applications, especially in smart food preserv-
ing applications. Many other graphene-based composites, GO/polyvinylalcohol (PVA)
and LLDPE/GR, are employed for bio-based packaging [89]. A report revealed a new
antimicrobial film based on GO and clove essential oil with PLA film through solution
casting [90]. The resultant GO-based film is efficient in antimicrobial food packaging
applications. Plasticized PLA and clove essential oil showed good bactericidal activity
against E. coli and S. aureus.

To conclude, this investigation helps fight against food pathogens, and as a whole,
it can be utilized in intelligent antibacterial food packaging to preserve various food
products. In the same way, Wang et al. synthesized MTAC/rGO/EVOH with rGO and
ethylene co vinyl alcohol multi-layer film, which defends the moisture more than 98%
and has excellent antimicrobial with outstanding mechanical properties [91]. Furthermore,
a report based on an rGO-ZnO hybrid with PHBV polymer [92] unveiled the efficient
packaging applications since the prepared film restricted the growth of gram-negative
bacteria E. coli. Some other examples related to smart packaging with antibacterial ability
are listed in Table 2. In addition to the antibacterial activity, one should consider graphene
dispersion, orientation, physicochemical interactions with other polymer substrates, and
hybrid materials to develop efficient smart packaging materials.
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Table 2. Examples of graphene-based materials for food packaging.

Material Inference Antibacterial Ability Reference

Chitosan (CS)/GO composite Green composite for good mechanical
and barrier properties

Sustainable effect against S. aureus and
E. coli. [93]

CS/crosslinked GO Thermally stable and suitable for food
packaging

Against E. coli (90%) and gram
positive B [94]

GO with polystyrene High mechanical strength and low
water permeability biocide effect on pathogenic bacteria [95]

GO/PLA composite High flexibility and lowers the oxygen
permeability

Excellent antibacterial activity (>95%)
against S. aureus and E. coli. [90]

PVA/GO Good mechanical and barrier
properties Efficient against E. coli (90%) [89]

LLDPE/EVA/Gr Excellent barrier properties Satisfactory aginast against S. aureus
and E. coli. [89]

MTAC/rGO/EVOH Potential food packaging Sustainable effect on all pathogens [91]

PHBV/rGO/ZnO Good mechanical and barrier
properties

Sustainable effect aginst S. aureus and
E. coli. [92]

5.3. Wound Dressing and Bandages

In the past, Ag-based nanomaterials were utilized to treat wounds, they were exhib-
ited as successful wound healing materials and were clinically proven to control various
infections caused by pathogens. Similarly, graphene-based materials could have potential
implications in wound management (refer to Figure 6), like maintaining moisture around
the wound, accelerating wound closure, and stimulating wound healing by minimizing
infections without scar formation [74]. Many approaches and various graphene hybrid
combinations have revealed antimicrobial properties and wound managing abilities, in-
cluding graphene quantum dots and hydrogen peroxide, graphene with Ag nanoparticles,
and PLA composites. The association of graphene with other bandage substrates may lead
to significant benefits in antimicrobial textile composites. Previously, the fabrication of
cotton fabrics together with GO was reported for a broad range of applications. It has been
reported that combining graphene-based materials with Ag results in a hybrid material,
which could offer efficient antibacterial activity. For example, acrylic acid and methylene
bis (acrylamide) were cross-linked with GO. Ag was added to the GO (5:1) ratio and
achieved significant antibacterial activity and efficient biocompatibility with good mechan-
ical properties, which enhanced the wound healing process during the examination within
two weeks [96]. Due to their antimicrobial ability, graphene-based materials could also be
utilized for wound care dressings. For example, GO nanofiller merged with polyurethane
(PU)-siloxane network prepared by condensation method showed efficient antibacterial ac-
tivity against gram-positive, gram-negative bacteria and other fungal species [96]. Besides
antimicrobial activity, the structural stability of bandages and wound dressings is very
crucial for wound management. For this, graphene-based materials with high mechanical
stability and easy fabrication methods have been implemented in various wound care
dressing formulations for structural stability enhancement. A report identified three-fold
improvement in mechanical strength of prepared GO 3D collagen made tissue scaffold [97].
Likewise, electrospinning nanofibrous membranes comprising GO with CS/PVP solutions
showed improved mechanical stability [98]. The addition of GO is main responsible for
improving the interactions with human fibroblast cells, which caused a more remarkable
improvement in wound healing. Recently, researchers have developed the hybrid rGO ma-
terial having photo thermal inhibition qualities. Moreover, it was utilized for the treatment
of subcutaneous skin infections. Examples of graphene-based wound healing materials are
illustrated in Table 3. The critical aspect in wound healing and management is maintaining
the structural stability of wound dressing and the antimicrobial activity and adjusting
the weight percentage of graphene in association with other materials/compositions for
the development of efficient wound dressing materials. Moreover, key parameters to
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be considered are accelerating wound closure, minimizing infections, maintaining the
superficial wound environment moist, and stimulating proper wound healing without any
scar formation.
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Table 3. Examples of graphene-based wound dressing materials.

Material Inference Antibacterial Ability Reference

GO/cotton fabric Excellent wound healer Good antibacterial activity against S.
aureus and E. coli [100]

GO/CS/PVP Increases the wound healing rate Excellent antibacterial ability (>95%)
against S. aureus and E. coli [90]

GO/β-cylcodextrin aldehyde/PVA
biocompatible and antibacterial

material for wound dressing
applications

Sustainable activity against S. aureus
and E. coli [84]

GO-Polyurethane-siloxane Good mechaincal stability with
effective wound healing

Efficient against S. aureus and E. coli
(>90%) [96]

Ag/GO/acrylic acid/acrylamide Efficient biocompatibility with
promising mechanical properties

Excellent against S. aureus and E. coli
(>95%) [96]

PVA/GO-citicoline sodium
lanthanum(PVA/GO-CDPC-La) Excellent wound dressing material Active against S. aureus and E. coli

(>90%) [101]

rGO/Vancomycin Better wound healing effeiciency Sustainable activity against S. aureus
and E. coli [102]

silver/reduced
graphene/sodium-alginate (AGSA) Effective wound healer Significant activity against S. aureus

and E. coli (>90%) [103]

5.4. Antimicrobial Films and Coatings

Due to the intrinsic antimicrobial ability and advantageous properties of graphene-
based materials, much research has been centralized on the applications of graphene and
its derivatives based on antimicrobial films and coatings [104,105]. Graphene-related mate-
rials are found to be very applicable in antibacterial devices due to their multifunctional
bio applications. The graphene-based materials used for antimicrobial films and coatings
work by either triggering light or bacteria approaches via electron transfer and physical de-
struction. There is no specific difference between antimicrobial coating and film. Although
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drying treatment is required before using graphene antimicrobial coatings, graphene an-
timicrobial films have been utilized for manifold practical implications, and these are
primarily thin and uniform. Recently, antimicrobial coating of CVD graphene merged
with silver nanowires has been employed for various disinfection implications [106]. This
coating was successfully applied on the ordinary plastic film of polyethylene terephtha-
late/polyethylene vinyl acetate, and it exhibited excellent antimicrobial against E. coli and
S. aureus. Xie et al. had reported the fabrication of coating of GO-Ag hybrid collagen. It was
observed that the hybrid composite displayed a quick response against S. aureus and E. coli
in the presence of visible light [107]. In another report, graphene/Ag hydroxyl apatite
composites were revealed as homogeneous, bioactive, and exhibited excellent corrosion
stability [108]. Besides, it improved mechanical strength, reduced surface cracks, and
showed perfect bactericidal activity without any side effects. Macroscopic free-standing
rGO with GO-based paper was fabricated by Hu et al. and identified that the prepared
product had shown a significant response against the bacterial growth (E. coli) with a low
cytotoxic response [73]. The examples of graphene-based coatings and films from the
available literature are documented in Table 4. The major challenge involved in forming
graphene biofilm is that it mainly depends on the desired density and the orientation of
graphene flakes on the surface [109,110]. However, few methods have been implemented
to achieve the perfect orientation and density of exposed graphene sheets. Nevertheless,
these methods have drawbacks and cannot be applied to coatings or surfaces of arbitrary
shapes, which can be employed in all biomedical devices. Therefore, there is a need to
develop scalable and straightforward methods to create arbitrary surfaces with vertically
aligned graphene and hybrid materials on various biomedical devices. Moreover, such
surfaces could be toxic to other cells in the surrounding environment due to the release of
graphene and its derivative particles. Therefore, the toxicity of the surface should be taken
care of while developing graphene-based bio surfaces and films.

Table 4. Examples of graphene-based antimicrobial films and coatings.

Material Inference Antibacterial Ability Reference

Graphene with silver nanowires
coated on poly ethylene vinyl

acetate/poly ethylene terephthalate

Good antimicrobial coating with high
disinfection capability

Excellent antibacterial activity against
C. albicans, S. aureus and E. coli [111]

GO/Ag/Collagen Composite exhibited quick and
effectual disinfection Good against S. aureus and E. coli [107]

Graphene/hydroxyapatite/Ag Outstanding corrosion stability Remarkable antibacterial activity
without any side effects [108]

Go/sulfonated
polyanion/polyethersulfone coated

on glass surface

Good coatings with high disinfection
capability

Excellent antimicrobial activity
against pathogens [112]

RGO/TiO2 film This film is prepared through
photoreduction of GO on TiO2

Excellent activity against E. coli@100% [113]

GO/Zeolitic imidazolate framework
film

The composite was used as
bactericidal agent to fabricate

antimicrobial thin film through
interfacial polymerization

Activity against E. coli@84.3% [114]

Graphene and layered titanate
nanosheets film

Freestanding hybrid films consisting
of strongly-coupled rGO
and titanate nanosheets

Activity against E. coli@99.98% [115]

Graphene immobilized
lysozyme/polyethersulfone mixed

matrix composite

Lysozyme materials were blended
into polyethersulfone (PES) casting
solution to fabricate PES membrane

through phase inversion method

Activity against E. coli@71% [116]

6. Conclusions

In nanoscience, nanotechnology, and material science, graphene-based materials and
their hybrid composites are the most promising materials due to their unique properties
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and versatile bio implications. In this review, the initial part is highlighted with preparation
methods of graphene from various bioresources such as paper cups, rice husk, glucose,
and Hemp fiber, etc. Then, the details of graphene-based materials’ antibacterial mecha-
nisms such as oxidative stress, lipid extraction, cell entrapment, incision, wrapping were
discussed thoroughly, and subsequently, influencing factors (graphene sheet size, concen-
tration, number of layers, shape, and size of bacteria) that affect the antibacterial activities
are summarized. Besides, graphene-based materials’ antibacterial applications (hydrogels,
smart packaging, wound dressing, surface coatings, and biofilms) are described. Hence,
the discussed results and provided evidence motivate the researchers to develop novel and
innovative graphene-based materials and their hybrid composites for other antibacterial
applications in various fields of science and technology in the coming future. To conclude,
graphene and its associated hybrid nanostructures are promising materials for various
potential applications in daily life. However, continuous research on graphene-based
materials, mainly theoretical, is needed to develop efficient new antimicrobial materials
though several research works have described the relevant achievements.
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