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Abstract: Titanium carbide (TiC) thin films were prepared by non-reactive simultaneous double
magnetron sputtering. After deposition, all samples were annealed at different temperatures under
high-vacuum conditions. This paper mainly discusses the influence of deposition methods and an-
nealing temperatures on microstructure, surface topography, bonding states and electrical resistivity
of TiC films. XRD (X-ray diffraction) results show that TiC thin films can still form crystals without
annealing, and the crystallinity of thin films is improved after annealing. The estimated grain size of
the TiC films varies from 8.5 nm to 14.7 nm with annealing temperature. It can be seen from SEM
(scanning electron microscope) images that surfaces of the films are composed of irregular particles,
and when the temperature reaches to 800 ◦C, the shape of the particles becomes spherical. Growth
rate of film is about 30.8 nm/min. Oxygen-related peaks were observed in XPS (X-ray photoelectron
spectroscopy) spectra, which is due to the absorption of oxygen atoms on the surface of the film when
exposed to air. Raman spectra confirm the formation of TiC crystals and amorphous states of carbon.
Resistivity of TiC films decreases monotonically from 666.73 to 86.01 µΩ·cm with the increase in
annealing temperature. In brief, the TiC thin films prepared in this study show good crystallinity,
thermal stability and low resistivity, which can meet the requirements of metal gate applications.

Keywords: TiC thin film; magnetron sputtering; metal gate; resistivity; thermal stability

1. Introduction

As the size of the metal oxide semiconductor field effect transistor (MOSFET) continues
to decrease, two fatal problems arise. One is related with thinning of gate dielectric, and
the other is related to short channels. A high dielectric constant (K > 3.9) and metal gate
technology can solve the first problem. To solve the second problem, device architecture
has to be changed [1]. However, the content of this article addresses only the first issue.

As aforementioned, in order to solve the first problem, metal gate materials are used
as gate electrodes, and high-k dielectric materials are used as insulators. The requirement
criteria for metal gates include suitable work functions (WF), easy to fabricate, thermal
stability, compatibility with dielectric layer and low resistivity [2]. Metal gate materials can
be divided into two groups: pMOS (positive MOSFET) metal gate (WF is about 4.8–5.3 eV)
and nMOS (negative MOSFET) metal gate (WF is about 4.0–4.5 eV) [3]. The candidate
materials for metal gate can be divided into three groups: universal mid-gap metal gate,
dual work function metal gate and metal gate with tunable work functions [4]. Generally,
pMOS metals are too expensive and difficult to etch, while nMOS metals will be too
reactive [5]. Therefore, finding cheap and stable metal gate materials has become a research
hotspot. Among the candidate metal gate materials, titanium carbide (TiC) may be one
of the most suitable refractories for nMOS gates [6]. It has many unique advantages,
such as being relatively inexpensive [7], having high thermal stability (melting point of
3067 ◦C) [8], low electrical resistivity (about 68 µΩ·cm) [9], high oxidation resistance (it
oxidizes slowly in air at 800 ◦C), excellent chemical resistance (TiC is only attacked by
HNO3 and halogens) [10] and tunable work function (4.45–5.24 eV) [8]. There are a large
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number of carbon vacancies in TiC, and the stability range of TiCx is very large (where x
varies in the range of 0.47–0.97 without any structural changes) [11,12]. In this way, the thin
film properties can be changed by alternation of the atomic fraction without any structural
transition [11].

However, metal gate materials have problems of their own. One of the serious
problems is threshold voltage variability due to the variability of gate work function. The
variation of work function is due to the difference of preferred orientation, large grains and
polycrystalline structure in electrodes [13]. Therefore, one of the most effective methods to
reduce the variation of threshold voltage is to prepare metal gates with small grain sizes
or amorphous states [14]. Therefore, in order to satisfy the above requirements for metal
gates, many studies have been carried out. Ohmori et al. [15] expounded that the threshold
voltage variation in TiN metal gate can be reduced by doping C into it to reduce the
crystal size and transform it into an amorphous state. Grubbs et al. prepared Ta–W–Si–C
amorphous metal gate thin films to reduce the threshold variation [16].

The deposition method and conditions influence the properties of thin films, such
as films structure, phase, orientation, composition and film thickness [14]. TiC thin films
have been deposited by numerous physical and chemical methods, such as chemical vapor
deposition [16], reactive magnetron sputtering [17,18], non-reactive magnetron sputter-
ing [7,19], magnetron co-sputtering [20], laser ablation [21], sol-gel method [22], atomic
layer deposition [8] and electron beam evaporation [23]. Although many authors have
studied these methods, few people have tried to prepare TiC thin films at low temperature
by non-reactive simultaneous co-sputtering [7,24]. There are a lot of advantages of this
method, such as being a simple process, inexpensive [25], low temperature deposition [7]
and easy to produce for further industrial applications [26]. In addition, the structure and
electrical properties of the thin film are related to the C/Ti ratio [27–29]. Therefore, in
this method, the percentage of elements in the thin film can be conveniently determined
by changing the sputtering power applied to each target, which can improve the thin
film performance.

The main goal of this study is to prepare TiC thin films with small grain size, which
leads the reduction in the threshold voltage variation. When the gate dimension is compa-
rable to the grain size of the metal gate, the gate of the MOSFET device is only composed
of several grains with different orientations (lead to different work functions). This causes
the threshold voltage to vary from device to device since the threshold voltage is directly
related to the gate work functions, which is called threshold voltage variations. Therefore,
the variation of threshold voltage can be reduced by reducing the grain size. Because, in
this case, when the grain size is much smaller than the gate size, the gate electrode can
cover a large number of grains, and the average work function of grains contained in each
gate is almost equal; thus, the difference of threshold voltage between gates can be reduced.
However, too small a grain size will lead to the increase in metal gate resistivity, and it is
very important to keep the balance between film resistivity and grain size by changing
deposition methods and process parameters.

In this study, TiC thin films with low grain size (to reduce the change of threshold
voltage) were prepared by magnetron sputtering. After deposition, all samples (Ti to C ratio
of 0.74 and thickness of 610 nm) were annealed (for the sake of increasing crystallinity and
eliminating defects) at different temperatures (400 to 800 ◦C for 20 min) under high-vacuum
conditions. In the end, the effects of deposition condition and annealing temperatures on
the film properties have been discussed systematically.

2. Experiment
2.1. Preparation

The TiC thin films were deposited on SiO2-coated Si substrate through non-reactive si-
multaneous dual magnetron sputtering (JGP450, Shenyang Zhongke Instrument, Shenyang,
China) using carbon (C) and titanium Ti targets in pure argon atmosphere (purity of 99.99%).
The RF (radio frequency) source was applied on the C target, while the DC (direct current)
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source was applied on the Ti target. The power applied to both targets was 300 W (the
corresponding ratio of Ti to C atoms is Ti/C = 0.74). The growth time of thin films was set
at 20 min (corresponding film thickness for this deposition time is about 610 nm). Each
target was columnar in shape, 5 mm thick, 60 mm in diameter and 99.99% pure. Each target
was tilted 45◦ relative to the substrate. The distance between the substrate and the target
(Ti, C) was about 5 cm. The pressure in the reaction chamber before deposition was about
1.3 × 10−4 Pa and about 0.5 Pa during deposition. The argon flow rate for all samples
was set at 10 sccm, and no heating or substrate bias was applied during deposition. After
deposition, some samples were annealed at 400, 500, 600, 700 and 800 ◦C for 20 min under
high-vacuum conditions (~10−3 pa).

2.2. Characterization

The crystal structure of the film was determined by grazing incident X-ray diffrac-
tometer (GIXRD, D8 ADVANCE, Bruker, Karlsruhe, Germany) with an incidence angle
of 2◦. The scanning was conducted from 20◦ to 90◦, and the sweep rate was 5◦/min. The
Scherrer formula [30] was used to estimate the grain size of the film,

D =
0.9 λ

β cos θ
(1)

where D is grain size, β is the full-width at half maximum (FWHM) of the Bragg peak, λ is
the X-ray wave length and θ is the Bragg reflection angle.

A scanning electron microscope equipped with energy dispersion spectra (SEM/EDS,
SU8010, Hitachi, Japan) was used to characterize the surface morphology, thickness and
atomic percentage of the film. Atomic force microscopy (AFM, Bruker Dimension ICON,
Bruker, Chicago, WI, USA) was used to measure the surface morphology and surface rough-
ness. X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher, Waltham,
IL, USA) was used to characterize the chemical bonding state and atomic percentage of
elements. A Raman spectrometer (Raman, LabRAM HR Evolution, HORIBA Scientific,
Paris, France) was used to characterize the composition and state of the film. The sheet
resistances were measured by a Four Point Probe (RTS-8, Suzhou Lattice Electronics Co.,
Ltd., Suzhou, China).

3. Results and Discussions
3.1. Structure Analysis

Figure 1 shows the GIXRD patterns of TiC thin films with thickness of 610 nm, before
(as-deposited) and after annealing. For the as-deposited film, only two weak diffraction
peaks (111) and (200) could be observed, indicating poor crystallinity of the film, which
was because the atoms could not obtain enough energy to combine to form a crystalline
state [31]. With the increase in annealing temperature, other diffraction peaks TiC (220), TiC
(311) and TiC (222) of the TiC crystal began to appear. In addition, the peak (111) moved
to the low diffraction angle, and it matched with the standard TiC crystal (JCPDS No.65-
8805) when the temperature reached to 700 ◦C [9]. Furthermore, at intensity, all peaks
became strengthened, and the width of them narrowed with the increase in annealing
temperature compared with as-deposited thin film due to the fact that crystallinity of
film was better [32]. Meanwhile, the strength of the TiC (200) peak became stronger with
the increase in annealing, and the intensity of it exceeded that of the (111) peak while the
temperature reached at 800 ◦C. The changes in intensity of these two peaks can be attributed
to the competition between surface and strain energies at different temperatures [33]. In
the end, one more extra peak appeared at 55.66◦, which was related with TiO2 when
the annealing temperature reached to 800 ◦C, but it could not be observed under other
conditions, which may be due to the fact that at this high temperature titanium reacts
with oxygen and forms crystals [11]. The average grain size of the TiC films estimated by
Scherrer formula ranged from 8.5 nm to 14.7 nm. In conclusion, the annealing temperature



Coatings 2021, 11, 457 4 of 13

improved the crystallinity of TiC thin films, but it did not lead to phase transition, which
indicates that TiC thin films have good thermal stability.
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Figure 1. GIXRD patterns of as-deposited and annealed TiC thin films with a thickness of 610 nm.

3.2. Morphology Analysis

The surface and cross-sectional morphology of TiC thin films were characterized by
a scanning electron microscope (SEM). Figure 2a–f shows the surface SEM images of the
as-deposited and annealed TiC films with a thickness of 610 nm. As can be seen from the
scanning electron microscopy images, the surface of TiC film was composed of particles
of different shapes. Then, with the increase in annealing temperature, the shape of the
particles became uniform and the density increased. When the temperature reached 800 ◦C,
the shape of the particles became spherical [17]. Estimated particle size of thin films by
SEM images (40~55 nm) was much larger than XRD (8.5~14.7 nm). This difference is due
to the physical error in determining the grain edges in SEM micrograph [19]. Figure 2g–i
shows the SEM cross-sectional images of TiC films with different sputtering time, annealed
at 800 ◦C. From the images it can be seen that thickness of TiC films increased linearly
with the accumulations of sputtering time, and based on this, the estimated growth rate
of film was about 30.8 nm/min. Continuous columnar crystals [34,35] can be observed
for thin films with a thickness of 251 nm, but it was less obvious with the increase in thin
film thickness.
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3.3. Chemical Compositions and States

Figure 3 shows the XPS full spectrum (survey), Ti 2p, C 1s and O1s spectra of as-
deposited and annealed TiC films with thickness of 610 nm. From the full spectrum
(Figure 3a) Ti, C and O peaks can be identified [10]. The presence of oxygen may be due to
oxidation of the film surface when exposed to air [36,37]. In order to verify this conclusion,
XPS and EDS were both used in this paper to measure the atomic percentage of element in
TiC, and the results are listed in Table 1.
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Figure 3. XPS spectra for (a) survey, (b) Ti 2p, (c) C 1s and (d) O 1s of as-deposited and annealed TiC thin films with a
thickness of 610 nm.

Table 1. XPS and EDS analysis of atomic content of TiC thin films with annealing temperature.

Samples
Composition by XPS (at.%) Composition by EDS (at.%)

Ti C O Ti C O Si

As-deposited 24.56 33.14 42.30 22.14 41.78 10.51 25.57
400 ◦C 23.58 26.23 45.84 - - - -
500 ◦C 22.15 30.83 47.02 - - - -
600 ◦C 22.32 30.39 42.96 - - - -
800 ◦C 18.18 38.90 38.59 21.15 42.90 11.86 24.09

As can be seen from Table 1, the percentage of oxygen atoms measured by XPS was
larger than that measured by EDS, and the content of oxygen (in XPS) changed very little
with the temperature. Mani et al. [19] observed similar behavior during heat treatment
of TiC film. In their experiment, it was observed that the Ti-O-related peaks disappeared
during the surface cleaning process, which could verify that the surface of the film was
contaminated by oxygen molecules. In this paper, the atomic percentage of elements was
determined by XPS. Furthermore, from Table 1 it can be seen that with increase in annealing
temperature, content of carbon increased while content of titanium decreased due to the fact
that high annealing temperature leads the dissociation of C from TiC [38], and more carbon
atoms begin to diffuse from TiC beneath the surface through grain boundaries [39,40].

Figure 3b shows the Ti 2p spectra of TiC thin films for as-deposited and annealed ones.
For the as-deposited film, two doublet peaks Ti 2p1/2 and Ti 2p3/2 can be observed. The Ti
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2p3/2 peak exhibited two components of binding energies at 454.12 and 458.71 eV which
correspond to the metallic Ti-Ti binding [17] and TiO2 phase [19], while the Ti 2p1/2 peak
included two components of binding energies centered at 460.79 and 464.36 eV, which are
related to TiC [34] and TiO2 [41,42] phases, respectively. With the increase in annealing
temperature, the Ti-Ti correlation peak shifted to the high binding energy side, reaching
454.78 eV (close to TiC), which may be due to the further increase in oxidation degree [34],
while the intensity of the TiC correlation peak decreased [43], which may be due to the
increase in carbon content (dissociation from TiC).

Figure 3c shows the Ti 2p spectra of TiC thin films for as-deposited and annealed ones.
For the as-deposited thin films, four main peaks were observed at 281.76, 284.82 288.47 and
286.3 eV, which are related to Ti-C, C-C [19,43], C=O [44] and C-O [42] bonds, respectively.
With the increases in annealing temperature, the position of TiC-related peak shifted to
the higher binding energy, and the intensity of that peak decreased, while the position of
C-C peak shifted to the lower binding energy, and the intensity of that peak increased. The
annealing temperature dissociates C from TiC, resulting in an increase in the content of C-C
components, which leads to an increase in the intensity of the C-C correlation peak [43]. In
addition, the intensity of the peak related to C=O decreases with the increase of annealing
temperature, and finally disappears.

Figure 3d shows the O 1s spectra of the TiC films for as-deposited and annealed ones.
For the as-deposited sample, there were only two peaks: one is probably related to TiO2
(530.12 eV) and other weak peak is related with C=O (531.62 eV) [44]. With the increase in
annealing temperature, the C=O related peak disappeared while TiO2 related peak moved
slightly towards the higher binding energy state.

3.4. Surface Topography Analysis

The surface morphology and roughness of TiC thin films annealed at different temper-
atures with a thickness of 610 nm were measured by an atomic force microscope. From the
Figure 4 it can be seen that the films surface (except for annealing at 800 ◦C) exhibited typi-
cal hills and valley growth, where the peaks were embraced by a network of hillocks [45].
For as-deposited film, Figure 4a, there were some secondary minor hills on the big hills,
which disappeared with the increase in annealing temperature. Except for the samples
annealed at 800 ◦C, the crystal size estimated from AFM images varied from 44 to 82 nm,
which was slightly larger than that estimated by XRD (8.5–14.7 nm) [46]. Furthermore,
the big hills were denser with increase in annealing temperature, which is beneficial to
the improvement of electric conductivity. This trend may be due to higher temperatures
stimulating grain boundary migration during annealing, resulting in more grain consol-
idation [46]. The surface roughness of the film changed randomly (Ra = 1.49~3.23 nm,
Rq = 1.90~4.59 nm.) with the increase of annealing temperature. In general, the increase in
surface roughness has a negative effect on conductivity [47]. The roughness became larger
at 800 ◦C, which may be due to the formation of metal oxide crystal [48]. According to the
above discussion, we find that annealing temperature has a great influence on the structure
of TiC thin films [49]. Appropriate annealing temperature (about 700 ◦C) can decrease the
surface roughness of TiC thin films.
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3.5. Raman Spectra Analysis

The amorphous carbon phase in TiC films was analyzed by Raman spectroscopy [50].
It is well known that stoichiometric TiC is non-Raman-active [51–53] due to the high
inversion symmetry and screening effect [51]. However, non-stoichiometric TiC has been
reported to be Raman-active [54].

Raman spectra obtained for as-deposited and annealed films with a thickness of
610 nm are shows in Figure 5. For the as-deposited film two strong graphite peaks can
be observed approximately at 1330 (D-band) and 1581 cm−1 (G-band), called A1g mode
and E2g mode [54], respectively, indicating that there was some unreacted carbon in
TiC film [55]. Usually, these two bands can be assigned to breathing vibrations of sp2
carbon rings (A1g mode) and stretching vibrations of sp3 carbon rings and chains (E2g
mode), respectively [53,55,56]. In addition, three peaks approximately at 269, 413 and
604 cm−1 [53,54,57] and two other weak peaks at 344 [50,52,58] and 696 cm−1 [59,60]
could be observed, which correspond to the TiC phase, confirming the formation of TiC
crystals [61]. Those positions of peaks are slightly difference from the aforementioned
reference, and this is due to the differences in phase composition [21]. According to
Oghenevweta et al. [54], these three peaks (at 269, 413 and 604 cm−1) are assigned to
T2g + A1g + Eg Raman-active modes, respectively [54]. With the annealing temperature
increase from 400 to 500 ◦C, Raman spectra remained unchanged, which indicates the stable
structure of TiC thin films [40]. However, as the temperatures were at 600 ◦C and 800 ◦C,
TiC-related peaks become weakened and almost disappeared, and carbon-related peaks
weakened, which indicates that these two temperatures are conducive to the improvement
of TiC films crystal quality [53].
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3.6. Resistivity

Figure 6 shows the electrical resistivity, grain size and roughness variations with an-
nealing temperature of as-deposited TiC films and annealed ones at different temperatures.
It could be seen from the graphic that resistivity of the films decreased monotonically
from 666.73 to 86.01 µΩ·cm as the annealing temperature increased to 800 ◦C. This change
pattern of resistivity is explained as follows:

As known, electrical resistivity (ρ) can be expressed as

ρ =
1

neµ
(2)

where n is the carrier concentration, e is the electronic charge and µ is the carrier mobil-
ity [62]. Among these three parameters, e is constant, while other two parameters µ and
n are variable. We believe that a decrease in resistivity corresponds with an increase in
annealing temperature because of the higher carrier concentration and mobility [63].

According to the Matthiessen’s rule [64], films resistivity can be written as

ρ = ρb + ρi + ρg + ρs (3)

where ρb is the bulk resistivity mainly determined by composition and phase, and ρi, ρg
and ρs are the resistivities related to impurities, grain boundaries and surface scattering [65].
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In this study, because of no impurity was incorporated into the TiC films, the effect of
impurity related with resistivity (ρi) can be ignored. In addition, the change of atomic
percentages with annealing temperature was also very small, so its influence on the total
resistivity can be ignored. Hence, here we only consider the effect of grain boundary and
surface scattering on the resistivity.
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Figure 6. The variations of resistivity, grain size and surface roughness with annealing temperatures for TiC thin films with
a thickness of 610 nm.

It is well known that the increase in grain size leads to a decrease in grain boundary
scattering, while the increase in surface roughness causes the increase in surface scatter-
ing [65]. Grain size and surface roughness has a contrary effect on the resistivity of the
films. For the samples from as-deposited to 600 ◦C, the variation trends of grain size and
surface roughness are consistent, shown in Figure 6, which in this case their combined
effects on the film resistivity was setoff. Therefore, the main reason to generate the decrease
in resistivity in this temperature region is probably ascribed to the enhancement of film
crystallinity [66]. For the temperature ranges from 600 to 700 ◦C, the grain size increased,
surface roughness decreased and crystallinity of films was better, which leads to decrease
in resistivity. In the temperature range of 700~800 ◦C, the grain size and crystallinity of the
film increased, while the surface roughness decreased, but the resistivity of the film still
decreased, which may be due to the fact that the contribution of surface roughness to the
resistivity of the film is less than that of grain size and crystallinity [60].

4. Conclusions

In conclusion, the deposition method and annealing temperature have great influence
on the microstructure and resistivity of TiC thin films. The TiC thin films have been
crystallized before annealing, and crystallinity of films has been improved with annealing.
The grain size of the film was relatively small (8.5–14.7 nm) due to no heat treatment
applied during depositions, but it can be adjusted by annealing. The growth rate of the
TiC film was relatively high, about 30.7 nm/min. The surface of the film was composed of
nanoparticles with irregular shape, and with annealing the shape of the particles became
regular and dense, which is beneficial to reduce the resistivity of films. The formation of TiC
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can be further confirmed by XPS and Raman spectra. However, a certain amount of oxygen
can be detected by XPS, which may be oxygen molecules absorbed when the film is exposed
to air. The non-reactive amorphous carbon phase can also be observed from the Raman
spectrum. The surface of the film was smooth (Ra = 1.49~3.23 nm, Rq = 1.90~4.59 nm), and
the roughness changed randomly with the change of annealing temperature. The resistivity
of the thin film was small. With the increase in annealing temperature, the resistivity of the
thin film decreased monotonously from 666.73 cm to 86.01 cm. In brief, the prepared TiC
film has excellent properties such as small grain size, good crystallinity and low resistivity,
which can meet the requirements of a metal gate.
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