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Abstract: In this study, a new coating material for thermal barrier coating (TBC) or environment
barrier coating (EBC) application, Ca3ZrSi2O9 (CZSO), was synthesized and prepared by atmo-
spheric plasma spray (APS) technology. The evolution of the phases and microstructures of the
coatings with different thermal-aged were characterized by XRD, XRF, EDS and SEM, respectively.
The thermal stability was measured by TG-DTA and DSC. The mechanical and thermal properties,
including Vickers hardness (HV), fracture toughness (KIC), thermal conductivity (κ) and coefficient of
thermal expansion (CTE) were focused on. It was found that the as-sprayed CZSO coating contained
amorphous phase. Crystalline transformation happened at 900–960 ◦C and no mass changes took
place from room temperature (RT) to 1300 ◦C. The phenomena of microcrack self-healing and com-
position uniformity were observed during thermal aging. The κ of coating was very low at about
0.57–0.80 W·m−1·K−1 in 200–1200 ◦C. The combined properties indicated that the CZSO coating
might be a potential T/EBC material.

Keywords: Ca3ZrSi2O9 coating; thermal stability; thermal property; mechanical property; atmospheric
plasma spray

1. Introduction

With the purpose of improving the efficiency and extending the service life of air
or land-based advanced gas turbines, the TBCs are necessary in hot components [1,2].
As TBCs materials, the primary property is thermal insulation capacity, that is, low thermal
conductivity (κ). Some researchers considered that the interstice between oxygen vacancies
was vital for lower κ, except the relevant phonon mean-free-path (MFP) [3]. Smaller phono
MFP and larger spacing resulted in lower κ. For this reason, a nanocrystalline yttria
partially stabilized zirconia (YSZ) coating was developed, and almost all nanocrystalline
YSZ samples were lower κ than single-crystal YSZ.

Some researchers have found that the presence of the amorphous phase can also
reduce the κ [4]. According to quantum theory, thermal conductivity can be calculated
by Equation (1). It shows that the main factor affecting the thermal conductivity is the
mean-free-path of phonons. Qiu et al. [5] studied the effect of different content SiO2
(amorphous phase) additions on the κ of h-BN-La2O3-Al2O3-SiO2 coatings. They found
that the κ was about 5 W/m·K when it contained 30 vol.% SiO2, which was much lower
than that of the coating without SiO2 addition. Fleig et al. [6] analyzed the influence of
the high grain boundaries on the κ, by establishing a brick layer model based on the finite
element method, getting a formula for the influence of amorphous phase on κ, as follows
Equation (2):

κ =
1
3

∫
Cpρνlp (1)
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1
κpoly

=
1

κYSZ
+ n × R (2)

Which κpoly is the κ of polycrystalline YSZ, κYSZ is the κ of single crystal YSZ, n is
the grain boundaries’ average number of per unit length, R is the thermal resistance value
of this. Combining parameter fitting and experiments results, the R value of amorphous
YSZ was about 2.54 × 10−6 m2·K/W [6,7], which was three orders higher than that of the
polycrystalline YSZ (5 × 10−9 m2·K/W). It can be seen that amorphous phase had great
influence on κ.

Not only the spacing between oxygen vacancies and the size of the crystal grains,
but also the complexity of the lattice and the types of atom are important factors influencing
the κ. Some researchers have found that the κ value of the monoclinic ZrO2 was about
8.1 W/m·K at RT [8,9], if doping Y2O3 into ZrO2 (YSZ), the κ would drastically reduce
to about 2.0 W/m·K [10,11]. The κ of some typical TBC materials is listed in Table 1 [12].
It can be seen that Sm2Zr2O7, Yb2Zr2O7 and La2Zr2O7 have lower κ values than YSZ [13,14].
What is more, the quaternary compounds, such as (Sm1/2Yb1/2)2Zr2O7 and (La1/2Yb1/2)2Zr2O7,
have much lower κ than the ternary compound [15]. In our previous work [16], we found
that Ca3ZrSi2O9 has not only multi-component but also complex crystal packet structure.
Therefore, we expect that this multi-component material might possess very low κ and be a
potential TBC.

Table 1. Thermal conductively of different typical TBC materials.

Temperature
(◦C) Binary Ternary Quaternary

m-ZrO2 Sm2Zr2O7 Yb2Zr2O7 6–8 wt.%Y2O3 + ZrO2 (Sm1/2Yb1/2)2Zr2O7 (La1/2Yb1/2)2Zr2O7
300 ◦C ≈8.1 1.95 1.88 1.75 1.65 1.29
500 ◦C - 1.71 1.78 1.61 1.59 1.45
700 ◦C - 1.58 1.65 1.55 1.49 1.41
900 ◦C - 1.57 1.53 1.51 1.46 1.39

In this study, the Ca3ZrSi2O9 (named CZSO) coating was successfully prepared by
the APS technology. The powder and coating’s phase evolution and microstructure were
characterized. The coating’s thermal stability was analyzed by TG-DTA, XRD and SEM.
Some thermal properties (α, κ and CTE) were investigated. Besides, the mechanical
properties (hardness and brittleness) of the CZSO coating were investigated for thermal
aging from 30 h to 200 h at 1100 ◦C. This research indicates that Ca3ZrSi2O9 might be a
potential T/EBCs material for high temperature applications.

2. Materials and Methods
2.1. Powder and Coating Preparation

The CZSO powder was prepared by solid-state reaction using ZrO2, SiO2 and CaCO3
(99.99% purity, Qinhuangdao Yinuo Advanced Material Co., Ltd., Qinhuangdao, China)
as raw materials. The mixture powders (CaCO3:SiO2:ZrO2 = 3:2:1, molar ratio) was
sintered at 1400 ◦C for 6 h [16]. Then, the powder after sintering was agglomerated by
spray drying and sintered again at 1200 ◦C for 3 h to obtain powder that was suitable
for atmosphere plasma spray. The details of spray-drying could be seen in our previous
work [17]. The coating was deposited by an air plasma spray system (A-2000, Sulzer Metco
AG, Winterthur, Switzerland) equipped with a F4-MB torch. The spraying parameters
used for the APS process were listed in Table 2. There was a water-cooling system on the
back of aluminum substrate (120 mm × 80 mm × 2 mm) during coating was preparation,
and then the free-standing coating (1.5–2.0 mm thickness) was mechanically removed from
the substrate for observation and measurements.
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Table 2. Operating parameters used for air plasma spraying.

Powder
(KW)

Primary
Ar (slm)

Secondary
H2 (slm)

Carrier
Ar (slm)

Spray
Distance

(mm)

Feeding
Rate (rpm)

46 41 14 2 120 25

The Thermo Gravimetry and Differential Thermal Analysis (TG–DTA) (STA449C,
Netzsch, Selb, Germany) and the Differential Scanning Calorimetry (DSC204F1, Netzsch,
Germany) of the powder and coating were performed. Then, 100 mg powder and
4 × 4 × 4 mm3 coating were used for TG-DTA and DSC measurements. The thermal
diffusivity (α) of the free-standing coating for 200–1200 ◦C was measured by the laser flash
method. The disk specimen with a size of 11.0 mm (diameter) × 0.8 mm (width) was coated
with a thin graphite layer to prevent the laser beam from directly transmitting through the
sample. The density (ρ) of the specimens was measured by Archimedes method. The heat
capacity (Cp) of different temperature stages was calculated by the Neumann–Kopp rule
by the values of CaO, SiO2 and ZrO2 [18,19]. The κ was calculated by Equation (3) [20].
The CTE of the coating was measured by using a high-temperature dilatometer (TMA403F3,
Netzsch, Selb, Germany).

κ = α × Cp × ρ (3)

2.2. Thermal-Aging

Thermal-aging tests were conducted using an electric furnace (JXR1200-30, Shanghai
Junke Co., Ltd., Shanghai, China). The samples were treated at 1100 ◦C for 3–200 h to
investigate the phases and microstructure evolution. The compositions and contents
of the powder or coating were performed by X-ray diffraction (XRD, RAX-10, Rigaku,
Tokyo, Japan) and X-Ray fluorescence spectrometer (XRF, AXIOS, Panalytical, Almelo,
Netherlands), respectively. The morphologies of the powder and the coating (surface and
cross-section) were characterized by the Scanning Electron Microscopy (SEM, Magellan 400,
FEI, Hillsboro, OR, USA). The coating porosity was evaluated by an image analysis software.
Then, 5–8 back-scattered electron SEM (BSE-SEM) images, with 1000× magnification of the
cross sections, were randomly taken for each specimen for image analysis.

The particle size distribution was performed by laser diffraction (Baite Instruments
Ltd., Dandong, China). The hardness (Hv4.9N) was measured by Vickers indentation
(Shanghai Taiming Co., Ltd., Shanghai, China) with a load of 4.9 N. There were 10 points
to be measured at random locations for every coating cross-section. The Evans–Wilshaw
model was used to calculate the KIC, which was related to c/a. The KIC values can be
calculated by Equation (4). [21,22]. It is worth noting that it is well accepted that Equation(3)
is effective when c/a is in 0.6–0.45 range.

KIC = 0.079 × (P·a−3/2) × log (4.5 × a × c−1) (4)

Which a is the half length of indentation diagonal, c is the length from the center of
the indentation to the crack tip.

3. Results and Discussion
3.1. Thermal–Physical and Microstructure Characterization of CZSO Powder

The TG-DTA curves of the mixed powders with CaCO3, SiO2 and ZrO2 (with a molar
ratio of 3:2:1) are shown in Figure 1a. It was observed that the mass loss of the powders
happened at about 600–830 ◦C, which was about 24%, and there was an endothermic peak
observed. It might be that CaCO3 decomposed to produce CaO with CO2 (gas) and the
CaO would be involved in the following reactions. Two exothermic peaks were found
at 1340 ◦C and 1450 ◦C, respectively. It meant that the solid phase reaction happened in
this temperature range. Figure 1b displays the XRD pattern of the CZSO powder after
6 h of solid phase sintering at 1400 ◦C. It was observed that the sintered powder was
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mainly composed of the Ca3ZrSi2O9 phase, mixed with a small amount of the SiO2 and
CaO phases.
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Figure 1. TG-DTA curve (a) of mixed powders before sintering (CaCO3:SiO2:ZrO2 = 3:2:1 molar ratio) and XRD pattern (b)
of Ca3ZrSi2O9 powder after sintering.

The XRD pattern, surface morphologies and particle size distribution of the CZSO
powder are presented in Figure 2. It can be seen that the phases of the powder almost
had no change by comparing before and after spray-drying, and the powder has spherical
morphologies (Figure 2b). The particle size of the powder was uniform and concentrated,
whose D10, D50, D90 were about 9.5, 36.6 and 72.0 µm, respectively. During the plasma
spray process, the spherical powder can ensure a sufficient powder feeding rate, and the
uniform size of the powder can ensure a smooth process. According to the properties of
the powder, the flow rate of Ar and H2, the spraying distance and the powder feeding rate
were adjusted to obtain excellent coating.
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3.2. Phase and Microstructure Characterization of Coating

The XRD pattern, surface morphologies and EDS results of the as-sprayed coating are
presented in Figure 3. It was worth noting that the XRD of coating and powder should
be measured at the same condition. By comparing, the XRD pattern of the as-sprayed
CZSO coating was only a broad diffraction peak [23,24] and no Ca3ZrSi2O9, SiO2 and CaO
diffraction peaks appearing, which was considered an amorphous structure (Figure 3a).
This phenomenon was due to rapid cooling after the deposition process, and the atoms
hardly diffuse to form an amorphous structure. Song et al. [25] also obtained the Al2O3-
40 vol.% 8YSZ as-sprayed coatings with different contents of the amorphous structure by
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changing the primary plasma gas during the APS process. It can be found that the coating
was mostly built up by well-flattened splats, and there were also some regions with partly
melted splats and splash debris. Some microcracks were found (Figure 3b,c), which could
be related to the release of accumulated thermal stresses. The EDS results (the results in
Figure 3c) proved that the contents of the four elements have not changed significantly,
indicating that the CZSO was stable.
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Figure 3. XRD pattern (a), surface morphologies (b,c) and EDS results of as-sprayed CZSO coating.

With the purpose of analyzing the composition evolution of the coating during de-
position and thermal aging, the composition of the as-received powder and the coatings
before and after thermal aging were characterized by XRF and are shown in Table 3. It can
be found that the molar ratio of Si:Ca:Zr in the powder was about 35:49:16, which is similar
to the as-sprayed and thermal aged coatings. It indicated that component of CZSO was
stable during the plasma spray process.

Table 3. XRF results of the powder and coating before and after thermal aging.

Content (at. %) CZSO Powder CZSO As-Sprayed CZSO Coating 1100 ◦C/3 h

Si 34.6 32.8 34.4
Ca 49.6 51.2 48.4
Zr 15.8 16.0 17.2

Figure 4 displays the micrographs of cross-section for the as-sprayed and 1100 ◦C/3 h
aged CZSO coating. It was observed that the as-sprayed coating had a layered structure
with some microcracks, and the color variation among splats was obvious, indicating
compositional differences (Figure 4a,b). For the thermal aging coatings, the number of
microcracks decreased and the layered structure gradually weakened and the color contrast
also tended to be consistent, indicating that the composition distribution tended to be
uniform (Figure 4c,d). The EDS results are summarized in Table 4. For the as-sprayed
coating, it being shown that all points contained O, Ca, Zr and Si elements, excluding point
1. The molar ratio of point 1 was in agreement with ZrO2. The results for points 2 and 3
justified the existence of Ca3ZrSi2O9, and the atomic ratio of spot 4 and 5 was in agreement
with Ca3ZrSi2O9 + ZrO2 and Ca3ZrSi2O9 + CaZrO3, respectively. For the thermal-aged
coating, the molar ratios of points 8, 7, 9 and 6 were similar to points 1, 2, 3 and 5,
respectively. Combining the EDS and SEM observations, it can be seen that the uniformity
of elemental distribution was improved after thermal aging.



Coatings 2021, 11, 583 6 of 13

Coatings 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

respectively. Combining the EDS and SEM observations, it can be seen that the uniformity 
of elemental distribution was improved after thermal aging. 

 
Figure 4. Cross-section morphologies of the as-sprayed (a,b) and thermal-aged (c,d) CZSO coatings. 

Table 4. Element contents at each point in Figure 4. 

 Point O (at.%) Si (at.%) Ca (at.%) Zr (at.%) 

 Ca3ZrSi2O9 60.00 13.33 20.00 6.67 

Figure 4b 

1 56.41 0 0.72 42.87 

2 52.04 16.37 22.84 8.75 

3 52.41 15.00 23.77 8.81 

4 52.04 13.15 18.96 15.85 

5 52.18 7.95 25.17 14.70 

6 42.65 7.08 37.93 12.36 

Figure 4d 

7 46.84 19.17 27.54 6.45 

8 55.89 3.83 1.14 39.13 

9 47.29 21.46 27.23 4.02 

3.3. Thermal Stability of the Coatings 
The TG-DTA and DSC curves of the as-sprayed CZSO coating are shown in Figure 

5. There was almost no mass changing from RT to 1300 °C. Whereas, there were two sharp 
peaks at about 900 °C and 960 °C in the DTA curve, which might be related to the relaxa-
tion of amorphous phase. Two obvious exothermic peaks appeared at about 900 °C and 

Figure 4. Cross-section morphologies of the as-sprayed (a,b) and thermal-aged (c,d) CZSO coatings.

Table 4. Element contents at each point in Figure 4.

Point O (at.%) Si (at.%) Ca (at.%) Zr (at.%)

Ca3ZrSi2O9 60.00 13.33 20.00 6.67

Figure 4b

1 56.41 0 0.72 42.87
2 52.04 16.37 22.84 8.75
3 52.41 15.00 23.77 8.81
4 52.04 13.15 18.96 15.85
5 52.18 7.95 25.17 14.70
6 42.65 7.08 37.93 12.36

Figure 4d
7 46.84 19.17 27.54 6.45
8 55.89 3.83 1.14 39.13
9 47.29 21.46 27.23 4.02

3.3. Thermal Stability of the Coatings

The TG-DTA and DSC curves of the as-sprayed CZSO coating are shown in Figure 5.
There was almost no mass changing from RT to 1300 ◦C. Whereas, there were two sharp
peaks at about 900 ◦C and 960 ◦C in the DTA curve, which might be related to the relaxation
of amorphous phase. Two obvious exothermic peaks appeared at about 900 ◦C and 950 ◦C
in the DSC curves (Figure 5b), which were similar to that of the DTA curve (Figure 5a).
Indicating that the crystal transformation occurred at these two temperatures. The XRD
pattern of the 1100 ◦C/3 h aged CZSO coating confirmed that the amorphous phase of the
as-sprayed coating transformed into crystalline after 1100 ◦C/3 h thermal aging (Figure 5c).
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The as-sprayed CZSO coating was aged at 1100 ◦C for 30–200 h, aiming to illustrate the
long-term thermal stability. Figure 6 shows the XRD patterns of the thermal-aged coatings.
Comparing the coatings after thermal aging for different time with the as-received powder,
the mainly phase of the thermal-aged coatings was almost similar to that of the powder.
This phenomenon indicated that the CZSO coating had good thermal stability at 1100 ◦C.

Figure 7 displays the micrographs of the cross-section with element mappings of the
as-sprayed and 1100 ◦C aged CZSO coatings. It was observed that the layered structure
gradually faded and the number of microcracks decreased. The distribution of Si and Zr
elements gradually became uniform, and the Si-poor or Zr-rich regions gradually shrank
over time. It means that the composition of the CZSO coating became more and more
uniform, meanwhile, the CZSO coating has self-healing property. In addition, the porosities
of the as-sprayed coating and 100 h and 200 h thermal aged coatings were 13%, 9% and 5%,
respectively. Indicating that the cracks and pores decreased with thermal aging.
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With the purpose of enhancing the durability of T/EBCs materials, improving the
tolerance of the coatings to the external damage was very important, which was closely
related to their mechanical properties [26,27]. The HV values of CZSO coating are given
in Table 5 and the indentation morphologies are shown in Figure 8. It was found that
the hardness of the as-sprayed coating was about 1.73 ± 0.19 GPa; however. The value
obviously raised to 2.86 ± 0.32 GPa after 1100 ◦C/30 h aging and did not change too much
with the time extending. Comparing the indentation morphologies, it can be found that the
as-sprayed coating had no cracks under 4.9 N load and short cracks appeared under 9.8 N
load. For the thermal-aged coating, the length of cracks under 4.9 N became much longer
after 30 h aging and did not change too much over time. This phenomenon indicated that
the amorphous phase could help block crack propagation under external loads.

Table 5. Vickers hardness and fracture toughness of as-sprayed and 1100 ◦C aged CZSO coatings.

As-Sprayed 30 h 50 h 100 h 150 h 200 h

HV4.9(GPa) 1.73 ± 0.19 2.86 ± 0.32 2.69 ± 0.17 3.22 ± 0.18 2.83 ± 0.13 2.76 ± 0.44
c/a 0.77 (9.8N) 0.83 (4.9N) 1.30 (4.9N) 1.04 (4.9N) 1.09 (4.9N) 1.22 (4.9N)
KIC

(MPa·m1/2) 0.28 0.33 0.29 * 0.31 * 0.31 * 0.29 *

* means reference values.
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Using value of the c/a can characterize the brittleness of the coating. The values of KIC
are also summarized in Table 5. It was found that, for the as-sprayed coating, the values of
c/a and KIC were about 0.77 and 0.28 MPa·m1/2, respectively. For the 1100 ◦C/30 h aged
coating, the values were about 0.83 and 0.33 MPa·m1/2, respectively. With the aging time
increasing, the c/a and KIC almost did not change.

3.4. Thermo-Physics Properties of As-Sprayed and 3 h Aged Coatings

The calculated Cp curve of the CZSO is shown in Figure 9a. It is worth noting that
there was a sudden decrease in 500 ◦C–600 ◦C range. This phenomenon can be related
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to the sudden change in the Cp value of SiO2 [19]. It is well known that SiO2 will change
from α-phase to β-phase at 574 ◦C, and the Cp value will change from 75.395 J·mol−1·K−1

to 67.417 J·mol−1·K−1, as Figure 9a [19]. Figure 9b shows the α curves of the coatings in
25–1200 ◦C range. For the as-sprayed coating, it was found that the α value decreased
with the temperature rising to 400 ◦C, and then increased a little during 400–600 ◦C,
and then almost unchanged during 600–1000 ◦C, after that, increased to about 0.5 mm2/s.
For thermal aged coating, the α value tended to be 0.55–0.60 mm2/s above 600 ◦C.
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Figure 9c shows the κ curves from RT to 1200 ◦C. The used density of the CZSO
coating was about 3.24 g·cm−3. It can be found that a sharp decline appears at 500–600 ◦C,
which was related to the influence of the calculated Cp value. For the as-sprayed coating,
the κ value was about 0.60 W/m·K at 600–1200 ◦C. For the thermal aged coating, the κ

values were a little higher, about 0.74–0.80 W/m·K at the temperature above 600 ◦C. It can
be seen that the CZSO coating had lower κ values and the thermal aging did not have much
influence. However, from the reported of the rare earth zirconates at 900 ◦C, the Yb2Zr2O7
was the lowest at about 1.53 W/m·K. The quaternary (La1/2Yb1/2)2Zr2O7 was 1.39 W/m·K.
The thermal conductivity of CZSO materials was much lower than these. The crystal packet
structure of Ca3ZrSi2O9 is presented in Figure 10 [28]. It can be seen that there were two
octahedrons of CaO6, ZrO6 and a tetrahedron of SiO4, which was a relatively complex
crystal packet structure. It can be thought that the complex crystal structure of Ca3ZrSi2O9
contributes a lot to the relatively low κ values.

It is well known that the mismatch of CTE between the top coating and substrates
causes thermal stresses during thermal cycles, which is the main cause for spallation
failure of T/EBC systems. Therefore, illuminating the thermal expansion behaviors of
the CZSO coating is necessary, the results of which are shown in Figure 11. For the as-
sprayed coating, the ∆L/L curve was non-linear for the first measurement. The shrinkage
of the as-sprayed CZSO coating began at about 400 ◦C and became obvious at 850 ◦C and
then the ∆L/L curve began to increase after 1000 ◦C. This phenomenon can be related
to the crystallization of amorphous phase in the as-sprayed CZSO coating. The ∆L/L
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curve almost linearly increased at the second measurement. The CTE curve was ob-
tained based on the second ∆L/L curve, which was 7.04–8.71 × 10−6 K−1 at 200–1200 ◦C.
For the 1100 ◦C/3 h aged coating, the ∆L/L curve was linearly increased and the CTE was
6.89–8.70 × 10−6·K−1 at the same condition, which almost did not change. The CTE values
of the CZSO coating (7.04–8.71 × 10−6·K−1) were lower than YSZ coating
(9–10 × 10−6·K−1) and the superalloy (16–17 × 10−6·K−1) [29]. However, the difference
between CZSO coating with TiAl-alloy (11–13 × 10−6·K−1) or SiC, C/SiC and SiC/SiC
substrates (4–6 × 10−6·K−1) [30] was smaller. It is supposed that CZSO coating might
be suitable for these substrates as T/EBC materials. This phenomenon showed that the
amorphous phase has great influence on the CTE. It was better to optimize the spray
parameters to lower the content of amorphous phase.
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4. Conclusions

A new quaternary Ca3ZrSi2O9 coating was prepared by the APS technique. The mi-
crostructure, thermal stability, and mechanical properties of the coating were characterized.
The conclusions could be drawn as following:

• The as-sprayed CZSO coating presented lamellar microstructure and contained amor-
phous phase. The TG-DTA curves confirmed that no mass changed during RT-1300 ◦C
and the crystalline phenomenon happened at about 900–960 ◦C. After aging at 1100 ◦C
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for 30–200 h, the lamellar microstructure of the CZSO coating gradually disappeared,
the composition became uniform, and the amount of microcracks decreased sharply.

• The HV and KIC of the as-sprayed CZSO coating were 1.73 ± 0.2 GPa and 0.28 MPa·m1/2,
respectively, which were lower than that of the 1100 ◦C aged coatings. Besides, the as-
sprayed coating had no crack under the 4.9 N load, however, there were cracks after
aging at 1100 ◦C for 30–200 h.

• The thermal conductivity of both as-sprayed and thermal-aged CZSO coating was
very low, about 0.57–0.80 W·m−1·K−1, besides, the average CTE was 6.89–8.70 ×
10−6 K−1 in 200–1200 ◦C. The combined properties indicated that the Ca3ZrSi2O9
coating might be a potential T/EBC material.

• To sum up the basic properties of the CZSO coating, it might be used on TiAl alloy,
SiC, C/SiC or SiC/SiC substrates due to lower κ, CTE, and self-healing properties.
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