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Abstract: In this paper, we successfully synthesized homoepitaxial diamond with high quality and
atomically flat surface by microwave plasma chemical vapor deposition. The sample presents a
growth rate of 3 µm/h, the lowest RMS of 0.573 nm, and the narrowest XRD FWHM of 31.32 arcsec.
An effect analysis was also applied to discuss the influence of methane concentration on the
diamond substrates.
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1. Introduction

Diamond offers significant advantages such as large bandgap energy, high electrical
breakdown strength, high carrier mobilities, high thermal conductivity, high Johnson Keyes,
and Baliga quality factors, making it suitable for high frequency, high power, and high
temper electron device applications [1–5]. The lack of high-quality substrates, however,
hindered the development of single-crystal diamonds (SCDs) as an electronic material.

In the past decade, diamond films were studied by numerous methods, such as
HF-CVD, DC arc jet CVD, DC-PCVD, and HTHP methods [6,7]. The microwave plasma
chemical vapor deposition (MPCVD) technique is the only method that synthesizes high-
quality SCDs (device grade [8]) with an atomically flat surface. However, some critical
issues need to be solved before CVD diamond films utilizing in electronic devices. For
high-value-added applications such as radiation-hard detectors [9,10], Raman lasers [11],
and electronic devices [12], one of the key requirements is to decrease the charge trapping
factors such as structural defects, point defects, and nitrogen impurities [13]. Thus, research
on synthesis device-grade high-quality SCDs in a pure methane–hydrogen mixed gas
without N addition is of vital importance and urgent necessity to advance diamond-based
applications development.

Although the effect of the methane concentration on the process of CVD synthesis
was reported [14–18], device-grade SCDs (FWHM < 60 arcsec, RMS < 1 nm) produced in a
pure methane–hydrogen microwave plasma were not addressed in the previous methane
optimization studies.

In this work, a microwave plasma CVD growth of SCDs films without the addition
of other gases was investigated. Methane concentration was varied to evaluate the in-
fluence on the final morphology and on the growth rate, surface roughness values, and
crystalline quality.
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2. Materials and Methods

The fabricated processes were carried out in AsteX 5200 reactor (Seki Technotron
Corp., Tokyo, Japan) at 2.45 GHz. Homoepitaxial diamond films were deposited on
commercial 3 × 3 × 1 mm3 high-temperature and high-pressure (HPHT) synthesized type
Ib (100)-oriented substrates, purchased from the Xi’an DMT Semiconductor Technology
Co., Ltd (Xi’an, China). We chose this orientation since a higher-quality diamond was
easier to obtain on this growth sector [19,20]. All substrates were polished to obtain surface
roughness below 1 nm without misorientation angle and were cleaned in a mixture acid
(H2SO4:HNO3:HClO4 = 31.2:36:11.4) at 250 ◦C for one hour, then treated with mixed
alkali (NH4OH:H2O2:H2O = 4:3:9) at 80 ◦C for 10 min to remove the non-diamond phase.
Afterward, the substrates were treated by the hydrogen plasma in 400 sccm gas flow in
total with 2% oxygen for 60 min to remove the mechanical damage caused by polishing.

During the SCD epitaxy, a polycrystal diamond (PCD) rim often appears around SCDs,
leading to the shrinkage of the SCDs; hence, the Mo pocket substrate holder was applied
to decrease the PCD rims and optimize the growth process [21,22]. The hydrogen and the
methane in the purity of 6N and 5N5 were introduced into the chamber through a mass
flow controller.

The base pressure was realized by a rotary pump to 0.1 Torr after the substrate was
placed on the Mo holder. In the process of the growth, the chamber pressure, temperature,
microwave power, and deposition time were 78 Torr, 1015 ± 20 ◦C, 3.9 kW, and 3 h,
respectively. The temperature of the sample surface was adjusted by microwave power [23]
and measured by an infrared radiation thermometer through the quartz windows on the
top of the chamber. There was no extra heating apparatus under the substrate holder. The
total reaction gas was 500 sccm, and CH4/H2 flow rates were varied at 6%, 6.2%, 6.4%, 7%,
and 8% to study its influence on the growth of SCDs.

The growth rate was estimated by the growth time and thickness increment of the
substrates determined by an auto micrometer caliper with the accuracy of 0.01 mm.

The morphologies of the diamond films were studied by the optical microscope,
scanning electron microscopy (HITACHI SU-8010), and atomic force microscopy (AFM,
INNOVA Bruker Corp., Billerica, MA, USA). The quality of the films was characterized
by X-ray diffraction (XRD, PANalytical The Analytical X-ray Company, Malvern, UK) and
Raman spectra (Renishaw InVia Qontor, 532 nm, Wotton Underage, UK).

3. Results and Discussion

Figure 1 shows the graph relating methane concentration to the growth rate. The
inset illustrates the position of the diamond sample in the Mo pocket. The growth rate
increased almost linearly with methane concentration. For instance, the value of growth
rate is 1.35 µm/h for the methane concentration of 6%, while the value increases to 5 µm/h
at a methane concentration of 7%. This can be explained by that the concentration of carbon
radicals increased with the increase of methane concentration, and a large proportion of
methane molecules dissociated to generate radicals, which were considered to be involved
in the nucleation process of the diamond.

Figure 2 shows an optical image (50×) of the diamond obtained during the experi-
ments (the inset shows the SEM image (5000×) of the diamond). With 6% of the methane,
there are many large rounded hillocks with several pits on the surface of diamond film.
This phenomenon could be a consequence of high atomic hydrogen concentration that
causes a high etch rate during growth at high microwave power [24]. With the increase
of the methane concentration, the large rounded hillocks disappear, and the surface mor-
phology is improved, the substrate surface is very smooth at 6.4% methane. However,
unexpected crystallites and step-bunching are observed on the films grown with 7% and
8% of methane. From the substrate surface morphology, the optimum methane content can
be found at 6.4%.
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(c) 6.4%; (d) 7%; (e) 8%.

Figure 3 shows the AFM images of the substrates with an area of 5 × 5 µm2. The root
means square (RMS) roughness from the AFM pictures are 1.36, 1.1, 0.573, 1.41, and 35.7 nm
for the samples grown with 6%, 6.2%, 6.4%, 7%, and 8% of methane, respectively. These
films are atomically flat over the area. The variety trend of the roughness as a function
of methane concentration is plotted in Figure 3. The roughness decreases from 1.36 to
0.573 nm, which means that appropriate methane content in the reaction gas can reduce
the surface roughness. However, with further increasing the flow rate of methane, the
secondary nucleation effect of methane is enhanced, which would make the surface rough.
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Figure 3. AFM two-dimensional images (the corresponding surface fluctuation along the yellow dashed) and the plot of the
RMS, average roughness on the top surface of the diamond with different concentration of CH4.

In order to compare the quality of the samples grown at different methane concentra-
tions, Raman spectroscopy was applied, which is shown in Figure 4. The strong Raman
scattering peak of the diamond phase is observed at about 1332.9 cm−1, with a full width
at half maximum (FWHM) of 6.6–6.8 cm−1, which is the characteristic peak of the sp3
structural of diamond [25]. There is no peak of the non-diamond phase and no obvious
stress concentration area, and there are no components of disordered carbon in the Raman
spectra, indicating the high quality of SCD [26,27].
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Figure 5a shows the XRD rocking curve patterns taken from the growth surface
of the diamonds. The fitted FWHM of the XRD peak is plotted as a function of CH4
concentration (Figure 5b) as well. Variation of the rocking curve peak position is due to
the original HPHT substrate and mechanical bending of the crystal [28,29]. The X-ray
intensity of a single pixel is extracted from the image series scanned by a given rocking
curve, and the peak position and width of the pixel are extracted by Gaussian fitting. The
relatively low FWHM of all samples are narrower than 40 arcsec, comparable with the
electronic grade SCDs commercially purchased from EDP Ltd., illustrates a high-quality
diamond layer. With the increase of methane concentration, the corresponding FWHM
is decreased, which can be attributed to the increased SP3 bonding in the substrate. With
further increasing the methane content, FWHM presented an increasing trend, caused by
SP3 bonding transforms into SP2 bonding, and the substrate surface is graphitized. Raman
analysis provides qualitatively compatible results. These analyses revealed that the 6.4%
methane concentration is the most appropriate ratio with FWHM in 31.32 arcsec, which is
consistent with the dependence observed of the morphology analysis. It is evident that a
proper concentration of methane is favorable to achieve high-quality SCDs with atomically
smooth surface.
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4. Conclusions

The purpose of this paper was to find the effect of the methane concentration for
high-quality SCDs synthesis. Substrates with an atomically smooth surface and high
crystallinity were successfully fabricated. Under the optimized condition in 6.4% methane
concentration, the sample presents a proper growth rate (3 µm/h), lowest RMS (0.573 nm),
and narrowest XRD FWHM (31.32 arcsec). These facts are expected to help realize the
high-quality and long-term stable deposition required for device-grade SCDs production.
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