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Abstract: This is a review of current developments in the field of ion-plasma and beam methods of
synthesis of protective and functional dielectric coatings. We give rationales for attractiveness and
prospects of creating such coatings by electron-beam heating and following evaporation of dielectric
targets. Forevacuum plasma electron sources, operating at elevated pressure values from units to
hundreds of pascals, make it possible to exert the direct action of an electron beam on low-conductive
materials. Electron-beam evaporation of aluminum oxide, boron, and silicon carbide targets is used
to exemplify the particular features of electron-beam synthesis of such coatings and their parameters
and characteristics.

Keywords: thin films deposition; laser deposition; electron-beam deposition; magnetron sputtering;
fore-vacuum plasma electron sources

1. Introduction

Dielectric coatings based on oxides, nitrides, borides, carbides, and other compounds
take up a special place among various functional and protective thin-film coatings. Such
coatings are normally characterized by high hardness, temperature, and corrosion re-
sistance, with the majority of them being electrically insulating [1]. Ceramic coatings,
deposited onto the metal surfaces, are used to protect them from thermal and mechanical
damage, corrosion, and premature wear. Such coatings are widely used in the automotive
and aerospace industries, nuclear energy, and medicine. For the first time, ceramic coatings
have begun to be used in the aerospace industry for covering the gas turbine engine blades
exposed to increased corrosive and erosive wear due to constant temperature changes. In
the nuclear energy industry, they are used to cover the elements of the reactors, cooling sys-
tems, and nuclear fuel storages. In the military-industrial complex, ceramic compounds are
used to cover equipment cases, weapon elements, and special products. The coatings used
in metalworking increase the hardness and lifetime of the parts. In the automotive industry,
ceramic materials are used to protect components of engines, rims, and chassis; in medicine,
they are used to protect devices and parts of prostheses. Thin boron-containing films (pure
boron, boron carbide, or nitride) are widely used in microelectronics, nuclear power, and
aerospace due to their high hardness, strength, wear resistance, chemical inertness, and
dielectric properties, as well as the ability of boron to absorb neutron radiation.

For many industrial applications, it is desirable for the coatings to combine these prop-
erties at a relatively low production cost. For example, aluminum oxide, the most commonly
used dielectric in virtually all industries, is a chemically inert, corrosion-resistant material
with a relatively low cost as compared with other ceramics. Its hardness (15–20 GPa) is
on par with hard alloys and its specific resistance (1014 Ω·cm) with the best electrical
insulating materials [2]. Coatings based on aluminum oxide can operate at temperatures
up to 1500 ◦C and find wide applications in modern instrument and mechanical engineer-
ing [3]. Boron-based coatings, boron nitride and metal borides, are of considerable interest.
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These compounds are chemically inert, temperature resistant, and have high hardness.
The hardness of cubic boron nitride surpasses that of diamond, and its decomposition
temperature is twice as high as that of diamond [4]. Note that boron-containing surface
layers are created today most often by using the filler brazing technology [5] or the more
up-to-date technology of gas borating in the atmosphere of decomposing, usually toxic,
gaseous boron compounds [6].

The search results for the keywords “dielectric coatings” in publications of the Amer-
ican Institute of Physics (AIP), Institute of Electrical and Electronic Engineers (IEEE),
Institute of Physics (IOP), Elsevier, American Institute of Aeronautics and Astronautics
(AIAA), and other institutions show a significant increase in the number of articles on this
topic over the last five years (Figure 1).
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Beam-plasma methods of creating multifunctional dielectric coatings in vacuum or
a rarefied gas, such as magnetron spattering, vacuum arc plasma deposition, laser abla-
tion, electron-beam evaporation, and plasma-enhanced chemical methods, are used for
addressing a wide range of practical problems related to surface modification of various
materials. Among the extensive nomenclature of beam-plasma technologies, the electron-
beam synthesis of coatings is characterized by a faster deposition rate and, hence, higher
productivity [7]. Creation of dielectric coatings by electron-beam evaporation is hampered
due to the electrical charging of the evaporated surface of the target. To neutralize the
charging, it is necessary, at least at the initial stage of the technological process, to employ
special methods and approaches [8] that complicate the equipment and diminish control
over the process and its efficacy.

Forevacuum plasma electron sources are capable of generating electron beams in the
previously inaccessible forevacuum range of elevated pressure (1–100 Pa). They have the
same usual advantages of conventional plasma electron sources: high current density,
reliability, they are non-sensitive to rough vacuum conditions and the presence of active
gases. The plasma formed in the electron-beam transport region at an elevated pressure
of the forevacuum range effectively neutralizes the surface charging of non-conductive
materials by the electron beam [9]. This opens up a principal opportunity for using
forevacuum plasma electron sources for electron-beam evaporation of dielectric materials
and creating coatings [10]. Additionally, the beam plasma, generated in the forevacuum
pressure range, can be used to provide ion-plasma assistance for electron-beam synthesis
of dielectric coatings or modification of the surface properties of dielectric materials [11,12].



Coatings 2022, 12, 82 3 of 39

This article is a review of the current research on the creation of dielectric coatings by
forevacuum plasma electron sources in comparison with the known methods of the beam
and ion-plasma synthesis of such coatings.

2. Beam and Ion-Plasma Methods of Dielectric Coating Deposition
2.1. Magnetron Sputtering

Magnetron sputtering is one of the most common methods of coating deposition [13].
In its essence, it is the sputtering of a cathode target by ions from the plasma generated
in a magnetron discharge system, which is a type of discharge in crossed electric (E) and
magnetic (H) E × H fields. A magnetron discharge normally occurs in the planar geometry
of electrodes with a magnetic field of an arc configuration. Such sputtering systems operate
at a working gas pressure of 10−2 to 1 Pa and provide a deposition rate of various metal
coatings at about 15 nm/min. Physical processes in magnetron sputtering systems (MSS)
related to metal coating deposition on various surfaces have been a subject of thorough
studies and have been discussed in much detail; see, for example [14].

The MSS-based methods of dielectric coating fabrication can be conventionally divided
into three groups: reactive magnetron sputtering that uses chemically active gases; high-
frequency magnetron sputtering of a dielectric target; dielectric target heating to ensure
sufficient electrical conductivity. Under magnetron sputtering, the deposition rate of
dielectric coatings is much lower than that of metal films.

A schematic diagram of a system with reactive magnetron sputtering is shown in Figure 2 [15].
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Figure 2. Schematic diagram of a magnetron sputtering system for producing dielectric coatings with
the help of a reaction gas [15].

In this system, a chemically active gas (oxygen, nitrogen, etc.), being added to the
inert gas in the vacuum chamber, chemically reacts with the sputtered material of the
target and forms a dielectric film on the substrate. In this way, one can deposit coatings
of complex composition based on oxides, nitrides, carbides, and other materials [16,17].
Along with a number of advantageous features associated with the widespread use of
reactive magnetron sputtering, the technique carries certain fundamental disadvantages.
They include the “disappearance” of the anode when a dielectric film is formed on its
surface [18], as well as the “contamination” of the MSS target [19] and intense arcing on its
surface [20]. The indicated problems can be partially resolved by replacing the standard
MSS system with a dual system that implements more stable sputtering [21], but, all in all,
such systems degrade the stability of the coating deposition and have a negative effect on
the quality of coatings.

A dielectric target can be sputtered in a radio-frequency (RF) magnetron discharge,
which is essentially an electrodeless discharge. An RF magnetron can sputter dielectrics
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whose composition is close to that of the coating [22]. The most often used frequency is
13.56 MHz [23]. Such systems are used to deposit ferroelectric layers to form capacitor
structures in micro- and nanoelectronics [24] and protective and reflective layers in optical
storage devices [25]. They also find their applications in the deposition of wear- and
corrosion-resistant coatings such as SiO2, Al2O3, and other chemical compounds [26].
However, because of the complexity of matching the output parameters of the RF generator
with the parameters of the discharge gap, the RF magnetron sputtering is practically not
used for coating large-area substrates. Besides, the RF power supply is more costly and
the coating deposition rate is relatively slow, not exceeding several tens of nanometers
per minute [27].

In the case of using a target of boron or other low-conductive materials under normal
conditions, but with sufficient conductivity for the discharge to operate at high temper-
atures, heating the target is deemed an expected and apparent approach to the problem.
Such an approach is implemented, for example, in a magnetron system with a cathode
target of pure boron [28] (a material with resistivity under normal conditions of about
107 Ω·cm). In [29] (Figure 3), the boron target was heated up to a temperature of 600–700 ◦C
in 1–2 min by an auxiliary steady low-current glow discharge, which can initiate even on a
cold boron target. At such temperatures, the electrical conductivity of the target rises to a
value sufficient for the burning of a pulsed magnetron discharge, with current amplitude
of 20–50 A and pulse duration of up to 150 µs. At such a high discharge current, the
so-called self-sputtering regime is realized in MSS [30], in which the fraction of boron ions
in the discharge plasma can exceed 90%. In this way, it is possible to produce boron-based
coatings, but the main problem posed here is cracking and destruction of the pure boron
target due to the mechanical stress caused by heating.
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Let us consider the possibility of the self-sputtering regime in the pulsed magnetron
discharge system with a pure boron cathode described in papers [31,32]. The use of a
bipolar voltage pulse, in combination with negative potential applied to the collector,
ensured stable burning of the magnetron discharge with a frequency of 300–350 kHz, which
is much lower than the «standard» magnetron frequency (13.5 MHz). This method was
used in those papers to obtain boron-based coatings in various gases. The study of their
composition and morphology showed that the smoothest coating was deposited in the
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case of boron sputtered in a residual atmosphere or in pure nitrogen, while the presence
of oxygen greatly increased the surface roughness. Studies of the coating morphology
showed that the best uniform and defect-free coatings are the boron-based ones obtained
in a nitrogen or residual atmosphere, while with the boron-oxygen plasma, the deposited
coatings have a coarse-grained structure.

2.2. Cathodic Arc System

Vacuum arc, or cathodic arc deposition of coatings, is a method of creating coatings
in vacuum by condensing a material onto the substrate from plasma fluxes generated in
the cathode spot of a vacuum (cathode) arc, which is a high-current low-voltage discharge
operating exclusively in metal vapor of the cathode material [33]. The definite advantages of
the vacuum arc method are high deposition rates, amounting to several tens of nanometers
per minute [34], and good adhesion of coating to the substrate [35]. It is owing to these
properties that electric arc evaporators have found their industrial applications [36]. An
inherent disadvantage of arc evaporators is the presence of micro-droplet fractions, whose
deposition significantly diminishes the coating properties [37]. The use of various filtering
systems, predominantly magnetic filters with a 90-degree rotation of the plasma flux [38],
significantly decreases the surface contamination by vapor of the cathode material. Besides
making the design of arc evaporators more complex, filtration of the plasma flux degrades
the deposition rate to the level of magnetron sputtering [39].

As in magnetron sputtering systems, to produce coatings with dielectric and semicon-
ductor properties, a reaction gas (nitrogen, methane, or oxygen) is fed into the working
chamber [40]. An example of such a process that uses an arc evaporator is illustrated
in Figure 4 [41].
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Figure 4. Schematic diagram of coating deposition by arc evaporation with an admission of a
reaction gas [41].

This method is used to produce TiN, AlTiN, TixOy, AlTiSiN, TiCN, CrxNy, and other
coatings [42]. As a rule, the first stage of deposition includes ion cleaning of the surface,
which is performed by applying to it a voltage of several kilovolts supplied by a high-
voltage source. After the voltage is brought down to the level of 100 V, the sputtered
particles begin to condense onto the substrate in an atmosphere of a particular reaction
gas. As an example, one may consider the use of a cathode arc for deposition of heat-
and erosion-resistant coatings on the turbine blades of aircraft engines. The base of such
coatings is a strong nickel alloy (85–75% Ni; 10–15% Al; 5–10% Cr), with aluminum oxide
Al2O3 forming on its surface, whose protective properties are preserved up to a temperature
of 1500 ◦C [43]. This method is used to produce TiO2 films, with a dielectric constant of
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25–38 and a dielectric loss tangent of 0.01–0.02, which can be used as optical coatings and
dielectrics of capacitor structures for integrated microcircuits with multilevel wiring [44].
The deposition rate of dielectric coatings in arc systems with an admission of reaction
gases is about 17 nm/min [45], which is much higher than in HF magnetron sputtering
systems [46] or in magnetrons with an admission of reaction gases [47]. Despite the
presence of a micro-droplet fraction, the use of a vacuum arc seems quite beneficial for
these purposes.

As in magnetron sputtering systems, it is possible to produce dielectric coatings in
arc systems by initiating a cathode spot on a preliminary heated solid cathode, which
under normal conditions is a dielectric or a semiconductor with low electrical conductivity.
Consider as an example the discharge system of an ion source based on a vacuum arc
discharge with a crystalline boron cathode [48]. A schematic diagram of the installation is
shown in Figure 5 [49].
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A vacuum arc discharge between the cathode made of pure crystalline boron and
the hollow anode operates at a residual pressure of 10−6 torr. As a result of high-voltage
breakdown between the cathode and the tungsten ignition electrode occurring along the
surface of the ceramic insert, cathode spots of the vacuum arc are initiated. To heat the
cathode to a temperature of about 600 ◦C, in order to ensure sufficient electrical conductivity
upon the discharge ignition, a coil heater, made of 0.7 mm tungsten wire, is used around the
molybdenum cathode holder. As noted in [50], upon ignition of the arc with a pure boron
cathode, due to a considerable difference in electrical conductivity, the cathode spots in
the initiation and adjacent areas almost stay still, or move slowly over the cathode surface.
This brings about local erosion of the cathode and a large amount, as compared with a
metal cathode, of micro-droplets [50].

A somewhat smaller micro-droplet fraction in the boron arc plasma has been achieved
by the multi-point initiation of an arc discharge using a tungsten grid instead of a dielectric
insert, and by igniting the spots at the grid contacts with the cathode surface [51].

2.3. Plasma-Enhanced Chemical Methods

Plasma-enhanced chemical vapor deposition (PECVD) is a deposition method in
which a coating is formed as a result of a chemical reaction occurring in plasma [52]. Under
such a method, auxiliary plasma is used to decompose the reacting substances and activate
the substrate surface. The plasma-enhanced chemical method is distinguished from other
methods by its relatively low process temperature, which is less than 400 ◦C. This feature
extends the range of materials suitable for coating deposition, including polymers [53].
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For any plasma-enhanced chemical deposition method, it is first necessary to de-
termine the optimal plasma parameters that ensure maximum efficiency. The existing
methods of plasma generation for PECVD can be conventionally subdivided into two
groups: discharge and beam ones. The first group includes the techniques where plasma
is generated in low-pressure discharges, such as a glow discharge [54], vacuum arc [55],
HF- [56], or UHF- [57] discharge. The beam group includes the use of electron beams [58],
laser radiation [59], and, in a number of cases, ion beams [60].

The creation of plasma by an electron beam has certain fundamental advantages, of
which the most important is the high efficiency of energy transfer when acting on the
gas reaction volume. There are practically no limitations for an electron beam on the
chemical composition of the medium into which it is injected [61]. It can be generated in
cavities, which allows the internal surfaces of the parts to be coated [62] and solid bodies
to be introduced into the reaction volume [63]. An electron beam can be injected not
only into a gas, but also into a gas flow [64]; it is also possible to combine it with other
plasma-generating sources [65].

The PECVD method is employed to create thick diamond-like films [66], as well as
ceramics based on silicon nitride and oxide [67], aluminum oxide [68], and nitride [69]. A
schematic diagram of plasma-enhanced chemical vapor deposition using an electron beam
for the synthesis of silicon dioxide is shown in Figure 6 [70]. In this reactor, an electron
beam, generated by an electron gun with an accelerating voltage of 30 kV and a beam
current of 2 mA, is formed in a 20 L vacuum chamber.
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Figure 6. Schematic diagram of a beam-plasma reactor for the synthesis of dielectric coatings [70].

An electron beam is focused in the gas-dynamic output window with a diameter of
2 mm, through which it is injected into the reactor working chamber with a volume of
150 L. The components of the plasma-forming medium, Si (C2H5O)4 + O2, are fed into the
same chamber. The electron beam, interacting with the plasma-forming medium in the
chamber, forms a cloud of electron-beam plasma, into which a sample is introduced. As a
result of the interaction between the electron beam and the active medium, gas molecules
effectively dissociate when they collide with electrons. The reaction products deposit on the
substrate and form a coating. The growth rate of dielectric coatings in such reactors in the
process of complex chemical reactions can reach hundreds of nanometers per minute [71].
Table 1 contains typical parameters of dielectric coatings deposited by the PECVD method.

Figure 7 [72] shows pictures of the cross-section of the α-Al2O3 coating on the surface
of tool steel produced by an electron-beam plasma reactor, whose working principle is
similar to the installation in Figure 6. It is possible in principle to produce dielectric coatings
with a thickness of a few microns using the plasma-enhanced chemical method. However,
along with a tight packing of particles, the coatings also contain pores with a diameter of
tens of nanometers, as well as larger pores with a diameter of up to 2 µm. Hence, for a
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wider application of the PECVD method in depositing coatings with high uniformity of
properties, the method should be further developed.

Table 1. Deposition parameters of silicon dioxide and nitride by the PECVD method.

Process Parameter SiO2 Si3N4

Substrate temperature, ◦C 350 400
Gas flow ratio N2O/SiH4/N2:75/1/75 NH3/SiH4/N2:60/1/44
Pressure, Torr 0.25 0.35

Deposition rate, nm/min 50 20
Electron-beam parameters 4.7 kV, 16 mA/cm2 2.3 kV, 13 mA/cm2

Coatings 2022, 12, x FOR PEER REVIEW 8 of 41 
 

 

same chamber. The electron beam, interacting with the plasma-forming medium in the 
chamber, forms a cloud of electron-beam plasma, into which a sample is introduced. As 
a result of the interaction between the electron beam and the active medium, gas mole-
cules effectively dissociate when they collide with electrons. The reaction products de-
posit on the substrate and form a coating. The growth rate of dielectric coatings in such 
reactors in the process of complex chemical reactions can reach hundreds of nanometers 
per minute [71]. Table 1 contains typical parameters of dielectric coatings deposited by 
the PECVD method. 

Table 1. Deposition parameters of silicon dioxide and nitride by the PECVD method. 

Process Parameter SiO2 Si3N4 
Substrate temperature, °С 350 400 

Gas flow ratio N2O/SiH4/N2:75/1/75 NH3/SiH4/N2:60/1/44 
Pressure, Torr 0.25 0.35 

Deposition rate, nm/min 50 20 
Electron-beam parameters  4.7 kV, 16 mA/cm2 2.3 kV, 13 mA/cm2 

Figure 7 [72] shows pictures of the cross-section of the α-Al2O3 coating on the sur-
face of tool steel produced by an electron-beam plasma reactor, whose working principle 
is similar to the installation in Figure 6. It is possible in principle to produce dielectric 
coatings with a thickness of a few microns using the plasma-enhanced chemical method. 
However, along with a tight packing of particles, the coatings also contain pores with a 
diameter of tens of nanometers, as well as larger pores with a diameter of up to 2 µm. 
Hence, for a wider application of the PECVD method in depositing coatings with high 
uniformity of properties, the method should be further developed. 

 
Figure 7. Al2O3 coating: (a) cross-section of the coating on steel, (b) cross-section of the coating on 
tool steel with a defect [72]. 

Another drawback of this method is the difficulty in controlling the gas and vapor 
composition as they decompose, which leads to the presence of a broader range of gas 
products in coatings [53]. Besides, it is difficult to control the coating thickness and uni-
formity [73]. An industry-level plasma-chemical reactor is a complex and cumbersome 
installation that incorporates expensive power supply and vacuum evacuation systems 
[74]. Plasma-chemical reactors with an electron beam often make use of hot cathode 
guns. Since the pressure range that provides a stable operation of hot cathode electron 
sources is 2–3 orders of magnitude lower than the optimal pressure required for plas-
ma-chemical reactions, a design of complex and costly differential pumping systems is 
needed. 

The electron-beam plasma-chemical reactor can be significantly simplified if one 
makes use of special electron sources, which produce accelerated electrons within the 
range of reactor optimal working pressure. Forevacuum plasma electron sources meet 
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tool steel with a defect [72].

Another drawback of this method is the difficulty in controlling the gas and vapor
composition as they decompose, which leads to the presence of a broader range of gas
products in coatings [53]. Besides, it is difficult to control the coating thickness and uni-
formity [73]. An industry-level plasma-chemical reactor is a complex and cumbersome
installation that incorporates expensive power supply and vacuum evacuation systems [74].
Plasma-chemical reactors with an electron beam often make use of hot cathode guns. Since
the pressure range that provides a stable operation of hot cathode electron sources is 2–3 or-
ders of magnitude lower than the optimal pressure required for plasma-chemical reactions,
a design of complex and costly differential pumping systems is needed.

The electron-beam plasma-chemical reactor can be significantly simplified if one
makes use of special electron sources, which produce accelerated electrons within the range
of reactor optimal working pressure. Forevacuum plasma electron sources meet these
requirements. The work in this direction is being carried out at the US Naval Research
Laboratory (NRL). They created a Large Area Plasma Processing System (LAPPS) [75],
which is based on the selection and acceleration of electrons from the discharge plasma
with an extended hollow cathode and the formation of a flat surface “plasma sheet” in the
electron-beam transport region. A schematic diagram of LAPPS installation is shown in
Figure 8 [76]. “Plasma sheet” ions make it possible to process extended flat parts, including
etching, coating synthesis, nitriding, etc.

At a pressure of 2–13 Pa, the LAPPS installation can generate a ribbon electron beam,
1 cm thick and 30 cm long, with a current density of up to 10 mA/cm2 and electron energy
of up to 2 keV. The density of plasma generated by the electron beam is n = 109–1012 cm−3

at the electron temperature Te = 0.5 eV. The installation has narrow ranges of working
pressure and electron-beam parameters, which considerably reduces the efficiency of the
LAPPS-type systems. The efficiency is lower mainly due to the low pressure values: The
electron beam goes through the gas utilizing only a small fraction of its energy. Despite
this, the advantage of LAPPS is in its ability to provide high uniformity of the plasma and
high quality of the coating.
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2.4. Laser Methods

Laser coating deposition consists in ablation of a target material by laser radiation,
followed by the deposition of vapor on the surface [77]. Presently, laser technologies
are used to produce coatings of various materials [78] in a wide range of pressure, up
to atmospheric. Of the coatings fabricated by laser ablation, one may mention layers of
high-temperature superconductors [79], semiconductor structures [80], oxide- or other
ceramic-based dielectric coatings [81], as well as diamond-like coatings [82]. By changing
the wavelength of laser radiation, power, energy density, and the pulse duration, one can
control the coating thickness and uniformity [83].

Laser synthesis of dielectric coatings can be conventionally divided into three groups:
ablation of metals in a medium of chemically active gases [84]; blazing or cladding of
dielectric materials (nanopowders) onto a substrate [85]; direct evaporation of a dielectric
target [86]. The first method is in principle similar to the ion-plasma methods of a vacuum
arc coating deposition. In this case, the laser beam is used either to vaporize metal in an
active gas (oxygen, nitrogen) and deposit non-conductive coatings, such as titanium oxide,
or to excite plasma in plasma-chemical reactors. The laser cladding is the most widely used
technique. This method is used to obtain coatings of up to several millimeters thick.

A schematic diagram demonstrating the basic principle behind the synthesis of coat-
ings by laser evaporation of a target is shown in Figure 9 [87]. The coatings are deposited
in a pulsed laser evaporation mode at a wavelength λ = 1.06 µm or in a continuous mode
at λ = 10.6 µm. The most important parameter that governs the physics and chemistry of
laser deposition is the mode in which the laser operates. It determines the temperature
in the evaporation zone, rate of evaporation, the mechanism of nucleation, and structure
and properties of coatings. When using a continuous or pulsed laser, the interaction of the
material vapor with radiation and the target becomes essential.

Most energy of laser radiation is spent on heating the vapor and much less on its
creation. For this reason, the target evaporation rate, at all other conditions being equal,
is significantly lower for continuous radiation than for the case of a nanosecond pulsed
radiation, when the vapor screening the target surface does not have enough time to form.
Effective evaporation of semiconductors and dielectrics occurs at the following parameters
of laser radiation: wavelength 1 µm, frequency 10 kHz, pulse duration 200 ns, power
density per pulse 107–108 W/cm2.

A high-power laser is usually placed outside the vacuum chamber. An optical system
guides the laser beam into the chamber through an optically transparent window and
focuses it on the target. The characteristic penetration depth of laser radiation into the
target surface is only 10 nm. Only a thin surface layer of the material is exposed to radiation
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(the skin depth is typically 15–20 nm), while the temperature of the rest of the target remains
virtually unchanged. This is the main specific feature of the target ablation by powerful
pulsed laser systems.
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Depending on the intensity and localization of laser radiation, the products of ablation
can be either atoms, ions, molecules or particulate clusters and micro-particles that move
with high kinetic energy from the area of the laser action to the surface. When interacting
with the target surface, radiation may create droplet fractions, but this problem is solved by
using filters, similar to those used in vacuum arc devices [88].

Paper [89] presents the results of fabricating zirconium dioxide coatings deposited on
silicon substrates. The experimental setup is shown in Figure 10 [89].
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The experiments used a solid-state pulsed Nd: YAG laser based on SKAT-301 laser
facility with an active medium of YAG (Y3Al5O12) doped with neodymium ions Nd [90].
The laser operated in the single-pulse mode with laser radiation intensity of 108–1010 W/m2,
and in the pulse-frequency mode at a pulse repetition rate of 50–100 Hz. The target was
made of remelted chemically pure dielectric powder of ZrO2. The silicon sample was
located at 10 mm from the evaporated target. A rotating filter was used to filter out the
deposition of particles with a diameter 0.1–1 µm on the substrate. Coating layers with a
thickness of up to 500 nm were obtained in this manner. The study of adhesion properties
of coatings showed that zirconium dioxide particles detached from each other at a load of
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100 mN, while the detachment of the coatings from the substrate occurred at a relatively
low value of 10 mN.

In papers [91,92], boron nitride coatings were deposited by laser ablation of a target
made of pure (99.99%) boron nitride. They used a Lambda Physik LPX300 excimer laser [93]
with a wavelength of 248 nm, pulse duration of 30 ns, and energy per pulse of 0.9 J. The
coatings were deposited in the vacuum chamber at a residual gas pressure of 10−7 Pa. The
size of the laser spot was 2 mm × 3 mm, and the coating thickness was controlled by the
pulse counts. The target was placed at an angle of 45 degrees to the substrate surface,
which rotated to ensure a uniform coating. Boron nitride coatings were obtained on silicon,
alumina ceramics, and silicon dioxide, including hexagonal and cubic phases.

The essential specifics of all devices used for depositing coatings on the target surface
by the laser ablation method is the necessity for an input window to let laser radiation into
the vacuum chamber, where the actual deposition of coating on the substrate surface occurs.
Like the substrate surface, the inner window surface is also subject to the deposition of
vaporized material, whose film obstructs penetration of radiation through the window. To
diminish this effect, a reflecting system of mirrors is installed in the chamber, which allows
placing the window in the area with a minimal flux of ablated material. This prolongs the
window’s period of use without cleaning, but does not solve the problem of its dusting.

Laser ablation is specific in that the laser power density in the focused laser spot is
high, up to a hundred watts per square centimeter. This feature allows the laser to be
successfully used in various technological processes, such as cutting of materials or surface
hardening, but it does not give any benefits in coating deposition. The heating of the
target at a power density exceeding a threshold value causes its explosive boiling and
contaminates the flux of evaporated material with a droplet fraction.

So, evaporation of the target material by laser ablation for coating deposition is a
fairly efficient technique. However, the need to place the evaporated target in vacuum
does not grant laser ablation any apparent advantages as compared with the electron-beam
method of coating deposition. It should be noted that the development of laser ablation
techniques greatly benefits from the availability of high-power lasers; though expensive,
they are reliable, with a long history of development, and are produced commercially on a
mass scale for various tasks at hand.

2.5. Electron-Beam Methods

Electron-beam method of coating deposition consists in melting and evaporation
of a solid-body target by an electron beam, followed by the deposition of the evapo-
rated material on a substrate [94]. Electron-beam coating deposition has the following
characteristic advantages:

- High electron-beam energy density, up to 10 MW/cm2, at which the temperature
attainable in the beam action area is sufficient to melt virtually any material;

- Capability to effectively control the parameters of the electron beam and its position;
- Possibility of obtaining chemically pure and multi-component coatings;
- Simplicity, reliability, and long service life of technological equipment.

Since the characteristic penetration depth of laser radiation into materials is much less
than the electron path, the vapor of the target material during laser ablation screens the
evaporated surface. In this case, the energy of laser radiation is dissipated on the material
vapor and is spent not on the evaporation of the surface material but on vapor heating
and ionization. It is on this principle that pulsed laser sources of multiply charged metal
ions are designed [95]. For electron beams, this effect is less prominent and virtually all
beam energy is spent on heating the target. This is another advantage of this method over
laser coating deposition systems. Additionally, the electron-beam coating deposition is
free of the issue with the window dusting since the electron beam is generated inside the
vacuum chamber.

Unlike laser ablation [60], under the electron-beam method, virtually all electrical
energy applied to the accelerating gap can be converted to the kinetic energy of beam



Coatings 2022, 12, 82 12 of 39

electrons, which is spent on the target heating. So, the electron-beam method of coating
deposition is energetically more efficient than the method of laser ablation.

Metals and their alloys are the main materials for which the technology of electron-
beam processing is well understood and implemented. The electric charge, carried by the
beam electrons in the course of treatment, “sinks” to the grounded walls of the vacuum
chamber through the conductive holder or fixing elements. The situation is different
for irradiated non-conductive materials—various types of dielectrics (ceramics, glass,
polymers, etc.) The low electrical conductivity is the reason that the charge accumulates
in the beam-irradiated area of the dielectric surface, which in the end can lead to beam
deceleration, defocusing, and even reflection from the surface. The problem of the electron-
beam charging of a non-conductive surface can be partially solved by placing metal grids
on the irradiated surface [96], or by admixing metals to the dielectric target to improve its
electrical conductivity [97], or by introducing an auxiliary ion beam to offset the surface
charge carried to the dielectric target by the electron beam [98]. Thus, conventional electron-
beam processing of dielectrics requires undertaking special measures to increase the charge
drainage from the surface or to prevent its accumulation.

Paper [99] discusses the results of coating deposition of zirconium- and alumina-based
ceramics by a high-power electron beam (Figure 11).
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Figure 11. Schematic diagram of dielectric coating deposition by an electron beam [99].

The coatings were produced by scanning an electron beam over two evaporated
targets: a conductive target of ZnO and a dielectric target of Al2O3. Before the deposition,
the vacuum chamber was evacuated to a pressure of 5 mPa, and in the course of deposition,
the pressure was increased up to 0.3 Pa. The substrate of quartz glass had an area of
30 mm × 30 mm and a thickness of 1 mm. The electron-beam power was 5–9 kW. The
substrate was located at a distance of 600 mm from the targets; the deposition time was
450 s. The coatings had a rather rough surface morphology and a polycrystalline structure
with a grain size of about 200 nm (see Figure 11). The coating thickness was 300–320 nm.
The deposition rate in this study was about 50 nm/min.

It is noteworthy to emphasize that in this work, during the scanning of the Al2O3
target, it was required to increase pressure by almost 100 times, and the electron-beam
power by almost twice. The authors found those conditions experimentally without giving
any justification as to their rationale. It seems that it is related to the charging of the
dielectric target by the electron beam at a low residual gas pressure in the vacuum chamber.
However, since the pressure in the course of the deposition was not optimal, the charging
and partial reflection of the electron beam from the target surface took place, which had to
be compensated by a twofold increase in the beam power. It was the increase in pressure
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that ensured the electron-beam evaporation of the dielectric target required for coating
deposition, as this is implemented when using forevacuum plasma electron sources [100].

The generalized comparison of the aforementioned methods is given in Table 2.

Table 2. Comparison of different coating deposition methods.

Method Advantages Drawbacks

Reactive magnetron
sputtering

Deposition rate—up to
15 nm/min

Good adhesion of coatings,
controllability of the structure
of coatings, the ability to coat

the large-area surfaces

Poisoning of the electrodes of
the discharge system, low
utilization of the cathode

material, low productivity in
the deposition of dielectric

coatings.

RF magnetron sputtering
Deposition rate—up to

50 nm/min

Ability to work directly with
the dielectric targets, no

disadvantages of reactive
magnetron sputtering

The complexity of matching
the output parameters of the

RF generator with the
parameters of the discharge

system, high operating
pressures affecting the quality

of the coatings obtained.

Vacuum arc method
Deposition rate—up to

100 nm/min

Good adhesion of coatings,
relative simplicity of technical

implementation, effective
ionic cleaning of products
before application, high
properties of coatings

The presence of a droplet
fraction of the metal phase in

the coating, relatively high
deposition temperatures

Plasma-chemical (PECVD)
method

Deposition rate—up to
50 nm/min

Relatively low process
temperature, large range of

formed coatings

Difficulty in controlling the
thickness of coatings, as well
as the composition of gases

and vapors during their
decomposition; the need for

complex and expensive
differential pumping systems

Laser methods
Deposition rate—up to

50 nm/min

Obtaining coatings of complex
compounds, high purity of

coatings

The complexity of technical
implementation; most of the
energy of laser radiation is

lost when the laser radiation
interacts with the vapor of the

evaporated target

Electron-beam method
Deposition rates:

Up to 50 nm/min—pure
dielectric coatings

Up to
1000 nm/min—deposition of

dielectric coatings in a
reaction gas media

Effective control of the
parameters of the electron
beam and its position, high

purity of coatings; practically
all supplied energy is

transformed into the energy of
the electron beam

The problem of charging the
surface of non-conductive
products, which requires

special efforts to neutralize the
charge; it is also difficult to

ensure uniformity of coating.

Thus, of all the long list of the known beam and plasma methods for creating dielectric
coatings, none of them is fully suitable for solving this important scientific and techno-
logical problem. This stimulates us to look for alternative approaches that better meet
today’s requirements. One of the most attractive approaches to this problem is the use of
forevacuum plasma electron sources.
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3. Synthesis of Dielectric Coatings using Forevacuum Plasma Electron Sources
3.1. Forevacuum Plasma Electron Sources: Basic Principles of Operation

The so-called forevacuum plasma electron sources represent a modern development
trend of electron sources, based on the emission of electrons from the low-temperature
plasma [101]. Sources of this type provide efficient generation of electron beams in the
previously inaccessible range of elevated pressure from a few to over a hundred of pas-
cal [102]. The move to the region of higher pressure values needs to consider the operation
of discharge-emission plasma electron sources and solve a number of scientific and engi-
neering problems related to the stable work of electron sources with the electron-beam
parameters that are attractive for real-world applications.

Unlike for conventional plasma electron sources, for forevacuum plasma electron
sources, it is virtually impossible to create a pressure drop between the region of the
emission plasma generation and the beam formation regions. Besides, the parameter pd
(p—pressure, d—the gap length) for the accelerating gap of forevacuum plasma electron
sources is closer to the minimum of the Paschen curve, which significantly increases the
probability of gap breakdown. Note also the fact that in the region of elevated forevacuum
pressure, the effect of a parasitic high-voltage glow discharge in the accelerating gap and the
back ion flux from the beam plasma on the generation of the electron beam is significantly
stronger [103].

The problem of the stable generation of an electron beam by a forevacuum plasma
electron source in the isobaric regime has been successfully solved by creating special
conditions for effective synthesis of emission plasma in the discharge system and simul-
taneous suppression of ionization processes in the regions of electron acceleration and
beam formation. Thus, to form focused continuous electron beams at an elevated pressure,
which are most suitable for electron-beam evaporation of materials, forevacuum plasma
electron sources make use of a hollow cathode glow discharge for generation of emission
plasma [104]. Electrostatic confinement of electrons inside the cathode hollow provided, as
a result of their multiple oscillations, a high rate of ionization and, consequently, a high
electron emission current density from plasma. The use of plane-parallel accelerating gap,
whose electrodes are placed at a minimal possible distance from each other, restricted
ionization processes in the gap to a great degree and significantly increased its dielectric
strength [101]. Additionally, to ensure a high dielectric strength of the accelerating gap,
forevacuum plasma electron sources use specially designed accelerating systems [101] that
inhibit the breakdown along the so-called “long paths” and diminish the effect of the back
ion flux from the parasitic high-voltage glow discharge and beam plasma.

The electrode diagram of a forevacuum plasma source of a continuous electron beam
based on a hollow cathode glow discharge [101] is shown in Figure 12.
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The hollow cathode of the discharge system of the plasma electron source is made of
stainless steel; its diameter is 15–30 mm and length 40–60 mm. The flat anode is also made
of stainless steel. Electrons are extracted from the plasma through an emission window of
a diameter of about 10 mm cut in the anode. To stabilize the plasma emission surface and
ensure the stable operation of the electron source, the emission window is draped with a
fine-structured tungsten grid with high geometric transparency, or a perforated tantalum
electrode is used. The electron beam is focused by a magnetic lens.

In the operational pressure range of the forevacuum plasma electron source, a hollow
cathode discharge current can amount to 1.0–1.5 A at a burning voltage of 500–600 V. As
of today, maximal parameters of the forevacuum plasma electron source of a continuous
focused electron beam based on a hollow cathode discharge are as follows [105,106]:

- Accelerating voltage up to 30 kV;
- Beam current up to 450 mA;
- Beam power up to 10 kW;
- Power density up to 106 W/cm2;
- Operating pressure up to 100 Pa (argon), 160 Pa (helium).

The attained electron-beam parameters of the forevacuum plasma electron source are
of almost the same level as those of conventional plasma electron sources that operate in
the pressure range of one or two orders of magnitude lower than the forevacuum. This
makes it possible to use electron sources of this type for thermal treatment of various
materials. As will be shown below, forevacuum sources are unique in that they are capable
of directly processing materials with low electrical conductivity; this includes melting and
evaporation of high-temperature ceramics for the purpose of dielectric coating deposition.

3.2. Beam-Plasma Parameters and Characteristics

Low-temperature plasma finds a plethora of technological applications, such as
plasma-chemical synthesis, coating deposition, modification of materials, sterilization
of medical tools and instruments, etc. [107]. Plasma is usually generated in a certain type of
gas discharge. To achieve the required plasma parameters in the gas discharge and be able
to vary them within a wide range is quite a complicated task. This is due to the fact that
the ionization processes in a gas discharge and the related steady-state plasma parameters,
first of all, provide the stable burning of the discharge at a given current. Control over
the plasma parameters by varying the discharge current is in many cases accompanied by
a change in the discharge burning voltage, which determines the temperature of plasma
electrons and thereby their ionization capacity. The burning voltage is also affected by the
pressure and type of gas, by the presence of a magnetic field, and by a number of other
factors. This all produces a disproportional influence of the current and external conditions
of discharge burning on the discharge plasma parameters and thereby hinders the control
over the plasma parameters.

Generation of plasma by an electron beam provides wider control over the plasma
parameters. This is not only because the beam current and the accelerating voltage, which
determines the electron energy, can be varied independently. It is fundamentally impor-
tant that the beam-plasma parameters do not significantly affect the characteristics and
parameters of the electron beam.

The maximum working pressure of conventional thermal emission or plasma cathode
electron sources is limited by a level of 10−1 Pa [101]. At such a pressure, the possibilities
of effective generation of beam plasma are limited. The move to the region of higher
pressure requires creating special conditions for the pressure separation of the regions of
the electron-beam formation and transport.

The advent and development of the so-called forevacuum plasma electron sources [101]
that can form stable beams at a pressure of 1–100 Pa in an atmosphere of various gases,
including chemically active oxygen, nitrogen, and others, made it possible to effectively
generate a beam plasma and use it for ion-plasma surface modification of various materials,
polymer, and ceramics [108]. As noted in [109], practically important parameters such as
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plasma concentration, ion flux, and energy, as well as the plasma potential relative to the
working chamber walls, directly depend on the basic plasma parameters: The electron tem-
perature Te and concentration ne. For this reason, experimental studies of the dependence
of these parameters on the experimental conditions are of great importance.

Paper [110] reports the measurements of the electron concentration and temperature
of the beam plasma generated during a free propagation of a beam with energy of 3 keV in
the chamber with argon at a forevacuum pressure of 2–13 Pa (Figure 13).
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Figure 13. Longitudinal distributions of the concentration (a) and temperature (b) of the beam plasma
generated during a free beam propagation in the chamber. Emission current Ie = 40 mA, beam energy
Ua = 3 keV, argon [110].

The plasma concentration decreases along the beam propagation direction for both low
(2.5 Pa) and higher pressure (12 Pa). Despite the concentration fall, the electron temperature
(Figure 13b) weakly depends on the longitudinal coordinate. As noted in [111], a relatively
weak change in the temperature may be caused by high thermal conductivity of electron
gas. It is shown in [112] that the beam-plasma concentration increases with increasing
beam current and its energy.

Paper [113] discusses the dependence of the electron temperature on the plasma
concentration and on the beam energy recorded at a fixed position of a single Langmuir
probe, Figure 14.

The results shown in this figure demonstrate a noticeable increase in the plasma
concentration with an increase in the beam current. This can be related to the proportional
dependence of the ionization on the beam current [114]. A smooth growth of the electron
temperature with increasing beam current, as noted in article [108], may be related to a
general increase in the fraction of the high-energy plasma electrons due to an increase
in the concentration of beam electrons. It should be noted that the plasma concentration
and electron temperature virtually do not depend on the beam energy (Figure 14b). The
authors of [115] showed that with an increase in the pressure from 1 to 15 Pa, at a fixed
current of about 30 mA and beam energy of up to 5 keV, the beam-plasma concentration
increases, while the electron temperature decreases. Their calculations demonstrated that
the cooling of plasma electrons, even disregarding inelastic collisions, mostly occurred
through collisions with neutral molecules. The predominant mechanisms through which
plasma electrons lose their energy are collisions with gas and the heat transfer from plasma
by the electron flux. Thus, in the forevacuum pressure range of 1–15 Pa, using a focused
electron beam, it is possible to create a plasma with a temperature of about 1 eV and a
concentration of 109–1010 cm−3, the parameters of which can be controlled by several
independent quantities: The beam current and energy, the pressure, and the type of gas.
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Figure 14. Dependence of parameters (n, Te) of the plasma generated in helium (5 Pa) during free
beam propagation, on the beam current (a) and the beam energy (b). The probe is located 4 cm off
the beam axis approximately half way on the beam transport path (z ≈ 92 mm) [113].

Paper [116] reports the experimental studies of the spatial distribution of the concen-
tration and temperature of electrons of the beam plasma created by a continuous ribbon
electron beam with energy of up to 2 keV in an argon atmosphere at a pressure of 6 to 9 Pa.
The electron beam, formed by the forevacuum plasma electron source, had a cross section
of 10 mm × 250 mm. When propagating in the argon medium, the beam created a plasma
which was confined in the electron-beam propagation region by creating a longitudinal
magnetic field. It was demonstrated that the distributions of the electron concentration
and temperature directly depend on the related distribution of the current density over
the beam cross section, and the plasma parameters are essentially affected by the pressure
in the vacuum chamber. Thus, with increasing pressure, the beam-plasma concentration
increases to amounts up to 1010 cm−3 at a current density of 15 mA/cm2. A similar increase
occurs with increasing beam current. The magnetic field strength affects the cross-section
width of the “plasma sheet”. With increasing voltage, the plasma cross-section width
decreases and simultaneously its concentration in the middle beam plane increases.

The parameters of the beam plasma, generated by a forevacuum plasma electron
source of a ribbon electron beam with an energy of 2 keV and a beam size of 10 cm × 1 cm,
transported without a magnetic field at a pressure of 5–10 Pa, are given in [117]. Unlike
the case of plasma generation in the presence of a magnetic field [116], two beam-plasma
interaction regimes are possible here. At relatively low beam currents (150–200 mA), the
beam propagation in the transport region is characterized by a low concentration of the
beam plasma (about 5 × 1015 m−3) and a low electron temperature (0.5 eV). A twofold
increase in the beam current brings about a significant increase in the electron concentration
and temperature, up to 1.5 × 1016 m−3 and 2 eV. The increase in the concentration is
accompanied by an enhanced plasma glow [118]. Paper [119] presents the measurements of
the parameters of the beam plasma generated during the propagation of a focused electron
beam with an energy of up to 15 keV and a beam current of up to 300 mA in a helium
atmosphere at a pressure of up to 50 Pa. The schematic diagram of the setup and the
distribution of plasma concentration is shown in Figure 15.

It has been demonstrated that the position of the region of intense interaction between
the electron beam and plasma can be controlled by varying the beam current density, which
is achieved by changing the position of the beam crossover. In the absence of a crossover, i.e.,
when the beam electrons move towards the collector along almost parallel trajectories, the
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concentration of plasma electrons varies weakly along the propagation path. By changing
the beam focusing parameters and placing the crossover near the collector (at a distance
of about 2 cm), or in the middle between the collector and the electron source, or near
the electron source, one can observe in the corresponding area a maximum of the plasma
electron concentration: The plasma concentration in this area increases by three times or
more compared to the propagation of a uniform beam without a crossover (Figure 15).
This article also demonstrates another effect related to the interaction of an electron beam
and plasma: The formation of alternating bright and dark bands in the beam-plasma glow
(Figure 16). The alternating bands were observed along the beam axis for a relatively
narrow range of the beam parameters: at a beam current close to 200 mA, an accelerating
voltage range of 8–14 kV and the beam crossover position of 5–7 cm from the collector
(Figure 16b).
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Figure 15. Experimental setup (a) and the beam-plasma parameters (b) [118,119]. Diagram:
1—plasma electron source, 2—vacuum chamber, 3—forevacuum pump, 4—electron beam,
5—collector, 6—beam plasma, 7—converging lens, 8—receiving part of the spectrometer, 9—optical
spectrometer with a computer, 10—double Langmuir probe, 11—sawtooth voltage generator,
12—oscilloscope. Concentration distribution along the beam for an accelerating voltage of 14 kV
and different positions of the beam crossover: 1—without crossover, 2—crossover near the collector,
3—crossover in the central part of the beam transport, 4—crossover near the electron source.
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Figure 16. Photograph of a helium beam-plasma glow in the absence (a) and in the presence (b)
of alternating bands. Beam current: a—180 mA, b—200 mA. Accelerating voltage 10 kV, pressure
40 Pa [119].

The observed phenomenon resembles strata, i.e., static or movable fringes of uneven
luminosity alternating with dark bands in the positive column of a low-pressure gas
discharge [120,121]. As noted by the authors in [119], the observed alternation of dark and
bright bands, similar to strata, exists in a very narrow interval of the beam current and
electron energy and may be related to the emergence of beam instability.

Injection of an electron beam into a dielectric cavity under high vacuum conditions
is only possible if the negative charge brought by the beam is removed [122]. The use of
forevacuum plasma electron sources allows one to bypass this physical limitation. The
possibility of generating beam plasma entirely in a dielectric space has been demonstrated
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in [123], which reports the measurement of parameters of the beam plasma created during
the injection of an electron beam into a cylindrical thin-walled quartz bulb with an inner
diameter of 4 cm and a length of 20 cm (Figure 17). Experimental studies of the parameters
of the generated beam plasma showed that the plasma potential inside the vessel was
negative and increased with increasing pressure; and the beam-plasma concentration in the
vessel was found to exceed the concentration of the plasma created by the beam in the free
space of the vacuum chamber. In an earlier paper [124], it has been shown that there exist
operational modes, in which the plasma occupies the entire space of the cavity even in the
absence of any electrodes to remove the electric charge inside. In this case, the current is
closed by a reverse flux of secondary electrons from the cavity surface, as well as through
the beam plasma to the grounded parts of the vacuum chamber. It has been found in [124]
that there exist generation regimes in which the plasma takes up the dielectric volume
only partially (Figure 17a). With increasing pressure, the plasma fills the entire volume
(Figure 17b). In addition, it has been shown for the first time that varying the gas pressure
and the energy of the injected beam changes the character of the longitudinal distribution
of the plasma concentration. With optimal parameters, the non-uniformity of concentration
can be reduced to about 10% [118].
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20 mA, air pressure: (a)—1.5 Pa, (b)—4 Pa [124]. Beam-plasma sterilization: (c)—medical glass bottle
of 10 mL.

The increased concentration has been explained based on the developed numerical
model [125,126], which incorporates a numerical balance model that explains the increased
concentration and the temperature of the beam-plasma electrons in the dielectric cavity
by the additional energy contribution of secondary electrons knocked out by the beam
electrons and plasma ions from the inner cavity surface and accelerated in the near-wall
and near-bottom layers. It has been shown that the contribution of secondary electrons to
ionization sharply increases in the gas’s lower range of pressure, whereas the contribution
of plasma electrons remains negligibly small. Thus, the beam plasma in a confined space
can be used for sterilization of medial glass and plastic bottles and vials (Figure 17c) [127].

3.3. Potential of a Dielectric Target Irradiated by an Electron Beam in Forevacuum

The beam plasma generated in the forevacuum pressure range, during the trans-
port of the accelerated beam, can neutralize the electron-beam charging of electrically
non-conductive surfaces (dielectrics). We modeled the plasma neutralization of the dielec-
tric surface in the experiments on the electron-beam interaction with an insulated metal
target [128]. The experimental setup is shown in Figure 18.
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Figure 19. Dependence of the potential of insulated target on pressure. Working gas: helium. Elec-
tron-beam parameters: (Blue)—380 mA, 3 keV; (Red)—550 mA, 3 keV [129]. The potential is nega-
tive due to accumulation of negative charges on the surface. 

Figure 18. Experimental setup for irradiation of an insulated metal target by a cylindrical beam
generated by a forevacuum plasma electron source: 1—hollow cathode, 2—anode, 3—accelerating
electrode, 4—magnetic lens, 5—collector, 6—electron beam, 7—metal target, 8—insulator, 9—vacuum
chamber [128].

The key question set in in the experiment was to determine the steady-state potential
of the insulated metal target irradiated by electrons. Electron beam 6 was generated by a
forevacuum plasma electron source, whose electrode scheme consisted of hollow cathode
1, flat anode 2, and accelerating electrode 3 [101]. Magnetic lens 4 was used to focus the
electron beam. The focused electron beam hit the insulated stainless steel target 7. The
target steady-state potential relative to the grounded collector and the vacuum chamber
was measured using a high-resistance voltmeter.

In all experiments, the measured potential of the insulated metal target irradiated by
the electron beam remained negative. As expected, the steady-state value of this poten-
tial increased with increasing electron-beam current and energy of accelerated electrons
(Figure 19). At forevacuum pressures, the gas pressure is the predominant factor that
diminishes the absolute value of the target potential [129].
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Figure 19. Dependence of the potential of insulated target on pressure. Working gas: helium.
Electron-beam parameters: (Blue)—380 mA, 3 keV; (Red)—550 mA, 3 keV [129]. The potential is
negative due to accumulation of negative charges on the surface.

As seen from the experimental dependences in Figure 19, already at a pressure of
10 Pa, under irradiation by an electron beam with an energy of 3 keV, the absolute value of
the steady-state potential of the insulated target dropped down to 60–50 V. In the pulsed
mode of operation of a forevacuum plasma electron source, at significantly higher electron-
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beam currents (for a microsecond pulse the electron-beam current amounts to tens of
amperes), the absolute value of the potential is significantly higher and can reach 2500 V at
an accelerating voltage of about 20 kV [130]. Note that according to experiments, at lower
pressures, the electron beam charges the insulated metal target almost to the full magnitude
of the accelerating voltage.

Thus, for the forevacuum pressure range, and all cases of the electron-beam action,
the steady-state potential of the insulated metal target is either close to zero (low-current
continuous electron beam) or much less than the accelerating voltage (high-current pulsed
electron beam).

We have found from analysis of experimental data, theoretical estimates, and nu-
merical modeling that in the forevacuum range, the steady-state potential of an insulated
target is affected by the electron-beam parameters, and by the ion current to the target and
secondary electron emission from the target surface [131]. An important additional factor
that contributes to an increase in the ion flux to the insulated target is the discharge ignition
between the negatively charged target and the vacuum chamber walls. In this case, the cur-
rent of the discharge circuit closes via the electron beam. The discharge ignition manifests
itself as an increase in the plasma glow in front of the insulated target, is accompanied by
an increase in the plasma concentration in this area, and leads to a further decrease in the
absolute value of the target potential [132].

When estimating the value of the steady potential of a dielectric target irradiated by
an electron beam, one should account for a non-uniform distribution of the potential over
the dielectric surface, as well as for the difference in the coefficients of secondary electron
emission between metal and dielectric. Since the direct method of measuring the potential
on a dielectric surface is virtually impossible, this potential was determined using indirect
methods [133]. Thus, for measuring the potential on the alumina ceramic surface, a set of
flat copper probes with a diameter of 3 mm was inserted into the dielectric target with a
diameter of 30 cm [133]. The results for the target irradiated by an electron beam are shown
in Figure 20. As follows from the data in Figure 20, the potential distribution over the
surface of the dielectric target is non-uniform and, at the low-pressure value of forevacuum,
the maximum value of the potential of a few kV is comparable to the accelerating voltage
of 10 kV. However, a relatively slight increase in the pressure noticeably smoothens the
potential distribution and significantly decreases the absolute value of its minimum.
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At a pressure as low as 10 Pa, the potential decreases to 700 V and almost compares
with the case of the insulated metal target irradiated by an electron beam. As in the case of
insulated metal target, an increase in the discharge current and in the accelerating voltage
brings about the corresponding increase of the absolute value of the dielectric target surface
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potential. However, in this case, the potential stays well below the accelerating voltage that
determines the electron energy.

Thus, the generation of dense beam plasma during the electron beam transport in
forevacuum provides mostly complete neutralization by ions of the electron beam charging
of the surface of an electrically non-conductive target. The charge compensation enables
one to directly subject dielectric materials to the electron-beam processing, including the
synthesis of dielectric coatings by electron-beam evaporation of dielectric targets.

3.4. Parameters and Characteristics of Dielectric Coatings

Electron-beam synthesis of dielectric coatings relies on using an electron beam for
heating and evaporation of a dielectric target, followed by the deposition of evaporated
products on the workpiece surface. As has been noted above, direct electron-beam evapo-
ration of materials with low electrical conductivity can be implemented with the help of
forevacuum plasma electron sources. In this case, the beam plasma generated by electron-
beam evaporation can provide the ion-plasma assistance in coating deposition, while the
use of chemically active gases as a working medium can affect the composition and struc-
ture of coatings and, therefore, their properties and parameters. The choice of optimal
parameters of an electron beam is connected with thermal properties of the evaporated
material of the dielectric target. The electron-beam optimal parameters, as well as thermal
regimes of the electron-beam exposition, may greatly differ for different target materials. In
this section, the electron-beam synthesis of dielectric coatings is presented using examples
of the evaporation of alumina ceramics, boron, and silicon carbide.

3.4.1. Ceramic Coatings

Let us consider the process of heating, melting, and evaporation of a dielectric target
using the example of aluminum oxide ceramics. An electron beam with a current of 150 mA
and energy of up to 20 keV was focused on a diameter of 4 mm on a ceramic target (a cube
with an edge of 1 cm). The evaporated ceramic sample, besides aluminum and oxygen,
contained impurities of sodium, nitrogen, iron, silicon, and carbon (Figure 21). The ceramic
cube was placed in a tantalum crucible. In the process of the electron-beam heating of
the ceramic target, plasma was created nearby, which contained, together with the ions of
the gas atmosphere, the ions of the evaporated material. The fraction of ions of the target
material directly depends on the electron-beam power [134].
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Using the experimental dependencies in Figure 22 of the ion composition on the
electron-beam power density, one can see how the beam-plasma composition is changing
during heating, melting, and evaporation of the ceramic target throughout the entire
process of deposition (in this case, the entire cycle takes up to 1 min) [10]. At relatively low
values of the beam power density (p = 2–4 kW/cm2) and accordingly of the electron-beam
power during the ceramic sample heating, the sodium and potassium peaks in the mass
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spectra increase, together with the growth of the energy of the bombarding particles. The
presence of these elements is due to their content in the raw materials, feldspars, used to
manufacture ceramics, and because of their low molar heat of evaporation (Na—98 kJ/mol,
K—77 kJ/mol) and a lower boiling point (Na—882.95 ◦C, K—773.85 ◦C) compared with
aluminum (284.1 kJ/mol, 2518.85 ◦C). As a result, sodium and potassium are the first to
evaporate from the surface layer of the ceramics into the vacuum chamber space. Relatively
low values of ionization potentials of these elements (Na+—5.14 eV, K+—4.3 eV) provide
effective ionization.
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With a further increase in the beam power density from 4 to 6 kW/cm2, the ceramic
sample melts. In this range of power density, no noticeable change in the ion composition
of the “ceramic” plasma is observed, and the amplitudes of sodium and potassium peaks
remain at the same level. At a power density of above 6 kW/cm2, the sample temperature
is high enough for evaporation and ionization of aluminum and its compounds. The peak
amplitudes of sodium and potassium increase, which may be related to the evaporation
of these elements from the bulk of the sample. At a power density of above 6 kW/cm2,
the spectra show a sharp increase in the peaks of the elements contained in the ceramics.
In this case, the peaks of the “ceramic” plasma ions begin to dominate over the “gas”
plasma ions, which is indicative of the increased concentration of ceramic ions in the
regions of registration of the beam-plasma ions and the substrate location. The peaks of the
sodium and potassium curves at a beam power density of 8 kW/cm2 can be related to the
evaporation of all additives used in the ceramic manufacture. At an electron-beam power
density above 8.5 kW/cm2, the peaks of aluminum ions dominate the spectra [10].

Figure 23 shows micrographs of the ceramic coating and its elemental composition. As
seen, the elemental composition of the coating deposited on the substrate almost matches
the composition of the ceramic target (see Figure 21). The ratios of the components in the
evaporated target and in the deposited coating differ.

The experimental results in Figure 24 distinctly show two regions with a relatively
slow and a faster increase in the rate of the target material evaporation with increasing
electron-beam power. In the first case, the increase in the evaporation rate can be related
to an increased temperature in the melt pool, as well as with the expansion of the pool’s
area. In the second region, the sharp increase in the evaporation rate is connected with
intense boiling of the material in the melt zone with the formation of the droplet fraction in
the evaporated flux. Each of the ceramic target samples has a threshold power density at
which a noticeable droplet fraction with a characteristic drop size of up to 20 µm appears.
Depending on the composition of alumina ceramics and its thermal physical properties,
the threshold power density for the appearance of the droplet fraction ranges from 1 to
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10 kW/cm2. The presence of droplets in the evaporated flux degrades the quality of
coatings. For this reason, the maximum electron-beam power density in the electron-beam
synthesis of dielectric coatings must be restricted. It appears that the threshold value of the
electron-beam power density for a particular evaporated material is a physical limitation
imposed on the possibility of obtaining uniform ceramic coatings using the electron-beam
evaporation in forevacuum. The target evaporation at a power density below the threshold
enables one to form a uniform film on the substrate surface (Figure 25a).
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Figure 24. Evaporation rate during electron-beam evaporation of the target of a type of alumina 
ceramics vs. the electron-beam power density. Beam current up to 200 mA; pressure 10 Pa, beam 
diameter 5 mm. 

Figure 24. Evaporation rate during electron-beam evaporation of the target of a type of alumina
ceramics vs. the electron-beam power density. Beam current up to 200 mA; pressure 10 Pa, beam
diameter 5 mm.
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At the maximum possible electron-beam power of 10 kW/cm2, the target evaporation
rate is 5 g/h. With the electron-beam power density being the decisive factor that affects
the evaporation rate, the coating thickness is normally controlled only by the process
duration. In this case, it should be taken into account that for intensive evaporation,
different ceramics must be heated up to different temperatures. Table 3 shows the coating
thickness for evaporation of alumina ceramics of different compositions and corresponding
deposition rates.

Table 3. Coating thickness and deposition rates.

Sample 1 Sample 2 Sample 3 Sample 4

Coating Thickness, µm

2.44 1.78 1.82 1.98

Deposition Rate, nm/min

1218 888 912 990

The obtained rate of the electron-beam deposition of ceramic coatings falls short of
the characteristic values for electron-beam evaporation of metals. Nevertheless, it is much
higher than that for the alternative method of magnetron sputtering of dielectric targets.

Figure 26 shows a photograph of a cross-section of a ceramic coating on a titanium
substrate and the distribution of the elemental composition with the sample depth [135].
The high uniformity of the coatings and the absence of pores are connected with the high
migration ability of the coating atoms at a high substrate temperature (over 700 ◦C) due to
radiation heating. The high substrate temperature stimulates the formation of the crystal
structure of coatings with the presence of Al2O3 γ- and α-phases. It should be noted that
the elemental composition is constant with the depth, which is indicative of stability and
uniformity of the deposition process.
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Figure 26. (a) A cross-section photograph of a ceramic coating on titanium. Experimental parameters:
Ie = 150 mA; Ua = 1–15 kV; p = 8 Pa. (b) The elemental composition of the ceramic-based coating vs. the
sample depth. Experimental parameters: p = 7.5 kW/cm2; p = 8 Pa [135].

The surface profile of this coating is shown in Figure 27. As seen, the roughness
amplitude of the original sample is about 1 µm, and after the coating deposition, diminishes
to 0.8 µm, which is over 20%. The width of non-uniformity peaks also decreases by over
60%, which indicates that the roughness of the sample surface reduces (Figure 27a) [135].
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Figure 27. Surface profile of a ceramic-based coating on titanium: (a)—original and coated samples;
(b)—micro-hardness of the original titanium sample and with the deposited Al2O3 coatings of
different compositions [135].

The maximum micro-hardness amounts to 16 GPa, which almost matches the micro-
hardness of aluminum oxide ceramics (Figure 27b). The coatings synthesized from the
impurity-free ceramics possess the highest hardness. Such coatings have the most pure
elemental composition, with only traces of oxygen and aluminum, and possess a granular
surface structure. They also have higher Young’s modulus, though with an increased
surface roughness.

Comparison of the electrical insulating parameters of the coating with those of the
evaporated target material indicates their proximity (Table 4).

Table 4. Dielectric parameters of the original target and the deposited coating.

Physical Parameter VK-94-1 Ceramics Coating

Dielectric constant at 20 ◦C and 10 kHz/10 MHz 10.3/10.3 9/7.8

Dielectric loss tangent tgδ·10−4 at 20 ◦C and 1 MHz 6 5.9

Volume resistivity, Ω·cm 1013 1.2 × 1012

One of the application examples of such dielectric coatings is their use of a heat sink
from the integrated circuit surfaces [136].

3.4.2. Boron-Containing Coatings

Plasma with a high content of boron ions can be effectively generated and used for
coating deposition by evaporation of a boron-containing target using a continuous focused
electron beam of a forevacuum plasma source at a pressure of about 10 Pa. One of the
specific features of boron at room temperature is its high electric resistivity (~106 Ω·cm).
This resistivity drops sharply with increasing temperature. So, one should expect certain
peculiarities of electron-beam evaporation of a boron sample regarding this feature, which
should be taken into account when selecting the optimal evaporation regime for the
synthesis of boron-based coatings.

A typical experimental setup for electron-beam evaporation of pure crystalline boron
and boron nitride is shown in Figure 28 [137]. The electron source provided the generation
of an electron beam with a current of up to 200 mA and energy of 1–20 keV. As a rule,
the experimental cycle includes three stages. First, an electron beam of 100 mA and an
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accelerating voltage of up to 5 kV heats up the target to prevent it from cracking due to
thermal stress. Then, the accelerating voltage slowly rises from 1 to 10 kV. When the critical
electron-beam power is reached, the target begins to melt, and at a beam current of 200 mA
and an accelerating voltage of 15–20 kV, the solid-body target evaporates, with the target
temperature at this point being about 2500 ◦C.
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The temperature dependence of the boron target on the electron-beam power density
is shown in Figure 29 [138].
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Figure 29. Temperature dependence of the boron target on the electron-beam power density:
Ib = 80 mA; Db = 5 mm; p = 7 Pa [138]. Temperature saturates due to intensive evaporation after
reaching the melting temperature (~ 2300 K).

The duration of the entire process was 5 to 20 min depending on the target composition
(B or BN). Simultaneously with the deposition of coatings, it was possible to monitor the
mass-to-charge composition of the beam plasma using a modified RGA-300 quadrupole
mass-spectrometer [139,140]. Figure 30 shows photographs of the obtained boron-based
coatings at different electron-beam power densities, and the distribution of micro-hardness
with the depth of the coatings deposited during evaporation of boron and boron nitride
in different gases. The data in the graphs allow one to indirectly determine the coating
thickness. Since all graphs in the plots reach “saturation” at a pressure of ~1 GPa, which
corresponds with the known tabular value of titanium Vickers micro-hardness (1 GPa), one
can estimate the thickness of the coatings obtained from boron nitride in an atmosphere of
different gases to be 3.5 µm. The thickness of the coating synthesized from boron in the
residual atmosphere amounts to 5 µm.
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Figure 30. Photographs of boron-based coatings at different electron-beam power densities:
(a) 30 kW/cm2; (b) 25 kW/cm2; (c) 20 kW/cm2; (d) 15 kW/cm2. Graphs [139] represent a micro-
hardness of boron-containing coatings vs. depth during evaporation of boron in helium (e), oxygen (f),
nitrogen (g), and of boron nitride in the residual atmosphere (h).

The conducted studies have shown that, despite approximately the same thickness,
the boron-based coatings deposited in a gas medium, unlike boron nitride coatings, follow
the substrate surface profile. There are visible long scratches left by the initial polishing
of titanium substrates. As seen from the 3D surface profiles (Figure 31), the boron-based
coatings deposited in different gas atmospheres contain many ridges and depressions. Their
surfaces accommodate elements of a needle-like structure with a size of 0.1–0.5 µm, which
can be caused by local chipping and destruction of thin surface layers due to internal stress.

The presented profiles show that for the boron-based coating, the maximum profile
height is 2.5 µm in the helium atmosphere, and about 3 µm in oxygen and nitrogen; while
for boron nitride it is characterized by the presence of large inclusions with peaks of about
8 µm. The typical photographs and the elemental composition of the boron-containing
and boron nitride coatings are shown in Figure 32. X-ray fluorescence analysis carried out
on an XRD-7000S diffractometer (Shimadzu, Japan) showed (see Figure 32 a,c) that the
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boron-based coatings, fabricated by electron-beam evaporation of a pure boron target in an
inert gas atmosphere, contain predominantly boron and oxygen. The spectra also contain
lines of the substrate material (titanium).
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Figure 31. Three-dimensional profiles of the boron-based coatings synthesized during evapora-
tion of boron in helium (a), oxygen (b), and nitrogen (c), and of boron nitride in the residual
atmosphere (d) [139].
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Figure 32. Surface photographs and the corresponding elemental composition of the boron-containing
coating (a,c) and the boron nitride coating (b,d) [139].

The presence of oxygen is connected with its content in the residual atmosphere of
the vacuum chamber and on the surface of the titanium substrate, which promoted its
concentration both inside and outside of the fabricated films. The peaks of titanium and
oxygen prevail over the boron lines, which is indicative of small thickness of the boron-
containing layer. On the contrary, for boron nitride coatings (see Figure 32b,d), there is
observed the highest peak corresponding to boron and weak lines of titanium and oxygen,
which indicates a sufficiently thick boron-containing coating capable of absorbing the
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characteristic radiation of the substrate (titanium). The small amplitude of the oxygen line
can be explained by the fact that the substrate is saturated with oxygen to a greater degree
than the boron-containing coating or its surface layer. The presence of a large amount of
impurities (magnesium, calcium, aluminum, and silicon) is due to the production method
used to manufacture boron nitride targets, where magnesium is used as a production
stimulator. The impurity lines have small amplitude, which indicates their insignificant
content in the fabricated coating. The small amplitude of the nitrogen line is apparently
associated with high absorption of characteristic nitrogen radiation by the formed coating,
so that the spectrum contains only the lines of nitrogen atoms located predominantly in the
near-surface layers [141].

Qualitative analysis of the coating showed that it contains atoms of boron, oxygen,
carbon, and nitrogen (Figure 33). The presence of a considerable amount of boron (about
30–35%) throughout the entire coating thickness prompts the possibility of using forevac-
uum plasma electron sources for electron-beam evaporation of boron and deposition of a
uniform boron coating.
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Figure 33. Elemental composition of the coating recorded using the Auger spectroscopy method
from the sample surface (a) and its depth (b) [138].

It should be noted that the elemental composition of the coating is constant with
the thickness, which confirms the stability and uniformity of the deposition process. The
absence of the substrate elements in the coating at a depth of about 1 µm and a short
deposition time (1 min) are indicative of a high deposition rate. The numerical values of
the coating surface parameters are summarized in Table 5.

Table 5. Main surface parameters of coatings.

Amplitude
Coating

B + He B + O2 +N2 BN

Root mean square roughness Sq, µm 0.41 0.403 0.498 0.711

Arithmetic roughness Sa, µm 0.325 0.312 0.391 0.497

Maximum surface relief height Sz, µm 2.5 2.94 3.71 7.89

The highest peak Sp, µm 1.49 1.41 1.5 4.49

The deepest depression Sv, µm 1.08 1.7 3.93 3.69

Asymmetry Ssk 0.413 –0.128 3.32 1.02

Kurtosis Sku 3.08 3.61 3.71 8.29

The parameter Sq, which is more sensitive to extreme values of roughness than Sa,
made it possible to reveal the presence of individual sharp rough areas distinctly seen in the
layout of the boron nitride coatings. Besides, there are artifacts in the form of larger peak-
like violations of the surface uniformity. The profiles with a positive asymmetry coefficient
are dominated by micro roughnesses with sharp high peaks that stand out from the average
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height. Negative values of Ssk characterize the surfaces with sharp deep depressions, such
as the surfaces of the coatings obtained in the mixture of oxygen and nitrogen. This agrees
with the graph in Figure 31. The combination of kurtosis and asymmetry can identify the
surfaces which have relatively uniform high and low extreme points, such as, for example,
the boron coatings in helium and nitrogen atmospheres.

3.4.3. Silicon-Carbon Coatings

Silicon-carbon coating (film) is a set of film structures that contains silicon and carbon
atoms. These coatings are of interest to researchers and engineers due to a wide range
of properties: chemical and thermal resistance, high Young’s moduli, low coefficient of
thermal expansion, hardness, and high wear resistance. They usually have a low coefficient
of friction, which is required for various moving mechanisms, and as such, silicon-carbon
coatings are used as protective coatings in cutting tools, computer hard disks, and micro-
electromechanical systems [142].

The experimental setup for the electron-beam synthesis of silicon-carbon coatings in
principle does not differ from the experiments for production of ceramic or boron-based
coatings. A high-temperature tantalum crucible, with a silicon carbide target inside, 0.5 cm
thick and 1 cm in diameter, was placed at the bottom of the vacuum chamber. The SiC
targets were prepared by uniaxial pressing at a pressure of 160–800 MPa at room tem-
perature. Micrographs of the synthesized silicon-carbon coatings are shown in Figure 34.
The rate of electron-beam evaporation of silicon carbide, and hence the deposition rate,
increases with increasing electron-beam power density, so in order to avoid the formation
of a droplet phase, the power density in experiments was restricted to a level of 7 kW/cm2.
Morphology analysis of the surfaces of deposited coatings showed that the silicon-carbon
film is a structure consisting of spherical grains ranging in size from hundreds of nanome-
ters to a few micrometers. Similar results were previously obtained in [143], where the
silicon-carbon coatings were produced using electrochemical deposition. Table 6 shows
the data on micro-hardness and deposition time of silicon-carbon coatings in comparison
with other deposition methods. As seen, the micro-hardness of the coatings obtained by
electron-beam evaporation varies from 9 to 20 GPa and almost reaches the maximum for
such coatings. Note that the synthesis by electron-beam evaporation of a 1000 nm coating
takes only 10 min. As follows from the data in Table 5, this time is tens of times less as
compared with alternative techniques. Note also the values of Young’s moduli (Figure 35).
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Figure 35 shows the indenter loading curves for the original sample and for the 
samples with typical coatings. As seen from the figure, the obtained coatings have high 
values of elastic recovery, which may be indicative of an enhanced relaxation capacity of 
the material, especially stress relaxation under cyclic loads, which provides effective re-
sistance to fatigue fracture [148]. 
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For the sample with a substrate temperature of 600 ◦C (Sample No. 1), Young’s
modulus was about 200 GPa; for the sample with a substrate temperature of 300 ◦C
(Sample No. 2), Young’s modulus was 115 GPa. Such a difference may be related to the
elemental composition of the coatings (Figure 36). The coating of the sample with a higher
temperature contains half as much oxygen and aluminum. These conclusions are in good
agreement with the authors of [144].
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Table 6. Comparison of micro-hardness and synthesis time of silicon-carbon coatings obtained by
different methods.

Method Microhardness Deposition Time

Kaufman ion source [145] 5–12 GPa 2 h

DC PECVD [146] 9–17 GPa 6–12 h

RF PECVD [147] 13–18 GPa 4–8 h

Deposition from self-sustained arc discharge
plasma with hot cathode [144] 6.5–20 GPa 8 h

Electron-beam evaporation in forevacuum 9.5–20 GPa 10 min

Figure 35 shows the indenter loading curves for the original sample and for the
samples with typical coatings. As seen from the figure, the obtained coatings have high
values of elastic recovery, which may be indicative of an enhanced relaxation capacity of the
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material, especially stress relaxation under cyclic loads, which provides effective resistance
to fatigue fracture [148].

Figure 36 shows the elemental composition of the obtained silicon-carbon coatings.
The content of carbon ranges 30–40%, silicon 40–50%, oxygen 4–8%. It has been noticed
that with an increase in the content of silicon, the hardness of coating decreases, which
agrees well with the results of the authors of [144].

Figure 37 shows the results of tribological studies of the coated samples obtained at
different substrate temperatures.
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As seen, the synthesis of the silicon-carbon coating diminishes the coefficient of friction.
The decrease in the coefficient of friction is greater with increasing substrate temperature.
As a result, the surface wear resistance increases by over an order of magnitude. The use of
forevacuum plasma electron sources for electron-beam evaporation of silicon carbide and
the following deposition of vapor on the substrate make it possible to form silicon-carbide
coatings with a thickness of several micrometers. The silicon-carbon coatings produced by
this method have a coefficient of hardness of up to 20 GPa and Young’s modulus of about
200 GPa. The rate of the electron-beam deposition ensures that the required thickness of
coating can be achieved in times that are tens of times shorter as compared with the known
alternative techniques.

4. Conclusions

Thus, the results presented in this paper unambiguously indicate the possibility of
implementation of effective electron-beam synthesis of dielectric coatings. The essence of
the method is in using an electron beam for heating a solid-body dielectric target, followed
by deposition of evaporated products on the surface of a processed workpiece to form a
coating. The possibility of direct electron-beam action on electrically low-conductive mate-
rials is provided by forevacuum plasma electron sources operating at elevated pressures
from a few to hundreds of pascals. This possibility arises due to the creation of dense beam
plasma that neutralizes the processes of electron-beam charging of a dielectric target. The
composition of the synthesized coatings does not practically differ from that of the material
of the evaporated dielectric target. The parameters and characteristics of coatings are on
par with the best samples obtained by alternative methods. The fundamental advantages of
the electron-beam synthesis of dielectric coatings are significantly higher film growth rate
and more options in controlling the deposition process by varying the electron-beam and
beam-plasma parameters. The indicated features make the method of electron-beam syn-
thesis of dielectric coating using forevacuum plasma electron sources promising for a wide
range of problems related to modification of the surface properties of various materials.
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